Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
2.
Glob Chang Biol ; 30(8): e17436, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39162201

RESUMO

Measurements of net primary productivity (NPP) and litter decomposition from tropical peatlands are severely lacking, limiting our ability to parameterise and validate models of tropical peatland development and thereby make robust predictions of how these systems will respond to future environmental and climatic change. Here, we present total NPP (i.e., above- and below-ground) and decomposition data from two floristically and structurally distinct forested peatland sites within the Pastaza Marañón Foreland Basin, northern Peru, the largest tropical peatland area in Amazonia: (1) a palm (largely Mauritia flexuosa) dominated swamp forest and (2) a hardwood dominated swamp forest (known as 'pole forest', due to the abundance of thin-stemmed trees). Total NPP in the palm forest and hardwood-dominated forest (9.83 ± 1.43 and 7.34 ± 0.84 Mg C ha-1 year-1, respectively) was low compared with values reported for terra firme forest in the region (14.21-15.01 Mg C ha-1 year-1) and for tropical peatlands elsewhere (11.06 and 13.20 Mg C ha-1 year-1). Despite the similar total NPP of the two forest types, there were considerable differences in the distribution of NPP. Fine root NPP was seven times higher in the palm forest (4.56 ± 1.05 Mg C ha-1 year-1) than in the hardwood forest (0.61 ± 0.22 Mg C ha-1 year-1). Above-ground palm NPP, a frequently overlooked component, made large contributions to total NPP in the palm-dominated forest, accounting for 41% (14% in the hardwood-dominated forest). Conversely, Mauritia flexuosa litter decomposition rates were the same in both plots: highest for leaf material, followed by root and then stem material (21%, 77% and 86% of mass remaining after 1 year respectively for both plots). Our results suggest potential differences in these two peatland types' responses to climate and other environmental changes and will assist in future modelling studies of these systems.


Mediciones de la productividad primaria neta (PPN) y la descomposición de materia orgánica de las turberas tropicales son escasas, lo que limita nuestra capacidad para parametrizar y validar modelos de desarrollo de las turberas tropicales y, en consecuencia, realizar predicciones sólidas sobre la respuesta de estos sistemas ante futuros cambios ambientales y climáticos. En este estudio, presentamos datos de PPN total (es decir, biomasa aérea y subterránea) y descomposición de la materia orgánica colectada en dos turberas boscosas con características florísticas y estructurales contrastantes dentro de la cuenca Pastaza Marañón al norte del Perú, el área de turberas tropicales más grande de la Amazonia: (1) un bosque pantanoso dominado por palmeras (principalmente Mauritia flexuosa) y (2) un bosque pantanosos dominado por árboles leñosos de tallo delgado (conocido como 'varillal hidromórfico'). La PPN total en el bosque de palmeras y el varillal hidromórfico (9,83 ± 1,43 y 7,34 ± 0,84 Mg C ha­1 año­1 respectivamente) fue baja en comparación con los valores reportados para los bosques de tierra firme en la región (14,21­15,01 Mg C ha­1 año­1) y para turberas tropicales en otros lugares (11,06 y 13,20 Mg C ha­1 año­1). A pesar de que la PPN total fue similar en ambos tipos de bosque, hubo diferencias considerables en la distribución de la PPN. La PPN de las raíces finas fue siete veces mayor en el bosque de palmeras (4,56 ± 1,05 Mg C ha­1 año­1) que en el varillal hidromórfico (0,61 ± 0,22 Mg C ha­1 año­1). La PPN de la biomasa aérea de las palmeras, un componente ignorado frecuentemente, contribuyó en gran medida a la PPN total del bosque de palmeras, representando el 41% (14% en el varillal hidromórfico). Por el contrario, la tasa de descomposición de materia orgánica de Mauritia flexuosa fue la misma en ambos sitios: la más alta corresponde a la hojarasca, seguida por las raíces y luego el tallo (21%, 77% y 86% de la masa restante después de un año, respectivamente para ambos sitios). Nuestros resultados sugieren diferencias potenciales en la respuesta de estos dos tipos de turberas al clima y otros cambios ambientales, y ayudarán en futuros estudios de modelamiento de estos sistemas.


