Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(4): 3034-3044, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38071746

RESUMO

BACKGROUND: Daily IGRT images show day-to-day anatomical variations in patients undergoing fractionated prostate radiotherapy. This is of particular importance in particle beam treatments. PURPOSE: To develop a digital phantom series showing variation in pelvic anatomy for evaluating treatment planning and IGRT procedures in particle radiotherapy. METHODS: A pelvic phantom series was developed from the planning MRI and kVCT (planning CT) images along with six of the daily serial MVCT images taken of a single patient treated with a full bladder on a Tomotherapy unit. The selected patient had clearly visible yet unexceptional internal anatomy variation. Prostate, urethra, bladder, rectum, bowel, bowel gas, bone and soft tissue were contoured and a single Hounsfield Unit was assigned to each region. Treatment plans developed on the kVCT for photon, proton and carbon beams were recalculated on each phantom to demonstrate a clinical application of the series. Proton plans were developed with and without robust optimization. RESULTS: Limited to axial slices with prostate, the bladder volume varied from 6 to 46 cm3, the rectal volume (excluding gas) from 22 to 52 cm3, and rectal gas volume from zero to 18 cm3. The water equivalent path length to the prostate varied by up to 1.5 cm . The variations resulted in larger changes in the RBE-weighted Dose Volume Histograms of the non-robust proton plan and the carbon plan compared to the robust proton plan, the latter similar to the photon plan. The prostate coverage (V100%) decreased by an average of 18% in the carbon plan, 16% in the non-robust proton plan, 1.8% in the robust proton plan, and 4.4% in the photon plan. The volume of rectum receiving 75% of the prescription dose (V75%) increased by an average of 3.7 cm3, 4.7 cm3, 1.9 cm3, and 0.6 cm3 in those four plans, respectively. CONCLUSIONS: The digital pelvic phantom series provides for quantitative investigation of IGRT procedures and new methods for improving accuracy in particle therapy and may be used in cross-institutional comparisons for clinical trial quality assurance.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Reto/diagnóstico por imagem , Radioterapia de Intensidade Modulada/métodos , Pelve/diagnóstico por imagem , Fracionamento da Dose de Radiação , Carbono , Dosagem Radioterapêutica , Terapia com Prótons/métodos
2.
Phys Med Biol ; 66(24)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34845991

RESUMO

Objective.In MR-guided radiotherapy (MRgRT) for prostate cancer treatments inter-fractional anatomy changes such as bladder and rectum fillings may be corrected by an online adaption of the treatment plan. To clinically implement such complex treatment procedures, however, specific end-to-end tests are required that are able to validate the overall accuracy of all treatment steps from pre-treatment imaging to dose delivery.Approach.In this study, an end-to-end test of a fractionated and online adapted MRgRT prostate irradiation was performed using the so-called ADAM-PETer phantom. The phantom was adapted to perform 3D polymer gel (PG) dosimetry in the prostate and rectum. Furthermore, thermoluminescence detectors (TLDs) were placed at the center and on the surface of the prostate for additional dose measurements as well as for an external dose renormalization of the PG. For the end-to-end test, a total of five online adapted irradiations were applied in sequence with different bladder and rectum fillings, respectively.Main results.A good agreement of measured and planned dose was found represented by highγ-index passing rates (3%/3mmcriterion) of the PG evaluation of98.9%in the prostate and93.7%in the rectum. TLDs used for PG renormalization at the center of the prostate showed a deviation of-2.3%.Significance.The presented end-to-end test, which allows for 3D dose verification in the prostate and rectum, demonstrates the feasibility and accuracy of fractionated and online-adapted prostate irradiations in presence of inter-fractional anatomy changes. Such tests are of high clinical importance for the commissioning of new image-guided treatment procedures such as online adaptive MRgRT.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pelve/diagnóstico por imagem , Pelve/efeitos da radiação , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/métodos
3.
Phys Med ; 92: 8-14, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34823110

RESUMO

AIM: Developing and assessing the feasibility of using a three-dimensional (3D) printed patient-specific anthropomorphic pelvis phantom for dose calculation and verification for stereotactic ablative radiation therapy (SABR) with dose escalation to the dominant intraprostatic lesions. MATERIAL AND METHODS: A 3D-printed pelvis phantom, including bone-mimicking material, was fabricated based on the computed tomography (CT) images of a prostate cancer patient. To compare the extent to which patient and phantom body and bones overlapped, the similarity Dice coefficient was calculated. Modular cylindrical inserts were created to encapsulate radiochromic films and ionization chamber for absolute dosimetry measurements at the location of prostate and at the boost region. Gamma analysis evaluation with 2%/2mm criteria was performed to compare treatment planning system calculations and measured dose when delivering a 10 flattening filter free (FFF) SABR plan and a 10FFF boost SABR plan. RESULTS: Dice coefficients of 0.98 and 0.91 were measured for body and bones, respectively, demonstrating agreement between patient and phantom outlines. For the boost plans the gamma analysis yielded 97.0% of pixels passing 2%/2mm criteria and these results were supported by the chamber average dose difference of 0.47 ± 0.03%. These results were further improved when overriding the bone relative electron density: 97.3% for the 2%/2mm gamma analysis, and 0.05 ± 0.03% for the ionization chamber average dose difference. CONCLUSIONS: The modular patient-specific 3D-printed pelvis phantom has proven to be a highly attractive and versatile tool to validate prostate SABR boost plans using multiple detectors.

4.
Med Phys ; 48(4): 1624-1632, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33207020

RESUMO

OBJECTIVE: To develop an anthropomorphic, deformable and multimodal pelvis phantom with positron emission tomography extension for radiotherapy (ADAM PETer). METHODS: The design of ADAM PETer was based on our previous pelvis phantom (ADAM) and extended for compatibility with PET and use in 3T magnetic resonance imaging (MRI). The formerly manually manufactured silicon organ surrogates were replaced by three-dimensional (3D) printed organ shells. Two intraprostatic lesions, four iliac lymph node metastases and two pelvic bone metastases were added to simulate prostate cancer as multifocal and metastatic disease. Radiological properties [computed tomography (CT) and 3T MRI] of cortical bone, bone marrow and adipose tissue were simulated by heavy gypsum, a mixture of Vaseline and K2 HPO4 and peanut oil, respectively. For soft tissues, agarose gels with varying concentrations of agarose, gadolinium (Gd) and sodium fluoride (NaF) were developed. The agarose gels were doped with patient-specific activity concentrations of a Fluorine-18 labelled compound and then filled into the 3D printed organ shells of prostate lesions, lymph node and bone metastases. The phantom was imaged at a dual energy CT and a 3T PET/MRI scanner. RESULTS: The compositions of the soft tissue surrogates are the following (given as mass fractions of agarose[w%]/NaF[w%]/Gd[w%]): Muscle (4/1/0.027), prostate (1.35/4.2/0.011), prostate lesions (2.25/4.2/0.0085), lymph node and bone metastases (1.4/4.2/0.025). In all imaging modalities, the phantom simulates human contrast. Intraprostatic lesions appear hypointense as compared to the surrounding normal prostate tissue in T2-weighted MRI. The PET signal of all tumors can be localized as focal spots at their respective site. Activity concentrations of 12.0 kBq/mL (prostate lesion), 12.4 kBq/mL (lymph nodes) and 39.5 kBq/mL (bone metastases) were measured. CONCLUSION: The ADAM PETer pelvis phantom can be used as multimodal, anthropomorphic model for CT, 3T-MRI and PET measurements. It will be central to simulate and optimize the technical workflow for the integration of PET/MRI-based radiation treatment planning of prostate cancer patients.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
5.
Eur J Radiol ; 108: 84-91, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30396676

RESUMO

PURPOSE: Imaging phantoms can be cost prohibitive, therefore a need exists to produce low cost alternatives which are fit for purpose. This paper describes the development and validation of a low cost paediatric pelvis phantom based on the anatomy of a 5-year-old child. METHODS: Tissue equivalent materials representing paediatric bone (Plaster of Paris; PoP) and soft tissue (Poly methyl methacrylate; PMMA) were used. PMMA was machined to match the bony anatomy identified from a CT scan of a 5-year-old child and cavities were created for infusing the PoP. Phantom validation comprised physical and visual measures. Physical included CT density comparison between a CT scan of a 5-year old child and the phantom and Signal to Noise Ratio (SNR) comparative analysis of anteroposterior phantom X-ray images against a commercial anthropomorphic phantom. Visual analysis using a psychometric image quality scale (face validity). RESULTS: CT density, the percentage difference between cortical bone, soft tissue and their equivalent tissue substitutes were -4.7 to -4.1% and -23.4%, respectively. For SNR, (mAs response) there was a strong positive correlation between the two phantoms (r > 0.95 for all kVps). For kVp response, there was a strong positive correlation between 1 and 8 mAs (r = 0.85), this then decreased as mAs increased (r = -0.21 at 20 mAs). Psychometric scale results produced a Cronbach's Alpha of almost 0.8. CONCLUSIONS: Physical and visual measures suggest our low-cost phantom has suitable anatomical characteristics for X-ray imaging. Our phantom could have utility in dose and image quality optimisation studies.


Assuntos
Pelve/diagnóstico por imagem , Imagens de Fantasmas/normas , Tomografia Computadorizada por Raios X/instrumentação , Criança , Pré-Escolar , Humanos , Imagens de Fantasmas/economia , Doses de Radiação , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/economia , Tomografia Computadorizada por Raios X/normas , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA