Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.764
Filtrar
1.
J Environ Sci (China) ; 150: 66-77, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306438

RESUMO

Many studies have shown the negative relationship between long term exposure to PM2.5 and cardiac dysfunction. Recently, studies have shown that even a single exposure of PM2.5 from air sample in permissible range can induce very mild cardiac pathological changes. In the present study, we revisited the toxic effect of PM2.5 on rat heart by adopting single and multiple exposure durations. Female Wistar rats were exposed to PM2.5 at a concentration of 250 µg/m3 daily for 3 hr for single (1 day) and multiple (7, 14, 21 days) durations. The major pathological changes noted in 21 days exposed myocardium comprised of an elevated ST segment (the segment between the S wave and the T wave), development of cardiac fibrosis, hypertrophy, cardiac injury, tissue inflammation and declined cardiac function. With 14 days exposed heart, the electrocardiograms (ECG),data showed insignificantly declined heart rate and an increased QT (the time from the start of the Q wave to the end of the T wave) interval along with mild fibrosis, hypertrophy and lesser number of TUNEL positive cells. On the other hand, single- and 7-days exposure to PM2.5 did not impart any significant changes in the myocardium. To determine the reversibility potential of PM2.5 induced cardiotoxicity, a washout period of 24 hours was adopted and all observed changes in the myocardium were reversed till day 7, but not in 14- and 21-days exposed samples. Based on the above findings we concluded that PM2.5 associated cardiac dysfunction is the cumulative outcome of ineffective cardiac adaptive and repair process that accumulate additively over the time due to prolonged exposure durations.


Assuntos
Poluentes Atmosféricos , Coração , Material Particulado , Ratos Wistar , Animais , Material Particulado/toxicidade , Material Particulado/análise , Ratos , Feminino , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Coração/efeitos dos fármacos , Miocárdio/patologia
2.
J Environ Sci (China) ; 149: 126-138, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181628

RESUMO

With the continuous control of anthropogenic emissions, China's air quality has improved significantly in recent years. Given this background, research on how the short-term exposure risks caused by air pollution in China have changed is insufficient. This study utilized hourly concentration data from ground observation stations and the official air quality guidelines of the Ministry of Ecology and Environment of China and the World Health Organization as standards to systematically investigate the spatiotemporal characteristics and short-term exposure risks of air pollution in China from 2015 to 2022. The results indicate that various atmospheric pollutants except for ozone showed a decreasing trend yearly. Nationwide, both single pollutant air pollution days (SAPDs) and multiple pollutant air pollution days (MAPDs) showed varying degrees of reduction within 15 and 25 days, respectively. SAPD was dominated mainly by excessive PM2.5 and PM10 pollutants, while MAPD was dominated mainly by excessive pollutant combinations, including PM2.5 + PM10, CO + PM2.5 + PM10, and SO2 + PM2.5 + PM10. As the concentration of atmospheric pollutants decreased, the total excess risk (ER) decreased yearly from 2015 to 2022, but there were significant regional differences. Now, the ER is less than 0.25% in southern China, in the range of 0.25%-0.5% in the North China Plain and some cities in the northeast, and higher than 1% in the northwest. Particulate matter is currently the primary pollutant posing short-term exposure risk in China, especially due to the impact of sandstorm weather. This study indicates that China's atmospheric cleaning action is significantly beneficial for reducing health risks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Monitoramento Ambiental , Material Particulado , China , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Humanos , Medição de Risco
3.
J Environ Sci (China) ; 148: 591-601, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095192

RESUMO

To explore air contamination resulting from special biomass combustion and suspended dust in Lhasa, the present study focused on the size distribution and chemical characteristics of particulate matter (PM) emission resulting from 7 types of non-fossil pollution sources. We investigated the concentration and size distribution of trace elements from 7 pollution sources collected in Lhasa. Combining Lhasa's atmospheric particulate matter data, enrichment factors (EFs) have been calculated to examine the potential impact of those pollution sources on the atmosphere quality of Lhasa. The highest mass concentration of total elements of biomass combustion appeared at PM0.4, and the second highest concentration existed in the size fraction 0.4-1 µm; the higher proportion (12 %) of toxic metals was produced by biomass combustion. The elemental composition of suspended dust and atmospheric particulate matter was close (except for As and Cd); the highest concentration of elements was all noted in PM2.5-10 (PM3-10). Potassium was found to be one of the main biomass markers. The proportion of Cu in suspended dust is significantly lower than that of atmospheric particulate matter (0.53 % and 3.75 %), which indicates that there are other anthropogenic sources. The EFs analysis showed that the Cr, Cu, Zn, and Pb produced by biomass combustion were highly enriched (EFs > 100) in all particle sizes. The EFs of most trace elements increased with decreasing particle size, indicating the greater influence of humanfactors on smaller particles.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poeira , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado , Poluentes Atmosféricos/análise , Aerossóis/análise , Material Particulado/análise , Poeira/análise , Oligoelementos/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , China , Atmosfera/química
4.
J Occup Environ Hyg ; : 1-10, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361879

RESUMO

A job-exposure matrix (JEM) is a tool that can estimate diesel engine exhaust (DEE) exposures. JEMs based on expert judgment or measurement data are limited by the information available at the time of development. Over time, more information about hazardous exposures is understood through additional measurements and peer-reviewed publications. This study presents a systematic approach to updating an existing DEE JEM using published data to better reflect current scientific knowledge. The literature was searched for occupational exposure studies that measured DEE as elemental carbon (EC) between January 2010 and May 2022. Four-digit North American Industry Classification System (NAICS) 2002 and National Occupational Classification-Statistics (NOC-S) 2006 codes were assigned to each identified subgroup within the studies. EC exposures were categorized as low (0-10 µg/m3), moderate (10-20 µg/m3), or high (>20 µg/m3). Weighted arithmetic means were calculated for each industry-occupation intersection (IOI) identified in the literature. These means were used to adjust, or retain, the existing exposure level within the JEM cells using a decision tree based on the number of studies, workplace locations, and pooled sample size of the weighted mean. Concordance was measured between the updated JEM (Diesel Exhaust in Canada JEM (DEC-JEM)), the previous (existing) JEM, and the Canadian Job-Exposure Matrix (CANJEM). Thirty-seven studies were identified from the published literature reporting on 53 unique IOIs (20 NAICS and 34 NOC-S codes), including occupations in the mining, construction, and transportation industries. Exposure levels for 66% of identified IOIs increased, most in construction and mining. After the decision tree's results were expanded to the full DEC-JEM, the exposure level of 486 IOIs (12.5% of DEC-JEM) and 286,710 workers (15.8% of DEE-exposed workers) increased. There was a significant correlation between qualitative exposure levels in the updated DEC-JEM and CANJEM (Kendall's τ = 0.364, p < 0.001). This study describes a systematic approach to updating an existing JEM to incorporate new scientific knowledge. The updated DEC-JEM better reflects existing exposure knowledge in several industries, particularly construction. Future analyses include investigating its use as an exposure assessment tool in disease surveillance.

5.
Water Res ; 267: 122552, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39362131

RESUMO

Bioaerosol contamination was considered as a potential health threat in sludge dewatering systems (SDSs), while emission and risk of airborne antibiotic resistome remain largely unclear. Herein, seasonal investigations of fine particulate matter (PM2.5) were conducted using metagenomics-based methods within and around different SDSs, together with an analysis of sewage sludge. Featured with evident seasonality, antibiotic resistance genes (ARGs) in SDS-PM2.5 also possessed greater accumulation, transfer, and pathogen accessibility than those in ambient air PM2.5. Mobile ARGs in SDS-PM2.5 mainly encoded resistance to tetracycline, and most were flanked by integrase. Some pathogenic antibiotic resistant bacteria (PARB), including Enterobacter asburiae, Escherichia coli, Enterococcus faecium, and Staphylococcus aureus, also carried mobile genetic elements in SDS-PM2.5. Dewatering behavior actuated > 50.56% of ARG subtypes and > 42.86% of PARB in sewage sludge to aerosolize into air. Relative humidity, temperature, and PM2.5 concentration collectively drove the evolution of bacterial community and indirectly promoted the antibiotic resistance of SDS-PM2.5. SDS-PM2.5 posed more serious resistome risks than sewage sludge and ambient air PM2.5, and the highest levels were discovered in winter. These findings underline the role of dewatering behavior in facilitating resistome's aerosolization, and the need to mitigate this potential air pollution.

6.
Ecotoxicol Environ Saf ; 285: 117116, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357377

RESUMO

Ambient air pollution is a significant environmental risk factor for adverse pregnancy outcomes, including preterm birth. However, the impact of different pollutants across various regions and trimesters of pregnancy has not been fully investigated in Brazil. This study aimed to examine the associations between exposure to PM2.5, NO2, and O3 during different trimesters of pregnancy and the risk of preterm birth across five regions of Brazil. We used logistic regression models to estimate the odds ratios (OR) of preterm birth associated with PM2.5, NO2, and O3 adjusting for potential confounders such as maternal age, education, and socioeconomic status. Our study included over 9.9 million live births from 2001 to 2018, with data obtained from the Ministry of Health in Brazil. On average, for each 1-µg/m3 increase in PM2.5, we estimated a 0.26 % (95 % CI: 0.08-0.44 %) increase in the risk of preterm birth nationally in the first trimester. For NO2, each 1ppb increase was associated with a percentage increase in preterm birth risk of 7.26 % (95 % CI: 4.77-9.74 %) in the first trimester, 8.05 % (95 % CI: 5.73-10.38 %) in the second trimester, and 7.48 % (95 % CI: 5.25-9.72 %) in the third trimester. For O3, each 1ppb increase was associated with a percentage increase in preterm birth risk of 1.24 % (95 % CI: 0.29-2.18 %) in the first trimester, 1.51 % (95 % CI: 0.60-2.41 %) in the second trimester, and 0.72 % (95 % CI: -0.18-1.62 %) in the third trimester. This study highlights the significant impact of ambient air pollution on preterm birth risk in Brazil, with significant regional variations. Our findings underscore the need for targeted public health interventions to mitigate the effects of air pollution on pregnancy outcomes, particularly in the most affected regions.

7.
Environ Monit Assess ; 196(11): 1013, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365342

RESUMO

This study investigated the anomalous seasonal variations in particulate matter (PM) concentrations-specifically PM2.5 and PM10-in Padang City, Indonesia, situated within the Equatorial climate zone. A one-year dataset of half-hourly PM measurements from January to December 2023, collected by the Air Quality Monitoring System (AQMS) managed by the Environmental Agency of West Sumatra (DLH), was utilized. Maps of hotspots and air mass backward trajectories were used to identify possible transboundary emissions affecting Padang City. Despite the region experiencing nearly continuous rainfall, significant elevations in PM levels were observed during the typically drier months of August to October. Specifically, PM2.5 levels peaked at 36.57 µg/m3 and PM10 at 39.58 µg/m3 in October, significantly higher than in other months and indicating a substantial deviation from the typical expectations for equatorial climates. These results suggest that the high PM concentrations are not solely due to local urban emissions or normal seasonal variations but are also significantly influenced by transboundary smoke from peatland fires and agricultural burning in neighboring provinces such as Bengkulu, Riau, Jambi, and South Sumatra. Backward trajectory analysis further confirmed the substantial impact of regional activities on degradation of air quality in Padang City. The study underscores the need for integrated air quality management that includes both local and transboundary pollution sources. Enhanced monitoring, public engagement, and inter-regional collaboration are emphasized as crucial strategies for mitigating the adverse effects of PM pollution in equatorial regions like Padang City.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Estações do Ano , Indonésia , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Clima , Cidades
8.
PeerJ ; 12: e18119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351367

RESUMO

Atmospheric particulate matter (PM) pollution has become a major environmental risk, and green plants can mitigate air pollution by regulating their enzymatic activity, osmoregulatory substances, photosynthetic pigments, and other biochemical characteristics. The present investigation aims to evaluate the mitigation potential of five common evergreen tree species (Photinia serrulata, Ligustrum lucidum, Eriobotrya japonica, Euonymus japonicus, Pittosporum tobira) against air pollution and to assess the effect of dust retention on plant physiological functions exposed to three different pollution levels (road, campus, and park). The results found that the amount of dust retained per unit leaf area of the plants was proportional to the mass concentration of atmospheric particulate matter in the environment, and that dust accumulation was higher on the road and campus than in the park. There were significant differences in dust retention among the five tree species, with the highest leaf dust accumulation observed for E. japonica (5.45 g·m-2), and the lowest for P. tobira (1.53 g·m-2). In addition, the increase in PM adsorption by different plants was uneven with increasing pollution levels, with significant decreases in chlorophyll content, photosynthetic and transpiration rate. From a physiological perspective, P. tobira exhibited greater potential to respond to PM pollution. Biochemical indicators suggested that PM pollution caused changes in plant protective enzyme activities, with a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities, as well as promoting membrane lipid peroxidation, and appropriate stress also enables plants to counteract oxidative damage. In particular, PM exposure also induced stomatal constriction. Overall, PM retention was significantly associated with physiological and photosynthetic traits. In conclusion, our study contributes to the understanding of the effects of PM on plant physiology. Furthermore, it also provides insights into the selection of plants that are tolerant to PM pollution.


Assuntos
Poluentes Atmosféricos , Material Particulado , Fotossíntese , Material Particulado/efeitos adversos , Material Particulado/toxicidade , China , Fotossíntese/efeitos dos fármacos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Clorofila/metabolismo , Árvores/efeitos dos fármacos , Árvores/metabolismo , Ligustrum/química , Euonymus/metabolismo , Euonymus/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/química , Poeira/análise , Poluição do Ar/efeitos adversos
9.
Artigo em Inglês | MEDLINE | ID: mdl-39358655

RESUMO

Just as the value of crude oil is unlocked through refining, the true potential of air quality data is realized through systematic processing, analysis, and application. This refined data is critical for making informed decisions that may protect health and the environment. Perhaps ground-based air quality monitoring data often face quality control issues, notably outliers. The outliers in air quality data are reported as error and event-based. The error-based outliers are due to instrument failure, self-calibration, sensor drift over time, and the event based focused on the sudden change in meteorological conditions. The event-based outliers are meaningful while error-based outliers are noise that needs to be eliminated and replaced post-detection. In this study, we address error-based outlier detection in air quality data, particularly targeting particulate pollutants (PM2.5 and PM10) across various monitoring sites in Delhi. Our research specifically examines data from sites with less than 5% missing values and identifies four distinct types of error-based outliers: extreme values due to measurement errors, consecutive constant readings and low variance due to instrument malfunction, periodic outliers from self-calibration exceptions, and anomalies in the PM2.5/PM10 ratio indicative of issues with the instruments' dryer unit. We developed a robust methodology for outlier detection by fitting a non-linear filter to the data, calculating residuals between observed and predicted values, and then assessing these residuals using a standardized Z-score to determine their probability. Outliers are flagged based on a probability threshold established through sensitivity testing. This approach helps distinguish normal data points from suspicious ones, ensuring the refined quality of data necessary for accurate air quality modeling. This method is essential for improving the reliability of statistical and machine learning models that depend on high-quality environmental data.

10.
Euro Surveill ; 29(40)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39364599

RESUMO

BackgroundOutbreaks of highly pathogenic avian influenza (HPAI) on poultry farms and in wild birds worldwide persists despite intensified control measures. It causes unprecedented mortality in bird populations and is increasingly affecting mammalian species. Better understanding of HPAI introduction pathways into farms are needed for targeted disease prevention and control. The relevance of airborne transmission has been suggested but research involving air sampling is limited and unequivocal evidence on transmission routes is lacking.AimWe aimed to investigate whether HPAI virus from wild birds can enter poultry houses through air inlets by characterising host materials through eukaryote DNA sequencing.MethodsWe collected particulate matter samples in and around three HPAI-affected poultry farms which were cleared and decontaminated before sampling. Indoor measurements (n = 61) were taken directly in the airflow entering through air inlets, while outdoor air samples (n = 60) were collected around the poultry house. Positive controls were obtained from a bird rehabilitation shelter. We performed metabarcoding on environmental DNA by deep sequencing 18S rRNA gene amplicons.ResultsWe detected waterbird DNA in air inside all three, and outside of two, poultry farms. Sequences annotated at species level included swans and tufted ducks. Waterbird DNA was present in all indoor and outdoor air samples from the bird shelter.ConclusionAirborne matter derived from contaminated wild birds can potentially introduce HPAI virus to poultry houses through air inlets. The eDNA metabarcoding could assess breaches in biosecurity for HPAI virus and other pathogens potentially transmitted through air via detection of their hosts.


Assuntos
Animais Selvagens , Aves , Influenza Aviária , Aves Domésticas , Animais , Influenza Aviária/transmissão , Influenza Aviária/virologia , Aves Domésticas/virologia , Animais Selvagens/virologia , Aves/virologia , Países Baixos/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Microbiologia do Ar , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Abrigo para Animais
11.
Food Chem Toxicol ; 193: 115009, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39304082

RESUMO

Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu2+ to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu2+ and SPs, changes of particle size and surface properties were shown in the presence of Cu2+ using microscopy, DLS, and IR spectroscopy. In nerve terminals, Cu2+ and SPs per se elevated the ambient levels of excitatory and inhibitory neurotransmitters L-[14C]glutamate and [3H]GABA, respectively. During combined application, Cu2+ significantly enhanced a SPs-induced increase in the ambient levels of both neurotransmitters, thereby demonstrating a cumulative synergistic effect and significant interference in the neurotoxic threat associated with Cu2+and SPs. In fluorimetric measurements, Cu2+ and SPs also demonstrated cumulative synergistic effects on the membrane potential, mitochondrial potential, synaptic vesicle acidification and ROS generation. Therefore, synergistic effects of Cu2+ and SPs on the most crucial presynaptic characteristics and neurohazard of multiple pollutants through excitatory/inhibitory imbalance, disruption of the membrane and mitochondrial potential, vesicle acidification and ROS generation were revealed. Increased expansion and burden of neuropathology may result from underestimation of synergistic interference of the neurotoxic effects of Cu2+ and carbonaceous smoke PM.

12.
Geohealth ; 8(9): e2024GH001049, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39308667

RESUMO

The paucity of fine particulate matter (PM2.5) measurements limits estimates of air pollution mortality in Sub-Saharan Africa. Well calibrated low-cost sensors can provide reliable data especially where reference monitors are unavailable. We evaluate the performance of Clarity Node-S PM monitors against a Tapered element oscillating microbalance (TEOM) 1400a and develop a calibration model in Mombasa, Kenya's second largest city. As-reported Clarity Node-S data from January 2023 through April 2023 was moderately correlated with the TEOM-1400a measurements (R 2 = 0.61) and exhibited a mean absolute error (MAE) of 7.03 µg m-3. Employing three calibration models, namely, multiple linear regression (MLR), Gaussian mixture regression and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 µg m-3 respectively. The R 2 value improved to 0.63 for the MLR model but all other models registered a decrease (R 2 = 0.44 and 0.60 respectively). Applying the correction factor to a five-sensor network in Mombasa that was operated between July 2021 and July 2022 gave insights to the air quality in the city. The average daily concentrations of PM2.5 within the city ranged from 12 to 18 µg m-3. The concentrations exceeded the WHO daily PM2.5 limits more than 50% of the time, in particular at the sites nearby frequent industrial activity. Higher averages were observed during the dry and cold seasons and during early morning and evening periods of high activity. These results represent some of the first air quality monitoring measurements in Mombasa and highlight the need for more study.

13.
Ecotoxicol Environ Saf ; 285: 117054, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305771

RESUMO

Extensive research has established the link between PM2.5 exposure and blood pressure (BP) levels among normal individuals. However, the association between PM2.5 components and BP levels in hypertensive patients has not been fully explored. In this study, 12 971 hypertensive cases from Jinchang cohort (in Jinchang City, China) with nearly 9 years of follow-up were enrolled. Based on the linear mixed-effect model, the effects of fine particulate matter (PM2.5) and five major components [sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC) and organic matter (OM)]on BP [systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP)]were evaluated by single-component model, component-joint model and component-residual model, respectively. A positive correlation was found between PM2.5 as well as its components (SO42-, NO3-, NH4+, BC and OM) exposure and BP levels. The effects of SO42-, BC and OM on BP were observed to be the most robust among the three models. Based on the results of interaction effects and stratified analysis, the effect of BC exposure on SBP, and the effect of PM2.5 and its five components on PP were greater in female than in males. Compared with elderly hypertensive patients, OM had more significant effects on SBP, DBP and MAP in young and (or) middle-aged hypertensive patients. During the heating season, the effect of PM2.5 and its components on BP was grater compared to the non-heating season. Meanwhile, PM2.5 and its components have a greater influence on BP in patients with hypertension combined with diabetes. Therefore, the findings suggested that both PM2.5 exposure and its components had a significant effect on BP in patients with hypertension. Women and young and middle-aged hypertensive patient were the sensitive population. The implementation of source control and reduction of PM2.5 emission (mainly for SO42-, BC and OM) may be of great significance to control BP level and could reduce the risk of cardiovascular disease in patients with hypertension.

14.
Environ Int ; 192: 109019, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39305790

RESUMO

Both ambient fine particulate matter (PM2.5) and aging are important urban concerns. However, the associations between PM2.5 constituents and the acceleration of aging (AA) remain unclear. We included 16,051 adults (aged 25-80 years) with 19,252 medical observations in Taiwan during 2008-2017. 2-year average PM2.5 and its five major constituents were assessed using a two-stage machine learning model at a resolution of 1 km2. AA was determined by the difference between the Klemera-Doubal biological age and chronological age. A linear mixed model (LMM) with inverse probability weights was used to examine the associations between AA and air pollution. In a semi-randomized study design, we applied a post-matching LMM to assess the impacts of changes in air pollution exposure on AA. Each interquartile range increase in ambient PM2.5, SO4-2, NO3-, NH4+, organic matters (OM), and black carbon (BC) was associated with a 0.20 (95 %confidence interval [CI]: 0.17-0.24), 0.19 (0.15-0.23), 0.14 (0.11-0.18), 0.21 (0.17-0.24), 0.22 (0.19-0.26) and 0.25 (0.21-0.28) year increase in AA, respectively. BC was generally associated with the greatest increase in AA as compared to other constituents. We did not find evident thresholds in their concentration-response associations. Participants exposed to increased levels of PM2.5, SO4-2, NO3-, NH4+, OM, and BC experienced an increase in AA of 0.11 (-0.07-0.29), 0.20 (0.02-0.39), 0.15 (-0.02-0.33), 0.12 (-0.07-0.31), 0.24 (0.07-0.41), and 0.30 (0.07-0.52) years, respectively, compared to those exposed to decreased/unchanged levels. Long-term exposure to ambient PM2.5 and its constituents may accelerate biological aging among Chinese adults. Exposed to increased levels may further aggregate the aging process. This study suggests that reducing exposure to air pollution is beneficial, even for residents within moderately-to-highly polluted regions, such as Taiwan. Rigorous regulation of PM2.5 and its constituents may prevent the acceleration of biological age.

15.
J Hazard Mater ; 480: 135811, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39298947

RESUMO

Air pollution is one of the major environmental risks threatening human health, diesel exhaust particulate matter (DEPM) is an important source of urban air pollution, and oral ingestion is the primary route of exposure to atmospheric particulate matter. This study examined the bioaccessibility of Cr, Fe, and Zn in DEPM within simulated saliva fluids through in vitro experiments, interactions between the particles and mucins, and the mechanisms underlying the oxidative damage they cause. The results indicated that the interaction between DEPM and mucins altered the dispersibility, surface charge, and wettability of the particles, leading to increased release of heavy metals. Protein adsorption experiments and characterizations revealed that the adsorption of mucin by the particles resulted in a complexation reaction between the metals in the DEPM and the mucins, accompanied by fluorescence quenching of the protein. In addition, free radical assays and correlation analyses revealed that environmentally persistent free radicals generated by DEPM induce the production of reactive oxygen species (O2·-, HOOH, and·OH), which damage the secondary structure of mucins and increase the risk of oral diseases. Our study is the first to reveal the interaction between DEPM and mucins in saliva, elucidating the mechanisms of DEPM-induced oxidative damage. This is significant for understanding the oral health risks posed by the ingestion of atmospheric particulate matter.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39326935

RESUMO

Long-term exposure to fine particulate matter (PM2.5) can lead to chronic lung injury, including inflammation, idiopathic pulmonary fibrosis, and cancer. Mesenchymal cells, such as fibroblasts, myeloid-derived suppressor cells (MDSCs), and interstitial macrophages (IMs), contribute to immune regulation in lung, yet their diversity and functions upon long-term exposure to particulate matter (PM) remain inadequately characterized. In this study, we conducted a 16-week real-ambient PM exposure experiment on C57BL/6 J male mice in Shijiazhuang, China. We used single-cell RNA sequencing to analyze the cellular and molecular changes in lung tissues. Notably, we revealed a significant increase in specific fibroblast (ATX+, Col5a1+Meg3+, universal fibroblasts) and monocyte-derived cell subpopulations (monocytic-MDSCs (M-MDSCs), Lyve1loMHC-Ⅱhi IMs, Lyve1hiMHC-Ⅱlo IMs) that exhibited pro-inflammatory and pro-fibrotic functions. These cell subpopulations engaged in immunosuppressive signaling pathways and interactions with various cytokines, shaping a pulmonary microenvironment similar to those associated with cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). This altered immune environment may promote the development of pulmonary fibrosis caused by PM exposure, underscoring the intricate roles of mesenchymal cells in chronic lung injury and highlighting the cancer-causing potential of PM2.5 exposure.


Assuntos
Fibroblastos , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Monócitos , Material Particulado , Animais , Material Particulado/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Masculino , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
17.
Eur J Prev Cardiol ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301834

RESUMO

AIMS: Short-term effects of Polish smog, particularly benzo(alpha)pyrene (B(a)P), are unclear. We aimed to examine the association between short-term exposure to air pollution and ischemic stroke (IS) incidence. METHODS: We conducted a retrospective population-based cohort study including an EP-PARTICLES cohort of 8 million inhabitants in the years 2011-2020 (80 million person-years of observation). Individual clinical data on emergency hospitalizations due to IS - ICD-10: I63.X was analyzed. We used quasi-Poisson models to examine municipality-specific associations between air pollutants and IS, considering various covariates. RESULTS: We recorded 146,262 cases of IS with a dominance of females (51.8%) and people over 65 years old (77.6%). In the overall population, exposure to PM2.5, NO2, B(a)P and SO2 increased the risk of IS onset on the day of exposure by 2.4%, 1%, 0.8%, and 0.6%, respectively. Age and sex were modifying variables for PM2.5, NO2 and B(a)P exposure with more pronounced effects in non-elderly individuals and women (all pinteraction< 0.001). Residents of regions with high tobacco and alcohol consumption were more sensitive to the effects of PM2.5 and SO2. The slopes of response-effect curves were non-linear and steeper at lower concentrations. CONCLUSIONS: Exposure to air pollution may be associated with higher IS incidence, particularly posing a higher risk to non-elderly women. Harmful lifestyle habits might exacerbate its impact. Exposure to even low levels of air pollutants had negative effects.


The present study aimed to analyze the association between exposure to air pollution and IS incidence: Exposure to even low levels of air pollution, including B(a)P, might be associated with higher IS incidence and characteristics of the patients or their place of residence can modify its effectThe most vulnerable phenotype is non-elderly woman and harmful lifestyle habits, such as smoking and drinking alcohol, can further increase the negative effects of air pollution.

18.
Toxics ; 12(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39330599

RESUMO

Estrogens in river systems can significantly impact aquatic ecosystems. This study aimed to investigate the multiphase partitioning of estrogens in Wulo Creek, Taiwan, which receives animal feedlot wastewater, to understand their distribution and potential environmental implications. Water samples were separated into suspended particulate matter (SPM), colloidal, and soluble phases using centrifugation and cross-flow ultrafiltration. Concentrations of estrone (E1), 17ß-estradiol (E2), and estriol (E3) in each phase were analyzed using LC/MS/MS. Partition coefficients were calculated to assess estrogen distribution among phases. Estrogens were predominantly found in the soluble phase (85.8-87.3%). The risk assessment of estrogen equivalent (EEQ) values suggests that estrogen concentration in water poses a higher risk compared to SPM, with a majority of the samples indicating a high risk to aquatic organisms. The colloidal phase contained 12.7-14.2% of estrogens. The log KCOC values (4.72-4.77 L/kg-C) were significantly higher than the log KOC and log KPOC values (2.02-3.40 L/kg-C) for all estrogens. Colloids play a critical role in estrogen distribution in river systems, potentially influencing their fate, transport, and biotoxicity. This finding highlights the importance of considering colloidal interactions in assessing estrogen behavior in aquatic environments.

19.
J Adolesc Health ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340501

RESUMO

PURPOSE: The purpose of this article is to evaluate the relationship between exposure to poor air quality (AQ) and self-reported symptoms among young adults with asthma during wildfire smoke season. METHODS: Sixty seven young adults (aged 18-26 years) completed the Asthma Control Test and reported asthma symptoms at three time points (baseline, 4 weeks, and 8 weeks) during wildfire season as part of a clinical trial. Bivariate correlations between Asthma Control Test and AQ measures were examined followed by predictive linear regression. Multiple symptoms were compared between participants who experienced poor AQ and those who did not. RESULTS: Asthma control was inversely related to AQ with increased exposure to poor AQ tied to poor asthma control. A significantly greater proportion of participants reported critical respiratory symptoms when exposed to poor AQ than those who were not. DISCUSSION: Respiratory symptoms are key indicators that young adults can monitor to optimize their asthma management during wildfire smoke season.

20.
Ecotoxicol Environ Saf ; 285: 117107, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332195

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) is noxious to female reproductive development and facilitates the occurrence of subsequent diseases. Early menopause is initiative factor of female aging. But due to the lack of historical exposure of PM2.5, we could not gain insight into the linkage between ambient PM2.5 exposure and early menopause. METHODS: We conducted a community-based retrospective cross-sectional study and pooled 1173 postmenopausal women. The machine learning algorithm of LightGBM was processed to derive the historical concentrations of PM2.5 based on aerography of 1956-2022. The quantile g-computation and binary logistic regression were employed to estimate the mixed and single associations between PM2.5 and early menopause. RESULTS: The visibility topped the most important feature for derivations of historical PM2.5 concentrations. The R2 of 10-fold cross-validation and predictive capability during processing were all above 0.8. The prevalence of early menopause was 7.3 %. Each 10 µg/m3 PM2.5 increased the prevalence of early menopause during prior 2 years exposure (OR: 1.49, 95 %CI: 1.03-2.16) and spring and autumn (OR: 1.28, 95 %CI: 1.07-1.54). After adjusting the reverse effects of temperature, the prior 2 years exposure of PM2.5 remained positively associated with early menopause in the fourth quantile vs the first quantile (OR: 3.36, 95 %CI: 1.53-7.36) in the spring and autumn. The higher BMI (OR: 1.40, 95 %CI: 1.14-1.72), waistline (OR: 1.42, 95 %CI: 1.09-1.85) and unfavourable dietary habits of less meat (OR: 1.72, 95 %CI: 1.11-2.68), more fried food (OR: 2.39, 95 %CI: 1.15-4.99) elevated the prevalence of early menopause. CONCLUSIONS: The accurate environmental exposure assessment of historical PM2.5 vigorously promoted the researches on the relationship between PM2.5 and early menopause. It sounds the alarm on female infertility menace associated with particulate matter especially during the turbulent 2 years before menopause.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA