RESUMO
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the dimorphic fungus within the genus Paracoccidioides, particularly Paracoccidioides brasiliensis. The traditional approach to treating this pulmonary infection involves prolonged therapy periods, ranging from weeks to years, often resulting in a notable frequency of disease relapse. Nanotechnology has emerged as a promising avenue for developing novel antifungal therapies and effective vaccines. This is attributed to its capability to facilitate targeted drug and antigen delivery, thereby mitigating toxicity and treatment expenses. This study investigates the synergistic properties of the CHO-rPb27 vaccine nanoformulation against experimental PCM. The therapeutic efficacy of CHO-rPb27 treatment is juxtaposed with the prophylactic protocol. Our findings demonstrate that both protocols effectively control P. brasiliensis pulmonary infection by eliciting a robust cellular and humoral immune response. This response attenuates chronic tissue damage and mitigates pulmonary mechanical dysfunction in mice.
RESUMO
Fungal biomass is as a cost-effective and sustainable biosorbent utilized in both active and inactive forms. This study investigated the efficacy of inactivated and dried biomass of Fusarium sp. in adsorbing Ni2+ and Pb2+ from aqueous solutions. The strain underwent sequential cultivation and was recovered by filtration. Then, the biomass was dried in an oven at 80 ± 2 °C and sieved using a 0.1-cm mesh. The biosorbent was thoroughly characterized, including BET surface area analysis, morphology examination (SEM), chemical composition (XRF and FT-IR), thermal behavior (TGA), and surface charge determination (pH-PZC and zeta potential). The biosorption mechanism was elucidated by fitting equilibrium models of kinetics, isotherm, and thermodynamic to the data. The biosorbent exhibited a neutral charge, a rough surface, a relatively modest surface area, appropriate functional groups for adsorption, and thermal stability above 200 °C. Optimal biosorption was achieved at 25 ± 2 °C, using 0.05 g of adsorbent per 50 mL of metallic ion solution at initial concentrations ranging from 0.5 to 2.0 mg L-1 and at pH 4.5 for Pb2+ and Ni2+. Biosorption equilibrium was achieved after 240 min for Ni2+ and 1440 min for Pb2+. The process was spontaneous, mainly through chemisorption, in monolayer for Ni2+ and multilayer for Pb2+, with efficiencies of over 85% for both metallic ion removal. These findings underscore the potential of inactive and dry Fusarium sp. biomass (IDFB) as a promising material for the biosorption of Ni2+ and Pb2+.
Assuntos
Biomassa , Fusarium , Chumbo , Níquel , Termodinâmica , Fusarium/metabolismo , Níquel/química , Cinética , Adsorção , Poluentes Químicos da Água/químicaRESUMO
Introduction: Genetic variants that control dopamine have been associated with obesity in children through loss of control of satiety and impulses, the manifestation of addictive eating behaviors, and specific personality traits. The variants include FTO-rs9939609 and the MAO-A 30 pb u-VNTR low-transcription alleles (LTA). Objective: To evaluate the genetic association of FTO-rs9939609 and the MAO-A LTA, along with personality traits and eating behavior with obesity in Mayan children from Mexico. Methods: We cross-sectionally evaluated 186 children (70 with obesity and 116 with normal weight) 6-12 years old from Yucatan, Mexico. Nutritional status was defined with body mass index (BMI) percentiles. Personality traits were evaluated with the Conners and TMCQ tests; eating behavior was evaluated with the CEBQ test. Genotyping with real-time PCR and TaqMan probes was used for FTO-rs9939609, whereas PCR amplification was used for MAO-A u-VNTR. Results: High-intensity pleasure (p = 0.013) and moderate appetite (p = 0.032) differed according to nutritional status. Heterozygous FTO-rs9939609 T/A children showed higher mean scores of low-intensity pleasure (p = 0.002) and moderate appetite (p = 0.027) than homozygous T/T. Hemizygous boys having MAO-A LTA showed significantly higher mean scores of anxiety (p = 0.001) and impulsivity (p = 0.008). In multivariate models, only LTA alleles of MAO-A explained obesity in boys (OR = 4.44; 95% CI = 1.18-16.63). Conclusion: In the present study, MAO-A u-VNTR alleles were associated with obesity in multivariate models only in boys. These alleles might also have a role in personality traits such as anxiety and impulsivity, which secondly contribute to developing obesity in Mayan boys.
RESUMO
Dispersion of potentially toxic elements associated with efflorescent crusts and mine tailings materials from historical mine sites threaten the environment and human health. Limited research has been done on traceability from historical mining sites in arid and semi-arid regions. Pb isotope systematics was applied to decipher the importance of identifying the mixing of lead sources involved in forming efflorescent salts and the repercussions on traceability. This research assessed mine waste (sulfide-rich and oxide-rich tailings material and efflorescent salts) and street dust from surrounding settlements at a historical mining site in northwestern Mexico, focusing on Pb isotope composition. The isotope data of tailings materials defined a trending line (R2 = 0.9); the sulfide-rich tailings materials and respective efflorescent salts yielded less radiogenic Pb composition, whereas the oxide-rich tailings and respective efflorescent salts yielded relatively more radiogenic compositions, similar to the geogenic component. The isotope composition of street dust suggests the dispersion of tailings materials into the surroundings. This investigation found that the variability of Pb isotope composition in tailings materials because of the geochemical heterogeneity, ranging from less radiogenic to more radiogenic, can add complexity during environmental assessments because the composition of oxidized materials and efflorescent salts can mask the geogenic component, potentially underestimating the influence on the environmental media.
Assuntos
Poeira , Isótopos , Chumbo , Mineração , Chumbo/análise , Isótopos/análise , Poeira/análise , México , Monitoramento Ambiental , Poluentes do Solo/análiseRESUMO
As today the 137Cs fallout peak, in sediment cores, corresponds only to 25% of its initial concentration, alternatives to the use of 137Cs as a210Pb sediment dating validation tool are proposed. In highly industrialized bays, such as Guanabara Bay in the Rio de Janeiro metropolitan region, several chemical/compounds from the surrounding industry releases may be applied as validation tools. Chromium and copper profiles in a sediment core adequately fit the expected pattern due to the implementation of a chemical plant in 1958, reaching their maximum discharge in 1982 and subsequently decreasing due to the operation of a new wastewater treatment plant. A diffuse source such, as the PCB-based mixture Askarel, was also applied as an alternative validation tool, and the observed concentration profile reproduced the expected behavior, with increasing concentration after the Second World War and a decrease after the ban of this product in 1981. The observed Aroclor 1254 and 1260 mixture chlorination rates fit the most widely distributed PCB-based products in the country.
Assuntos
Radioisótopos de Césio , Radioisótopos de Chumbo , Monitoramento de Radiação , Radioisótopos de Césio/análise , Monitoramento de Radiação/métodos , Radioisótopos de Chumbo/análise , Poluentes Radioativos da Água/análise , América do Sul , Brasil , Sedimentos Geológicos/química , Datação Radiométrica/métodosRESUMO
This paper reports the successful development and application of an efficient method for quantifying Pb2+ in aqueous samples using a smartphone-based colorimetric device with an imprinted polymer (IIP). The IIP was synthesized by modifying the previous study; using rhodizonate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N'-methylenebisacrylamide (MBA), and potassium persulfate (KPS). The polymers were then characterized. An absorption study was performed to determine the optimal conditions for the smartphone-based colorimetric device processing. The device consists of a black box (10 × 10 × 10 cm), which was designed to ensure repeatability of the image acquisition. The methodology involved the use of a smartphone camera to capture images of IIP previously exposed at Pb2+ solutions with various concentrations, and color channel values were calculated (RGB, YMK HSVI). PLS multivariate regression was performed, and the optimum working range (0-10 mg L-1) was determined using seven principal components with a detection limit (LOD) of 0.215 mg L-1 and R2 = 0.998. The applicability of a colorimetric sensor in real samples showed a coefficient of variation (% RSD) of less than 9%, and inductively coupled plasma mass spectrometry (ICP-MS) was applied as the reference method. These results confirmed that the quantitation smartphone-based colorimetric sensor is a suitable analytical tool for reliable on-site Pb2+ monitoring.
RESUMO
Marinas are central hubs of global maritime leisure and transport, yet their operations can deteriorate the environmental quality of sediments. In response, this study investigated the metal contamination history associated with antifouling paint uses in a sediment core collected from Bracuhy marina (Southeast Brazil). Analysis target major and trace elements (Cu, Zn, Pb, Cd and Sn), rare earth elements (REEs), and Pb isotopes. The modification in Pb isotopic ratios and REEs pattern unequivocally revealed sediment provenance disruption following the marina construction. Metal distribution in the sediment core demonstrates that concentrations of Cu and Zn increased by up to 15 and 5 times, respectively, compared to the local background. This severe Cu and Zn contamination coincides with the onset of marina operations and can be attributed to the use of antifouling paints.
Assuntos
Cobre , Monitoramento Ambiental , Sedimentos Geológicos , Pintura , Poluentes Químicos da Água , Sedimentos Geológicos/química , Pintura/análise , Poluentes Químicos da Água/análise , Cobre/análise , Brasil , NaviosRESUMO
Despite their ability to mitigate climate change by efficiently absorbing atmospheric carbon dioxide (CO2) and acting as natural long-term carbon sinks, mangrove ecosystems have faced several anthropogenic threats over the past century, resulting in a decline in the global mangrove cover. By using standardized methods and the most recent Bayesian tracer mixing models MixSIAR, this study aimed to quantify source contributions, burial rates, and stocks of organic carbon (Corg) and explore their temporal changes (â¼100 years) in seven lead-210 dated sediment cores collected from three contrasting Mexican mangrove areas. The spatial variation in Corg burial rates and stocks in these blue carbon ecosystems primarily depended on the influence of local rivers, which controlled Corg sources and fluxes within the mangrove areas. The Corg burial rates in the cores ranged from 66 ± 16 to 400 ± 40 g m-2 yr-1. The Corg stocks ranged from 84.9 ± 0.7 to 255 ± 2 Mg ha-1 at 50 cm depth and from 137 ± 2 to 241 ± 4 Mg ha-1 at 1 m depth. The highest Corg burial rates and stocks were observed in cores from the carbonate platform of Yucatan and in cores with reduced river influence and high mangrove detritus inputs, in contrast to patterns identified from global databases. Over the past century, the rising trends in Corg burial rates and stocks in the study sites were primarily driven by enhanced inputs of fluvial-derived Corg and, in some cores, mangrove-derived Corg. Despite their decreasing extension, mangrove areas remained highly effective producers and sinks of Corg. Ongoing efforts to enhance the global database should continue, including mangrove area characteristics and reliable timescales to facilitate cross-comparison among studies.
RESUMO
Terminos Lagoon (TL), in the southern Gulf of Mexico, has been under intensive anthropogenic pressure (e.g., oil-industry development) since the 1970s. Historical changes in flux ratios of potentially toxic elements (PTEs; As, Cd, Cr, Cu, Ni, Pb, V, Zn) were, for the first time, assessed inside TL by using 210Pb-dated sediment cores. Sediments showed minor enrichments for Cd, Ni, Pb, and V. However, according to international benchmarks, the As, Cr, Cu, and Ni concentrations could pose a risk for benthic biota. Sedimentary processes involved in the accumulation of PTEs were identified through a chemometric approach. Increments in PTEs flux ratios concur with the recent (â50 years) and extensive land-use changes, particularly the transport and deposit of materials delivered by rivers. These findings are expected to be used in managing this crucial natural resource, the larger Mexican coastal lagoon ecosystem, to mitigate the effects of global change.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Cádmio , Chumbo , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Golfo do México , Ecossistema , Monitoramento Ambiental , Medição de RiscoRESUMO
This study evaluated the reliability of portable X-ray fluorescence (pXRF) in Pb2+adsorption kinetics and isotherm experiments using soybean straw biochar. The research aimed to compare pXRF results with those obtained through traditional atomic absorption spectrometry (AAS). Soybean straw biochar, produced at 400 °C, was employed as the adsorbent for Pb2+. The efficiency of adsorption was assessed using Langmuir and Freundlich models. The kinetics of Pb2+adsorption was analysed through pseudo-first-order and pseudo-second-order models. The pseudo-second-order model described the kinetics of Pb2+adsorption on biochar better than the pseudo-first order model. Importantly, the pXRF technique demonstrated comparable results to those of AAS, making it a reliable and resource-efficient method for studying Pb2+kinetics. The results of the isotherm analyses fit the Langmuir model, indicating a desirable and irreversible adsorption of Pb2+on biochar. PXRF measurements on biochar allowed simultaneous observations of Pb2+adsorption and K+and Ca2+desorption, highlighting ionic exchange as the primary adsorption mechanism. In conclusion, our results showcased the applicability of pXRF for Pb+2adsorption studies in biochars, offering a valuable alternative to traditional methods. The findings contribute to the understanding of biochar as an effective adsorbent for heavy metals, emphasizing the potential of pXRF for cost-effective and efficient environmental research. In this study, we present a novel and detailed procedure that will allow other researchers to continue their studies on Pb2+adsorption on biochar or similar matrices, significantly reducing the resources and time used and enabling the simultaneous study of the behavior of other ions participating in the process.
Assuntos
Carvão Vegetal , Glycine max , Chumbo , Adsorção , Reprodutibilidade dos Testes , Espectrometria por Raios XRESUMO
Spatial and temporal variations of mercury (Hg) concentrations, enrichment, and potential ecological risks were studied in a suite of lead-210 (210Pb) dated sediment cores from 13 Wider Caribbean Region coastal environments. Broad variability of Hg concentrations (19-18761 ng g-1) was observed, encompassing even background levels (38-100 ng g-1). Most Hg concentration profiles exhibited a characteristic upward trend, reaching their peak values in the past two decades. Most of the sediment sections, showing from moderately to very severe Hg enrichment, were found in cores from Havana Bay and Sagua River Estuary (Cuba), Port-au-Prince Bay (Haiti), and Cartagena Bay (Colombia). These were also the most seriously contaminated sites, which can be considered regional Hg 'hotspots'. Both Havana Bay and Port-au-Prince Bay reportedly receive waste from large cities with populations exceeding 2 million inhabitants, and watersheds affected by high erosion rates. The records from the Sagua River Estuary and Cartagena Bay reflected historical Hg contamination associated with chloralkali plants, and these sites are of very high ecological risk. These results constitute a major contribution to the scarce regional data on contaminants in the Wider Caribbean Region and provide reference information to support the evaluation of the effectiveness of the Minamata Convention.
RESUMO
The mid-20th century industrial peak caused severe global lead (Pb) marine contamination. Although Europe initiated Pb emission reduction regulations in the 1980s, the short- and long-term impacts remain unclear. This study investigates the evolution of Pb contamination on the French coast through elemental and isotope analysis in oysters and mussels from the French "Mussel Watch" Program. Observations at 114 monitoring stations over four decades have shown decreasing Pb levels in these bivalve mollusks. In 1988, 95 % exceeded the background reference values; this level had dropped to 39 % by 2021. The Pb isotope ratios in bivalves from eight target sites revealed a reduction in bioaccumulated anthropogenic Pb, albeit without complete elimination. The long residence time of legacy Pb combined with inputs from diffuse urban sources likely explains the persistent presence of anthropogenic Pb on the French coast. This study endorses the importance of continuous biomonitoring to evaluate environmental regulations and policies.
Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Chumbo/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Isótopos/análiseRESUMO
In the present research, the presence of water hyacinth (Eichhornia crassipes) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018-2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g-1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pHPZC). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.
RESUMO
Theobroma cacao agro-industrial waste (WTC) has been characterized and tested as an effective biosorbent to remove Cd(II) from aqueous media. At the optimum pH of 5.0, a maximum adsorption capacity of qe,max = 58.5 mg g-1 was determined. The structural and morphological characterization have been conducted by FTIR, SEM/EDX, and TGA measurements. The SEM/EDX results confirmed that the metals are adsorbed on the surface. C-O-C, OH, CH, NH, and C=O functional groups were identified by FTIR. TGA results were consistent with the presence of hemicellulose. Biosorption kinetics were rapid during the first 30 min and then reached equilibrium. The corresponding experimental data were well fitted to pseudo-first and -second order models, the latter being the best. The biosorption isotherm data were also well fitted to Temkin, Langmuir, and Freundlich models, showing that several sorption mechanisms may be involved in the Cd(II) biosorption process, which was characterized as exothermic (ΔH0 < 0), feasible, and spontaneous (ΔG0 < 0). In binary (Cd-Pb and Cd-Cu) and ternary (Cd-Pb-Cu) systems, Cu(II) and particularly Pb(II) co-cations exert strong antagonistic effects. Using HNO3, effective good regeneration of WTC was obtained to efficiently remove Cd(II) up to three times.
RESUMO
(1) Background: Synthetic cannabinoids (SCs) are emerging drugs of abuse sold as 'K2', 'K9' or 'Spice'. Evidence shows that using SCs products leads to greater health risks than cannabis. They have been associated with greater toxicity and higher addiction potential unrelated to the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). Moreover, early cases of intoxication and death related to SCs highlight the inherent danger that may accompany the use of these substances. However, there is limited knowledge of the toxicology of Spice ingredients. This systematic review intends to analyze the toxicity of SCs compounds in Spice/K2 drugs. (2) Methods: Studies analyzing synthetic cannabinoid toxicity and dependence were included in the present review. We searched the PubMed database of the US National Library of Medicine, Google Scholar, CompTox Chemicals, and Web of Science up to May 2022. (3) Results: Sixty-four articles reporting the effects of synthetic cannabinoids in humans were included in our review. Ten original papers and fifty-four case studies were also included. Fourteen studies reported death associated with synthetic cannabinoid use, with AB-CHMINACA and MDMB-CHMICA being the main reported SCs. Tachycardia and seizures were the most common toxicity symptoms. The prevalence of neuropsychiatric symptoms was higher in third-generation SCs. (4) Conclusion: SCs may exhibit higher toxicity than THC and longer-lasting effects. Their use may be harmful, especially in people with epilepsy and schizophrenia, because of the increased risk of the precipitation of psychiatric and neurologic disorders. Compared to other drugs, SCs have a higher potential to trigger a convulsive crisis, a decline in consciousness, and hemodynamic changes. Therefore, it is crucial to clarify their potential harms and increase the availability of toxicology data in both clinical and research settings.
RESUMO
In this study, cladodes of Opuntia ficus indica (OFIC), chemically modified with NaOH (OFICM), have been prepared, characterized, and tested as an effective biomass to remove Pb(II) and/or Cd(II) from aqueous media. At an optimum pH of 4.5, the adsorption capacity, qe, of treated OFICM was almost four times higher than that of untreated OFIC. The maximum adsorption capacities (qmax) in the single removal of Pb(II) and Cd(II) were 116.8 and 64.7 mg g-1, respectively. These values were 12.1% and 70.6% higher than those for the corresponding qmax in binary removal, which indicates the strong inhibitive effect of Pb(II) on the co-cation Cd(II) in a binary system. Structural and morphological characterization have been carried out by FTIR, SEM/EDX, and point of zero charge (pHPZC) measurements. The SEM/EDX results confirmed that the metals are adsorbed on the surface. The presence of C-O, C=O, and COO- functional groups were identified by FTIR on both OFIC and OFICM surfaces. On the other hand, we found that the adsorption processes followed the pseudo-second-order kinetics for both single and binary systems, with a fast biosorption rate of Pb(II) and Cd(II). The equilibrium data (adsorption isotherms) were better described by Langmuir and modified-Langmuir models for single and binary systems, respectively. A good regeneration of OFICM was obtained with an eluent of 0.1 M HNO3. Therefore, OFICM can be efficiently reused to remove Pb or Cd, up to three times.
Assuntos
Opuntia , Poluentes Químicos da Água , Cádmio/análise , Opuntia/química , Chumbo , Poluentes Químicos da Água/análise , Biomassa , Adsorção , Cinética , Concentração de Íons de HidrogênioRESUMO
Three sediment cores recovered from the Alvarado Lagoon System (ALS) in the Gulf of Mexico were used to reconstruct the history of metals and metalloids and their environmental importance. The sedimentary profiles were dated with 210Pb and verified with 137Cs. Maximum ages of 77 and 86 years were estimated. Sediment provenance was described by sedimentological and geochemical proxies. The chemical alteration index (CIA) and weathering index (CIW) revealed moderate to high intensity of weathering in the source area that is controlled tropical climatic conditions, runoff, and precipitation in the basin that feeds sediments to this coastal lagoon. The Al2O3/TiO2 ratios indicated that the sediments were derived from intermediate igneous rocks. The enrichment factor values revealed the lithogenic and anthropic contribution of metals and metalloids. Cd is classified under the category extremely severe enrichment; agricultural activities, fertilizers, herbicides, and pesticides containing Cd are expected to supply this metal to the ecosystem. Factor Analysis and Principal Components provided two main factors, terrigenous and biological origins; ANOVA indicated that there are significant differences between the cores for the parameters analyzed and revealed that there are differences in depositional environments between the recovery zones of the cores. The ALS presented natural variations associated with the climatic conditions, terrigenous input, and its relationship with the hydrological variations of the main rivers. The contribution of this work was to identify the magnitude of the natural component versus the human contribution, mainly of risk metals such as Cd, to support better management of the hydrological basin that affects the ALS.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Metais Pesados/análise , Chumbo/análise , Ecossistema , Cádmio/análise , México , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
In 2019, the Brumadinho dam rupture released a massive amount of iron ore mining tailings into the Paraopeba River. Up to now, it remains a public health issue for the local and downstream populations. The present study aims to assess the behavior and fate of metal contamination following the disaster. Using new sampling strategies and up-to-date geochemistry tools, we show that the dissolved metal concentrations (< 0.22 µm cutoff filtration) remained low in the Paraopeba River. Although the tailings present high metal concentrations (Fe, Mn, Cd, and As), the high local background contents of metals and other previous anthropogenic contamination hamper tracing the sediment source based only on the geochemical signature. The Pb isotopic composition coupled with the metals enrichment factor of sediments and Suspended Particulate Matter (SPM) constitutes accurate proxies that trace the fate and dispersion of tailing particles downstream of the dam collapse. This approach shows that 1) The influence of the released tailing was restricted to the Paraopeba River and the Retiro Baixo reservoir, located upstream of the São Francisco River; 2) The tailings' contribution to particulate load ranged from 17 % to 88 % in the Paraopeba River; 3) Other regional anthropogenic activities also contribute to water and sediment contamination of the Paraopeba river.
RESUMO
Arabica-coffee and Theobroma-cocoa agroindustrial wastes were treated with NaOH and characterized to efficiently remove Pb(II) from the aqueous media. The maximum Pb(II) adsorption capacities, qmax, of Arabica-coffee (WCAM) and Theobroma-cocoa (WCTM) biosorbents (qmax = 303.0 and 223.1 mg·g−1, respectively) were almost twice that of the corresponding untreated wastes and were higher than those of other similar agro-industrial biosorbents reported in the literature. Structural, chemical, and morphological characterization were performed by FT-IR, SEM/EDX, and point of zero charge (pHPZC) measurements. Both the WCAM and WCTM biosorbents showed typical uneven and rough cracked surfaces including the OH, C=O, COH, and C-O-C functional adsorbing groups. The optimal Pb(II) adsorption, reaching a high removal efficiency %R (>90%), occurred at a pH between 4 and 5 with a biosorbent dose of 2 g·L−1. The experimental data for Pb(II) adsorption on WACM and WCTM were well fitted with the Langmuir-isotherm and pseudo-second order kinetic models. These indicated that Pb(II) adsorption is a chemisorption process with the presence of a monolayer mechanism. In addition, the deduced thermodynamic parameters showed the endothermic (ΔH0 > 0), feasible, and spontaneous (ΔG0 < 0) nature of the adsorption processes studied.
Assuntos
Cacau , Coffea , Poluentes Químicos da Água , Café , Chumbo , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Termodinâmica , Água/química , Cinética , AdsorçãoRESUMO
Environmental pollution is a global threat and represents a strong risk factor for human health. It is estimated that pollution causes about 9 million premature deaths every year. Pollutants that can cross the blood-brain barrier and reach the central nervous system are of special concern, because of their potential to cause neurological and development disorders. Arsenic, lead and mercury are usually ranked as the top three in priority lists of regulatory agencies. Against xenobiotics, astrocytes are recognised as the first line of defence in the CNS, being involved in virtually all brain functions, contributing to homeostasis maintenance. Here, we discuss the current knowledge on the astroglial involvement in the neurotoxicity induced by these pollutants. Beginning by the main toxicokinetic characteristics, this review also highlights the several astrocytic mechanisms affected by these pollutants, involving redox system, neurotransmitter and glucose metabolism, and cytokine production/release, among others. Understanding how these alterations lead to neurological disturbances (including impaired memory, deficits in executive functions, and motor and visual disfunctions), by revisiting the current knowledge is essential for future research and development of therapies and prevention strategies.