Assuntos
Florestas , Peru , Áreas Alagadas , Solo/química , Folhas de Planta/metabolismo , Clima Tropical
3.
Int J Biol Macromol ; : 134768, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151865

RESUMO

In this study, starch (S) was gelatinized and carbonized to prepare carbonized/gelatinized S (CGS) as the research material. Then, peat extract (Pe) and surfactants with different ratios were single- and multi-modified on CGS, respectively, to prepare Pe-modified CGS (Pe-CGS) and multi-modified CGS, respectively. The microscopic morphology of multi-modified CGS was studied using various testing methods. The de-risking effect on Cd(II) and hymexazol in wastewater was investigated, and the effects of temperature, pH, and ionic strength were compared. The spheroidal structure of S was destroyed after carbonization, and Pe and surfactants were modified on the surface and changed the surface properties of CGS. The adsorption processes of Cd(II) and hymexazol were suitable to be described by the Langmuir and Freundlich models, respectively. The maximum adsorption capacities (qm) of Cd(II) and adsorption capacity parameter (k) of hymexazol on different modified CGSs presented the peak value at BS/Pe-CGS. With the increase in the modification ratio of Pe, BS, and SDS, qm and k increased, which showed a high value at 100 % modification. Increases in temperature and pH were beneficial to Cd(II) adsorption but were not conducive to hymexazol adsorption. The adsorption amount decreased for Cd(II) and increased first and then reduced for hymexazol with the rise in ionic strength. The adsorption process exhibited spontaneity, endothermic behavior for Cd(II), exothermic behavior for hymexazol, and an entropy-increasing reaction. The adsorption amount of Cd(II) and hymexazol by multi-modified CGS maintained approximately 81 % of the original sample after three rounds of regeneration.

4.
Plants (Basel) ; 13(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39065475

RESUMO

Archaeological excavations led by Yung-jo Lee and Jong-yoon Woo were carried out twice at the Sorori paleolithic site, Cheongju, in the Republic of Korea, at the upper stream of the Geumgang river, the Miho riverside. A total of 127 rice seeds were excavated, including 18 ancient rice and 109 Quasi-rice, in 1998 and 2001. At the first excavation, eleven short japonica-type ancient rice and one slender smooth ancient rice with two kinds of Quasi-rice were excavated. The average length of the 11 short rice grains obtained from the first and second excavation was 7.19 mm and the average width was 3.08 mm, respectively. The Quasi-rice are apparently different from the rice and do not have bi-peak protuberances on their glume surface. At the second excavation, six short ancient rice chaffs and some Quasi-rice 2 were found. These short-grained ancient rice were comparable to the ancient rice that were excavated at the Illsan Neolithic site. Geologists and radiologists confirmed that the peat layer in which the rice found was older than 15,000 years. In this study, the morphological characteristics, crushing, and DNA band patterns related to the genetic polymorphism of rice grains in Cheongju Sorori were compared and analyzed for genetic similarities and differences with wild rice, weed rice, and modern rice. The morphological, ecological, and physiological variations in rice grains excavated from the Sorori site were presumed to denote the origin of rice domestication in Korea. It is also suggested that the results of the DNA sequencing of excavated rice are very important clues in estimating the origin of the early domestication of rice.

5.
Sci Total Environ ; 947: 174617, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992375

RESUMO

Peat formation is the key process responsible for carbon sequestration in peatlands. In rich fens, peat is formed by brown mosses and belowground biomass of vascular plants. However, the impact of ecohydrological settings on the contribution of mosses and belowground biomass to peat formation remains an open question. We established seven transects in well-preserved fens in NE Poland along an ecohydrological gradient from mesotrophic sedge-moss communities with stable water levels, to more eutrophic tall sedge communities with higher water level fluctuations. In each transect, we measured the production of brown mosses (using the plug method), aboveground vascular plant biomass (one year after cutting) and belowground biomass (using ingrowth cores). Decomposition rates of all biomass fractions were assessed using litter bags. The first-year surplus of potentially peat-forming fractions, i.e., mosses and belowground biomass, decreased with increasing water level fluctuations and along a vegetation gradient from sedge-moss to tall sedge communities. Moss production was highest in the sedge-moss fen with a stable water level at the ground surface. We did not detect any difference in belowground biomass production across the gradient but found it to be consistently higher in the upper 0-5 cm than in the deeper layers. The decomposition rate also showed no response to the gradient, but differed between biomass types, with aboveground biomass of vascular plants decomposing 2.5 times faster than belowground biomass and mosses. Pattern of peat formation potential along the ecohydrological gradient in rich fen was strongly driven by brown moss production. Sedge-moss fens with a stable water level at the ground surface have the highest peat formation capacity compared to other vegetation types. In the part of the gradient that is poorer in nutrients, vascular plants invest in belowground production, and mosses dominate the aboveground layer.


Assuntos
Biomassa , Solo , Áreas Alagadas , Solo/química , Polônia , Hidrologia , Sequestro de Carbono , Monitoramento Ambiental , Briófitas/crescimento & desenvolvimento
6.
J Am Soc Mass Spectrom ; 35(8): 1713-1725, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38950165

RESUMO

Peatland fires emit organic carbon-rich particulate matter into the atmosphere. Boreal and Arctic peatlands are becoming more vulnerable to wildfires, resulting in a need for better understanding of the emissions of these special fires. Extractable, nonpolar, and low-polar organic aerosol species emitted from laboratory-based boreal and Arctic peat-burning experiments are analyzed by direct-infusion atmospheric pressure photoionization (APPI) ultrahigh-resolution mass spectrometry (UHRMS) and compared to time-resolved APPI UHRMS evolved gas analysis from the thermal analysis of peat under inert nitrogen (pyrolysis) and oxidative atmosphere. The chemical composition is characterized on a molecular level, revealing abundant aromatic compounds that partially contain oxygen, nitrogen, or sulfur and are formed at characteristic temperatures. Two main structural motifs are identified, single core and multicore, and their temperature-dependent formation is assigned to the thermal degradation of the lignocellulose building blocks and other parts of peat.

7.
Data Brief ; 55: 110626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38993227

RESUMO

This publication contains data on geophysical measurements taken in the Szuszalewo wetlands located in northern Poland. The measurements were made using the electrical resistivity imaging (ERI) method. The ERI data was collected during two survey expeditions - March 30th, 31st (two ERI profiles), April 1st (one ERI profile), and May 12th (two prospection lines) 2023. The reason goal was to illustrate the arrangement of geological layers creating this wetland. The data repository contains detailed data descriptions for each survey site. This Electrical Resistivity Imaging (ERI) data from the selected survey sites can be used to perform numerical modeling of groundwater and surface water interaction in this environmentally valuable area, which is, to a certain extent a scientific terra incognita, hydrogeological investigation of hydraulic conductivity and hydrodynamic field, identify geological structure, and characterize engineering properties of the organic soils.

8.
Water Res ; 260: 121935, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885557

RESUMO

Water supply companies with reservoirs in peatland areas need to know how land use and vegetation cover in their supply catchments impact the amount and composition of aquatic organic matter in raw waters. Drinking water treatment processes remove organic matter from potable supplies, but recent increases in concentration and changes in composition have made this more difficult. This study analysed the composition of aquatic organic matter from peatland catchments in the UK and Faroe Islands. Both dissolved organic matter (DOM) and particulate organic matter (POM) compositions varied spatially, but these differences were not consistent as water moved through catchments, from headwaters and peatland pools to lake and reservoir outlets. These data showed that lakes and reservoirs are acting as flocculation hotspots, processing OM, releasing carbon (C), hydrogen (H) and oxygen (O) compounds to the atmosphere, and resulting in OM with higher N content. DOM compositions could be grouped into five clusters, showing that water treatment processes can be maximised to target 'envelopes' or clusters of DOM compositions. Catchment factors such as land use, vegetation cover, percentage peat cover and catchment area are good indicators of OM compositions likely to be present in a reservoir, and can guide water companies to maximise efficiency of their raw water treatment processes.


Assuntos
Solo , Reino Unido , Solo/química , Lagos/química , Compostos Orgânicos/análise , Carbono/análise , Abastecimento de Água , Purificação da Água
9.
Sci Total Environ ; 946: 174177, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38909805

RESUMO

Wetlands are widely recognized for their carbon (C) sequestration capacity and importance at mitigating climate change. Yet, to best inform regional conservation planning, the variability of C stocks among wetland types and between above and belowground compartments requires further investigation. Additionally, the bathymetry of peat basins has often been ignored, with soil C stock calculations mostly relying on the thickest peat section, potentially leading to overestimates. Here, we sampled vegetation and soil of 57 wetlands of southeastern Canada to characterize the variability of above and belowground organic C stocks among four wetland types: open bogs, open fens, swamps, and forested peatlands. We also compared carbon stock estimation approaches considering peat bathymetry or not. Results showed that peat thickness, and thus soil organic C (SOC), varied substantially within sites due to peat basin shapes. Omitting bathymetry led to site-scale SOC overestimates of about 20-38 % on average, depending on the approach used, with wide variability among sites (overestimates up to 200 %). Belowground C stocks varied among wetland types with mean values of 132, 101, 19, and 44 kg C m-2 for bogs, fens, swamps, and forested peatlands, respectively. Aboveground C was nearly zero in open bogs and fens but reached ∼30 % of total C stock in swamps and âˆ¼ 15 % in forested peatlands. C stocks in tree roots and shrubs were negligible. Despite the lower C density (per m2) of swamps and forested peatlands, these ecosystems represented the dominant C stocks at the regional scale due to their abundance in the landscape. Overall, the four wetland types stored an estimated 2-7 times more C than forest per unit area. Evaluating differences in C stocks according to wetland type, while integrating peat bathymetry in calculations, can significantly improve regional wetland conservation planning.

10.
Sci Total Environ ; 944: 173906, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871319

RESUMO

Drained agricultural peat soils pollute both the atmosphere and watercourses. Biochar has been observed to decrease greenhouse gas (GHG) emissions and nutrient loading in mineral soils. We studied effects of three biochar types with two application rates (10 and 30 Mg ha-1) on GHG fluxes as well as N and P leaching on peat soil. Peat monoliths were drilled from a long-term cultivated field and were watered either slightly (five dry periods) or heavily (four rainfall periods) during an 11-month laboratory experiment with intact peat columns. The incubation of bare peat profiles enhanced peat decomposition leading to high CO2 (up to 1300 mg CO2 m-2 h-1) and N2O emissions (even 10,000-50,000 µg N2O m-2 h-1) and NO3--N leaching (even 300-700 mg L-1) in all treatments. In the beginning of the experiment, the lower application rate of pine bark biochars increased N2O emission compared to control, but otherwise none of the biochars or their application rates significantly affected gas fluxes or nutrient leaching. These results indicate that moderate softwood biochar application does not help to mitigate the environmental problems of agricultural peat soils. Higher application rate of biochar pyrolyzed at high temperature is recommended for further studies with peat soils.


Assuntos
Carvão Vegetal , Óxido Nitroso , Solo , Carvão Vegetal/química , Solo/química , Óxido Nitroso/análise , Nitrogênio/análise , Agricultura/métodos , Poluentes Atmosféricos/análise , Gases de Efeito Estufa/análise , Poluentes do Solo/análise
11.
Am J Bot ; 111(5): e16347, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38760943

RESUMO

PREMISE: We assessed changes in traits associated with water economy across climatic gradients in the ecologically similar peat mosses Sphagnum cuspidatum and Sphagnum lindbergii. These species have parapatric distributions in Europe and have similar niches in bogs. Sphagnum species of bogs are closely related, with a large degree of microhabitat niche overlap between many species that can be functionally very similar. Despite this, ecologically similar species do have different distributional ranges along climatic gradients that partly overlap. These gradients may favor particular Sphagnum traits, especially in relation to water economy, which can be hypothesized to drive species divergence by character displacement. METHODS: We investigated traits relevant for water economy of two parapatric bryophytes (Sphagnum cuspidatum and S. lindbergii) across the border of their distributional limits. We included both shoot traits and canopy traits, i.e., collective traits of the moss surface, quantified by photogrammetry. RESULTS: The two species are ecologically similar and occur at similar positions along the hydrological gradient in bogs. The biggest differences between the species were expressed in the variations of their canopy surfaces, particularly surface roughness and in the responses of important traits such as capitulum mass to climate. We did not find support for character displacement, because traits were not more dissimilar in sympatric than in allopatric populations. CONCLUSIONS: Our results suggest that parapatry within Sphagnum can be understood from just a few climatic variables and that climatic factors are stronger drivers than competition behind trait variation within these species of Sphagnum.


Assuntos
Especificidade da Espécie , Sphagnopsida , Água , Sphagnopsida/fisiologia , Água/metabolismo , Clima , Ecossistema , Áreas Alagadas , Brotos de Planta/anatomia & histologia
12.
J Microbiol Biotechnol ; 34(6): 1239-1248, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38783698

RESUMO

Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.


Assuntos
Secas , Ácidos Indolacéticos , Oryza , Filogenia , Raízes de Plantas , Polissacarídeos Bacterianos , RNA Ribossômico 16S , Microbiologia do Solo , Oryza/microbiologia , Ácidos Indolacéticos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Estresse Fisiológico , Klebsiella/genética , Klebsiella/metabolismo , Klebsiella/isolamento & purificação , Germinação
13.
J Environ Radioact ; 277: 107462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805777

RESUMO

This study concerns the applied use of the natural radioactivity in soils. The relevance of airborne radiometric (gamma ray) survey data to peat mapping is now well established and such data have been used in a stand-alone sense and as covariates in machine learning algorithms. Here we present a method to use these data to accurately map the boundaries of peat (raised bogs). This has the potential to assist with the estimation of carbon stocks using a property-based assessment of soil. The significance of such regionally-uniform survey data lies in the subsurface information carried by the measurement which contrasts with the surficial nature of many other covariates. Soils attenuate radiometric flux by virtue of their bulk density (and associated carbon content) and water saturation level. The high attenuation levels in low density, wet peat materials give rise to a distinctive soil response. Here an entirely physics-based assessment of flux attenuation is carried out both theoretically and empirically. Radiometric data from the ongoing Tellus airborne survey of Ireland are used. The study area is characterised by an extensive assemblage of discrete raised peat bogs in a framework of largely mineral soils. Peat is detected by a property contrast with adjacent soils and so we consider all soils within the study area. The relatively low lateral resolution of the airborne data is demonstrated by modelling and we examine the behaviour of a combined spatial derivative of the data. The procedure allows the identification of the edges of the 128 peat polygons considered and indicates other additional potential areas of subsurface peat. The data appear to resolve the differences that exist across three available soil/peat databases that are used for the validation of the results obtained.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo , Solo , Áreas Alagadas , Monitoramento de Radiação/métodos , Solo/química , Poluentes Radioativos do Solo/análise , Irlanda , Radiometria/métodos
14.
Environ Res ; 252(Pt 4): 119115, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729413

RESUMO

Thermokarst (thaw) lakes of permafrost peatlands are among the most important sentinels of climate change and sizable contributors of greenhouse gas emissions (GHG) in high latitudes. These lakes are humic, often acidic and exhibit fast growing/drainage depending on the local environmental and permafrost thaw. In contrast to good knowledge of the thermokarst lake water hydrochemistry and GHG fluxes, the sediments pore waters remain virtually unknown, despite the fact that these are hot spots of biogeochemical processes including GHG generation. Towards better understating of dissolved organic matter (DOM) quality at the lake water - sediment interface and in the sediments pore waters, here we studied concentration and optical (UV, visual) properties of DOM of 11 thermokarst lakes located in four permafrost zones of Western Siberia Lowland. We found systematic evaluation of DOM concentration, SUVA and various optical parameters along the vertical profile of lake sediments. The lake size and hence, the stage of lake development, had generally weak control on DOM quality. The permafrost zone exhibited clear impact on DOM porewater concentration, optical characteristics, aromaticity and weight average molecular weight (WAMW). The lowest quality of DOM, reflected in highest SUVA and WAMW, corresponding to the dominance of terrestrial sources, was observed at the southern boundary of the permafrost, in the sporadic/discontinuous zone. This suggests active mobilization of organic matter leachates from the interstitial peat and soil porewaters to the lake, presumably via subsurface or suprapermafrost influx. Applying a substitute space for time scenario for future evolution of OM characteristics in thermokarst lake sediments of Western Siberia, we foresee a decrease of DOM quality, molecular weight and potential bioavailability in lakes of continuous permafrost zone, and an increase in these parameters in the sporadic/discontinuous permafrost zone.


Assuntos
Sedimentos Geológicos , Lagos , Pergelissolo , Sibéria , Lagos/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Monitoramento Ambiental , Substâncias Húmicas/análise , Compostos Orgânicos/análise
15.
Chemosphere ; 359: 142267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719122

RESUMO

Owning to the high radiotoxicity in high concentrations, as well as the irreplaceability in quantifying soil erosion rates, demarcating the Anthropocene, and dating of sediment, anthropogenic 239,240Pu have drawn high attention. However, the source in specific areas, preservation characteristics in different environment media, and re-distribution process after the cessation of atmospheric nuclear weapons tests, have not been fully understood, which obscures the exact start year, temporal variation, and deposition flux of 239,240Pu in sedimentary records, and hinders the wide application of 239,240Pu in environment study. A sediment core from the Yiwu peat bog with dominance of atmospheric deposition in the source material, simple sedimentary environment, and high dust deposition flux, was collected to examine the 239,240Pu, and explore the source, preservation, and re-distribution process. The double peaks of 239,240Pu in 1952 CE and 1963 CE, as well as 240Pu/239Pu ratios of 0.163-0.190 with an average of 0.177 ± 0.010 confirmed that the 239,240Pu source originated predominantly from global fallout. The minimal vertical migration of plutonium in the Yiwu peat core was attributed to the near-neutral pH condition. The high inventory of 128 ± 7 Bq m-2, as well as the atypical negative correlation between 239,240Pu concentrations and organic matter content (r = - 0.79, P < 0.01), was attributed to the contribution of 239,240Pu re-suspended with dust from the neighboring Gobi Desert, particularly in the cold and dry years. The total re-suspended 239,240Pu was estimated to be 77 Bq m-2, exceeding the direct fallout level of 51 Bq m-2 during 1945-2016 CE. In this study, the specified deposition pattern of 239,240Pu after the cessation of atmospheric nuclear weapons was established, providing an important standard for multiple environmental studies, and the re-suspended amount of 239,240Pu in a typical arid area was quantified for the first time.


Assuntos
Plutônio , Monitoramento de Radiação , Poluentes Radioativos do Solo , Solo , China , Plutônio/análise , Solo/química , Poluentes Radioativos do Solo/análise , Cinza Radioativa/análise , Sedimentos Geológicos/química , Áreas Alagadas , Poeira/análise
16.
Sci Total Environ ; 931: 172925, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697551

RESUMO

Subfossil pine and oak tree trunks were excavated during exploitation of the Budwity peatland in Northern Poland. Based on dendrochronological analysis, the woodland successions in peatland were reconstructed and correlated with moisture dynamics of the peatland ecosystem inferred from the high-resolution multi-proxy analysis of the peatland deposits. From the results of dendrochronological analysis and the 14C wiggle matching methods, four floating pine chronologies (5882-5595; 5250-5089; 3702-3546; and 2222-1979 mod. cal BP) and two oak chronologies (4932-4599 and 4042-3726 mod. cal BP) were developed. The organic sediments of the peatland (6 m thick) were deposited over approximately nine thousand years. The lower complex (525-315 cm) comprises minerogenic peat, while the upper complex (315.0-0.0 cm) is composed of ombrogenic peat. Subfossil tree trunks are distributed across various peat horizons, which suggests multiple stages of tree colonisation followed by subsequent dying-off phases. Multiproxy sediment analyses (lithological, geochemical and δ13C stable isotope, pollen, plant macrofossils, Cladocera, diatom, and Diptera analyses) indicate that the two earliest phases of pine colonisation (5882-5595 and 5250-5089 mod. cal BP) and the two stages of oak colonisation (4932-4599 and 4042-3726 mod. cal BP) were associated with periodic drying of the peatland. Conversely, tree dying-off phases occurred during periods of increased water levels in the peatland, coinciding with stages of increasing climate humidity during the Holocene. The two most recent phases of pine colonisation occurred during the ombrogenic stage of mire development. Remnants of the dead forest from these phases, marked by subfossil trunks still rooted in the ground, were preserved and exposed presently during peat exploitation, approximately 2.5 m below ground level. The identified phases of tree colonisation and subsequent dying-off phases show correlation with analogical phenomena observed in the other investigated European peatlands.


Assuntos
Pinus , Quercus , Solo , Áreas Alagadas , Polônia , Solo/química , Monitoramento Ambiental , Hidrologia , Ecossistema , Sedimentos Geológicos/química
17.
Sci Total Environ ; 930: 172639, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670365

RESUMO

Drained peatlands in temperate climates are under threat from climate change and human activities. The resulting decomposition of organic matter plays a major role in regulating the associated land subsidence rates, yet the determinants of aerobic and anaerobic peat decomposition rates are not fully understood. In this study, we sought to gain insight into the drivers of decomposition rates in botanically diverse peatlands (sedge, reed, wood, and moss dominant) under oxic and anoxic conditions. Peat samples were collected from the anoxic zone and incubated for 24 h (short) and 15 weeks (long) under either oxic or anoxic conditions. CO2 emissions, hydrolytic and oxidative exoenzyme potential activities, phenolic compound concentrations, and several edaphic factors were measured at the end of each incubation period. We found that 15 weeks of oxygen exposure of anoxic peat samples accelerated the average CO2 emissions by 3.9-fold. Reed and sedge peat respired more than wood and moss peat under anoxic conditions. Interestingly, CO2 emissions from anoxic peat layers under permanently anoxic conditions were substantial and given the thickness of peat deposits in the field, such activities may play an important role in long-term land subsidence rates and total CO2 emissions from drained peatlands. The results from the long-term incubations showed that decomposition rates appear to be also controlled by factors other than oxygen intrusion such as substrate availability. In summary, the botanical composition of the peat matrix, incubation conditions and time of incubation are all important factors that need to be considered when predicting peat decomposition and subsequent land subsidence rates.


Assuntos
Solo , Solo/química , Anaerobiose , Áreas Alagadas , Aerobiose , Monitoramento Ambiental , Mudança Climática , Dióxido de Carbono/análise
18.
Environ Res ; 252(Pt 2): 118940, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626871

RESUMO

Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.


Assuntos
Cromo , Gases de Efeito Estufa , Níquel , Áreas Alagadas , Níquel/análise , Gases de Efeito Estufa/análise , Cromo/análise , Carvão Vegetal/química , Carbono/análise , Substâncias Húmicas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
19.
Bull Entomol Res ; : 1-8, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679948

RESUMO

Peatlands, shaped by centuries of human activities, now face a primary threat from mining activities. Vulnerable to drainage and hydrological instability, peatland areas encounter challenges that compromise their ecological integrity. This study hypothesised that permanent water reservoirs within mines could serve as refugia for water beetles from adjacent areas prone to drying in the summer. Employing standard methods, including entomological scraping and water traps, samples were collected. Results revealed that, in most cases, water beetles exhibited a preference for the Nature 2000 area untouched by mining. Despite unfavourable conditions, the Nature 2000 area showcased a more diverse water beetle fauna. Remarkably, the selected Nature 2000 area, despite its identified degradation based on flora, remained a biodiversity hotspot for peatland water beetle fauna. The study underscores the significance of assessing insects, particularly beetles, as rapid responders to environmental changes. This evaluation holds crucial implications for peatland restoration planning and decision-making regarding mining investments in proximity to peatland areas.

20.
Fungal Biol ; 128(2): 1698-1704, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575243

RESUMO

Peat-based casings have been used for button mushroom (Agaricus bisporus) cultivation for decades but there is environmental pressure to find sustainable alternatives. This work aimed to characterise the physicochemical properties of peat and peat-substituted casings and to determine their influence on mushroom cropping to enable alternatives to be identified. British milled peat and German wet-dug peat casings produced smaller mushrooms than Irish wet-dug peat casing although yield was unaffected. Substitution of milled or wet-dug peat casings with 25% v/v bark, green waste compost or spent mushroom casing, except Irish wet-dug peat casing with spent peat mushroom casing, caused reductions in mushroom yield and/or size. These poorer results of casings compared with Irish wet-dug peat casing corresponded with lower water retention volumes at matric potential (Ψm) -15 kPa but not after drainage from saturation or at -1 kPa. Air-filled porosity (17-22% v/v), compacted bulk density after drainage (670-800 g L-1) and electrical conductivity (0.30-0.54 mS cm-1) of casings were unrelated to their mushroom cropping performance. In-situ casing measurements with electronic tensiometers confirmed laboratory casing physical analysis: at the same casing Ψm, Irish wet-dug peat casing had a higher water content than German wet-dug peat casing and produced larger mushrooms for the same yield. Solid-state foam-based tensiometers were more robust than water-filled tensiometers but they did not detect the full decrease in casing Ψm during a flush of mushrooms. The results indicate that if sustainable materials are to replace wet-dug peat casing with the same mushroom yield and size quality performance, they should have equivalent water retention volumes at Ψm -15 kPa. Measurement of casing Ψm with electronic tensiometers to control mushroom crop irrigation should assist in this transition.


Assuntos
Agaricus , Solo/química , Meios de Cultura/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA