Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 192: 114787, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147489

RESUMO

This original work investigated the optical properties and Monte-Carlo (MC) based simulation of light propagation in the flavedo of Nanfeng tangerine (NF) and Gannan navel orange (GN) infected by Penicillium italicum. The increase of absorption coefficient (µa) at around 482 nm and the decrease at around 675 nm were both observed in infected NF and GN during storage, indicating the accumulation of carotenoids and loss of chlorophyll. Particularly, the µa in NF varied more intensively than GN, but the limited differences of reduced scattering coefficient (µs') were detected while postharvest infection. Besides, MC simulation of light propagation indicated that the photon packets weight and penetration depth at 482 nm in NF were reduced more than in GN flavedo, while there were almost no changes at the relatively low absorption wavelength of 926 nm. The simulated absorption energy at 482 nm in NF and GN presented more changes than those at 675 nm during infection, thus could provide better detection of citrus diseases. Furthermore, PLS-DA models can discriminate healthy and infected citrus, with the accuracy of 95.24 % for NF and 98.67 % for GN, respectively. Consequently, these results can provide theoretical fundamentals to improve modelling prediction robustness and accuracy.


Assuntos
Citrus , Luz , Método de Monte Carlo , Penicillium , Citrus/microbiologia , Doenças das Plantas/microbiologia , Clorofila/análise , Frutas/microbiologia , Carotenoides/análise , Carotenoides/metabolismo
2.
Mol Genet Genomics ; 299(1): 82, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196386

RESUMO

Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.


Assuntos
Agrobacterium tumefaciens , Penicillium , Transformação Genética , Penicillium/genética , Penicillium/patogenicidade , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidade , Citrus/microbiologia , Virulência/genética , Mutação , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , DNA Bacteriano/genética , Mutagênese Insercional , Genes Fúngicos/genética
3.
Int J Food Microbiol ; 420: 110769, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38823189

RESUMO

The study prepared and used eugenol nanoemulsion loaded with nobiletin as fungistat to study its antifungal activity and potential mechanism of Penicillium italicum (P. italicum). The results showed that the minimum inhibitory concentration (MIC) of eugenol nanoemulsion loaded with nobiletin (EGN) was lower than that of pure eugenol nanoemulsion (EG), which were 160 µg/mL and 320 µg/mL, respectively. At the same time, the mycelial growth inhibition rate of EGN nanoemulsion (54.68 %) was also higher than that of EG nanoemulsion (9.92 %). This indicates that EGN nanoemulsion is more effective than EG nanoemulsion. Compared with EG nanoemulsion, the treatment of EGN nanoemulsion caused more serious damage to the cell structure of P. italicum. At the same time, in vitro inoculation experiments found that EGN nanoemulsion has better control and delay the growth and reproduction of P. italicum in citrus fruits. And the results reflected that EGN nanoemulsion may be considered as potential resouces of natural antiseptic to inhibit blue mold disease of citrus fruits, because it has good antifungal activity.


Assuntos
Antifúngicos , Citrus , Emulsões , Eugenol , Flavonas , Testes de Sensibilidade Microbiana , Penicillium , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Eugenol/farmacologia , Antifúngicos/farmacologia , Emulsões/farmacologia , Flavonas/farmacologia , Nanopartículas/química
4.
J Fungi (Basel) ; 10(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38921355

RESUMO

Penicillium italicum, a major postharvest pathogen, causes blue mold rot in citrus fruits through the deployment of various virulence factors. Recent studies highlight the role of the epigenetic reader, SntB, in modulating the pathogenicity of phytopathogenic fungi. Our research revealed that the deletion of the SntB gene in P. italicum led to significant phenotypic alterations, including delayed mycelial growth, reduced spore production, and decreased utilization of sucrose. Additionally, the mutant strain exhibited increased sensitivity to pH fluctuations and elevated iron and calcium ion stress, culminating in reduced virulence on Gannan Novel oranges. Ultrastructural analyses disclosed notable disruptions in cell membrane integrity, disorganization within the cellular matrix, and signs of autophagy. Transcriptomic data further indicated a pronounced upregulation of hydrolytic enzymes, oxidoreductases, and transport proteins, suggesting a heightened energy demand. The observed phenomena were consistent with a carbon starvation response potentially triggering apoptotic pathways, including iron-dependent cell death. These findings collectively underscored the pivotal role of SntB in maintaining the pathogenic traits of P. italicum, proposing that targeting PiSntB could offer a new avenue for controlling citrus fungal infections and subsequent fruit decay.

5.
Front Microbiol ; 14: 1184297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383639

RESUMO

Lemons (Citrus limon L.) are one of the most economically important and consumed fruit worldwide. The species is vulnerable to several postharvest decay pathogens, of which Penicillium italicum associated with blue mold disease is the most damaging. This study investigates the use of integrated management for blue mold of lemon using lipopeptides (LPs) extracted from endophytic Bacillus strains and resistance inducers. Two resistance inducers; salicylic acid (SA) and benzoic acid (BA) were tested at 2, 3, 4, and 5 mM concentrations against the development of blue mold on lemon fruit. The 5 mM SA treatment produced the lowest disease incidence (60%) and lesion diameter (1.4 cm) of blue mold on lemon fruit relative to the control. In an in vitro antagonism assay eighteen Bacillus strains were evaluated for their direct antifungal effect against P. italicum; CHGP13 and CHGP17 had the greatest inhibition zones of 2.30 and 2.14 cm. Lipopeptides (LPs) extracted from CHGP13 and CHGP17 also inhibited the colony growth of P. italicum. LPs extracted from CHGP13 and 5 mM SA were tested as single and combined treatments against disease incidence and lesion diameter of blue mold on lemon fruit. SA + CHGP13 + PI had the lowest disease incidence (30%) and lesion diameter (0.4 cm) of P. italicum on lemon fruit relative to the other treatments. Furthermore, the lemon fruit treated with SA + CHGP13 + PI had the highest PPO, POD, and PAL activities. The postharvest quality analysis of the lemon fruit including fruit firmness, total soluble solids, weight loss, titratable acidity, and ascorbic acid content revealed that the treatment SA + CHGP13 + PI had little effect on fruit quality compared to the healthy control. These findings indicate that Bacillus strains and resistance inducers can be used as components of integrated disease management for the blue mold of lemon.

6.
Nat Prod Bioprospect ; 13(1): 10, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012512

RESUMO

Postharvest pathogens can affect a wide range of fresh fruit and vegetables, including grapes, resulting in significant profit loss. Isoquinoline alkaloids of Mahonia fortunei, a Chinese herbal medicine, have been used to treat infectious microbes, which might be effective against postharvest pathogens. The phytochemical and bioactive investigation of this plant led to the isolation of 18 alkaloids, of which 9 compounds inhibited the growth of Botrytis cinerea and 4 compounds against Penicillium italicum. The antifungal alkaloids could change the mycelium morphology, the total lipid content, and leak the cell contents of B. cinerea. Furthermore, the two most potent antifungal alkaloids, berberine (13) completely inhibited effect on gray mold of table grape at 512 mg L-1, while jatrorrhizine (18) exhibited an inhibition rate > 90% on grape rot at the same concentration, with lower cytotoxicity and residue than chlorothalonil, which suggested that ingredients of M. fortunei might be a low-toxicity, low-residue, eco-friendly botanical fungicide against postharvest pathogens.

7.
J Biomol Struct Dyn ; 41(23): 14212-14223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36889933

RESUMO

The study involved the adsorption of Erythrosine B onto the dead, dry, and unmodified Penicillium italicum cells and the analytical, visual, theoretical assessment of the adsorbent-adsorbate interactions. It also included desorption studies and reiterative usability of the adsorbent. The fungus was a local isolate and it was identified by partial proteomic experiment in a MALDI-TOFF mass spectrometer. Chemical features of the adsorbent surface were analysed by FT-IR and EDX. Surface topology was visualized by SEM. Isotherm parameters of the adsorption were determined by using three most frequently used models. Erythrosine B appeared to form a monolayer onto the biosorbent and some of the dye molecules could have also penetrated into the adsorbent particles. Kinetic results suggested a spontaneous and exothermic reaction taken place between the dye molecules and the biomaterial. Theoretical approach involved the determination of some of the quantum parameters as well as the toxic or drug potentials of the some of the components of the biomaterial.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eritrosina , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Proteômica , Adsorção , Cinética , Materiais Biocompatíveis , Concentração de Íons de Hidrogênio , Termodinâmica
8.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500391

RESUMO

During the postharvest period, citrus fruits are exposed to Penicillium italicum, Penicillium digitatum, and Geotrichum candidum. Pesticides such as imazalil (IMZ), thiabendazole (TBZ), orthophenylphenol (OPP), and guazatine (GUA) are commonly used as antifungals. Glyphosate (GP) is also used in citrus fields to eliminate weed growth. The sensitivity of fungal pathogens of citrus fruit to these pesticides and 1,8-cineole was evaluated, and the effect of GP on the development of cross-resistance to other chemicals was monitored over a period of 3 weeks. IMZ most effectively inhibited the mycelial growth and spore germination of P. digitatum and P. italicum, with minimum inhibitory concentrations (MICs) of 0.01 and 0.05 mg/mL, respectively, followed by 1,8-cineole, GP, and TBZ. 1,8-Cineole and GP more effectively inhibited the mycelial growth and spore germination of G. candidum, with minimum inhibitory concentrations (MICs) of 0.2 and 1.0 mg/mL, respectively, than OPP or GUA. For the spore germination assay, all substances tested showed a total inhibitory effect. Subculturing the fungal strains in culture media containing increasing concentrations of GP induced fungal tolerance to GP as well as to the fungicides. In soil, experiments confirmed that GP induced the tolerance of P. digitatum to TBZ and GP and the tolerance of P. italicum to IMZ, TBZ, and GP. However, no tolerance was recorded against 1,8-cineole. In conclusion, it can be said that 1,8-cineole may be recommended as an alternative to conventional fungicides. In addition, these results indicate that caution should be taken when using GP in citrus fields.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , Citrus/química , Eucaliptol/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/análise , Tiabendazol/análise , Antifúngicos/farmacologia , Antifúngicos/análise , Frutas/química
9.
J Fungi (Basel) ; 8(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36012806

RESUMO

Overall, 180 yeasts and bacteria isolated from the peel of citrus fruits were screened for their in vitro antagonistic activity against Penicillium digitatum and P. italicum, causative agents of green and blue mold of citrus fruits, respectively. Two yeast and three bacterial isolates were selected for their inhibitory activity on mycelium growth. Based on the phylogenetic analysis of 16S rDNA and ITS rDNA sequences, the yeast isolates were identified as Candida oleophila and Debaryomyces hansenii while the bacterial isolates were identified as Bacillus amyloliquefaciens, B. pumilus and B. subtilis. All five selected isolates significantly reduced the incidence of decay incited by P. digitatum and P. italicum on 'Valencia' orange and 'Eureka' lemon fruits. Moreover, they were effective in preventing natural infections of green and blue mold of fruits stored at 4 °C. Treatments with antagonistic yeasts and bacteria did not negatively affect the quality and shelf life of fruits. The antagonistic efficacy of the five isolates depended on multiple modes of action, including the ability to form biofilms and produce antifungal lipopeptides, lytic enzymes and volatile compounds. The selected isolates are promising as biocontrol agents of postharvest green and blue molds of citrus fruits.

10.
Foods ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35804682

RESUMO

A new method was proposed to produce alginate bio-films containing Pichia membranifaciens and Wickerhamomyces anomalus killer yeast to control the post-harvest fungal decay in organic apples caused by Botrytis cinerea and Penicillium italicum. Coatings with W. anomalus killer yeast effectively controlled the growth of P. italicum during storage at 22 °C. W. anomalus killer yeast incorporated in alginate reduced the P. italicum incidence from 90% (control) to 35% after 14 days of storage at 22 °C. Alginate biofilms with W. anomalus or P. membranifaciens also limited the incidence of the fungal decay of apples inoculated with B. cinerea compared with the control fruits, although the antagonistic capability against B. cinerea was lower than against P. italicum. The survival of W. anomalus cells in alginate coating was higher than P. membranifaciens. The incorporation of killer yeasts into alginate had no significant effect on the mechanical properties (tensile strength, percent elongation at break) of alginate coating, however, they increased the thickness of the biofilm. The bioactive coating reduced the fruit weight loss and had no significant effects on the fruit firmness during storage at 2 °C. As organic apples, produced without any synthetic fungicides, are especially prone to fungal decay during storage, the proposed alginate biofilms containing killer yeast seem to be a very promising solution by offering non-chemical, biological control of post-harvest pathogens.

11.
J Fungi (Basel) ; 8(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35736129

RESUMO

Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.

12.
J Agric Food Chem ; 70(26): 8111-8123, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730981

RESUMO

7-Demethoxytylophorine (DEM), a natural water-soluble phenanthroindolizidine alkaloid, has a great potential for in vitro suppression of Penicillium italicum growth. In the present study, we investigated the ability of DEM to confer resistance against P. italicum in harvested "Newhall" navel orange and the underlying mechanism. Results from the in vivo experiment showed that DEM treatment delayed blue mold development. The water-soaked lesion diameter in 40 mg L-1 DEM-treated fruit was 35.2% lower than that in the control after 96 h. Moreover, the decrease in peel firmness loss and increase in electrolyte leakage, superoxide anion (O2•-) production, and malondialdehyde (MDA) content were significantly inhibited by DEM treatment. Hydrogen peroxide (H2O2) burst in DEM-treated fruit at the early stage of P. italicum infection contributed to the conferred resistance by increasing the activities of lignin biosynthesis-related enzymes, along with the expressions of their encoding genes, resulting in lignin accumulation. The DEM-treated fruit maintained an elevated antioxidant capacity, as evidenced by high levels of ascorbic acid and glutathione content, and enhanced or upregulated the activities and gene expression levels of APX, GR, MDHAR, DHAR, GPX, and GST, thereby maintaining ROS homeostasis and reducing postharvest blue mold. Collectively, the results in the present study revealed a control mechanism in which DEM treatment conferred the resistance against P. italicum infection in harvested "Newhall" navel orange fruit by activating lignin biosynthesis and maintaining the redox balance.


Assuntos
Citrus sinensis , Penicillium , Peróxido de Hidrogênio , Lignina , Oxirredução , Água
13.
J Fungi (Basel) ; 8(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628676

RESUMO

Penicillium italicum (P. italicum), a citrus blue mold, is a pathogenic fungus that greatly affects the postharvest quality of citrus fruits with significant economic loss. Our previous research showed that 2-methoxy-1, 4-naphthoquinone (MNQ) inhibited the growth of Penicillium italicum. However, the water dispersibility of MNQ will limit its further application. Herein, we synthesized MNQ-based carbon dots (2-CDs) with better water dispersibility, which showed a potential inhibitory effect on P. italicum (MIC = 2.8 µg/mL) better than that of MNQ (MIC = 5.0 µg/mL). Transcriptomics integrated with metabolomics reveals a total of 601 differentially enriched genes and 270 differentially accumulated metabolites that are co-mapped as disruptive activity on the cell cytoskeleton, glycolysis, and histone methylation. Furthermore, transmission electron microscopy analysis showed normal appearances and intracellular septum of P. italicum after treatment. These findings contribute tofurther understanding of the possible molecular action of 2-CDs.

14.
J Fungi (Basel) ; 8(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35448600

RESUMO

Chitosan-based film with and without antagonistic yeast was prepared and its effect against Penicillium italicum was evaluated. The biocompatibility of yeast cells in the developed films was assessed in terms of population dynamics. Furthermore, the impact on physicochemical properties of the prepared films with and without yeast cells incorporated were evaluated in terms of thickness, mechanical properties, color and opacity. Chitosan films with the antagonistic yeast entrapped exhibited strong antifungal activity by inhibiting the mycelial development (55%), germination (45%) and reducing the sporulation process (87%). Chitosan matrix at 0.5% and 1.0% was maintained over 9 days of cell viability. However, at 1.5% of chitosan the population dynamics was strongly affected. The addition of yeast cells only impacted color values such as a*, b*, chroma and hue angle when 1.0% of chitosan concentration was used. Conversely, luminosity was not affected in the presence of yeast cells as well as the opacity. Besides, the addition of antagonistic yeast improved the mechanical resistance of the films. The addition of D. hansenii in chitosan films improve their efficacy for controlling P. italicum, and besides showed desirable characteristics for future use as packaging for citrus products.

15.
Fungal Biol ; 126(3): 201-212, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35183337

RESUMO

Blue mold caused by Penicillium italicum is a severe postharvest disease in citrus fruits. In this study, the fermentation product (FP-E) of Aspergillus aculeatus GC-09, an endophytic fungus isolated from a citrus plant, was found to exhibit antifungal activity against P. italicum with a MIC of 0.3125 mg/mL. The fungus A. aculeatus GC-09 was identified based on the studies of morphology and ITS nucleotide sequence. FP-E significantly inhibited the spore germination and mycelial growth of P. italicum. Scanning electron microscopy (SEM) results of P. italicum treated with FP-E showed shrunken, distorted and collapsed hyphae and conidiospores, indicative of the cell membrane damage, which was further confirmed by the propidium iodide (PI) fluorescent staining analysis. Consistent with the microscopy observation, FP-E led to the leakage of cellular constituents from P. italicum, which is evident from the increase in electrical conductivity and nucleic acid contents in the mycelial solution incubated with FP-E. In addition, FP-E treatment considerably increased the intracellular reactive oxygen species (ROS) content, and reduced the enzyme activities of both catalase (CAT) and peroxidase (POD) in P. italicum cells. Furthermore, orange fruits treated with FP-E showed fewer disease symptoms compared to the untreated fruits. These results suggested that the antifungal activity of FP-E might be associated with the disruption of cell membrane integrity, the accumulation of ROS level, and the reduction of the antioxidant enzymes activity of P. italicum. Therefore, A. aculeatus GC-09 might be a potential microbial resource for the biocontrol of citrus postharvest blue mold.


Assuntos
Citrus , Penicillium , Aspergillus , Citrus/microbiologia , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
16.
J Med Life ; 15(12): 1476-1487, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36762330

RESUMO

Recently, biological techniques for manufacturing nanoparticles, such as employing filamentous fungi to synthesize ZnO nanoparticles, have become environmentally friendly, bio congruous, and safe. This study aimed to look for Penicillium italicum [Filamentous Blue Mold (FiBM)] in rotting citrus fruits and exploit this in the biofabrication of ZnO nanoparticles. The study isolated 39 different filamentous mold samples and used conventional and molecular diagnosis. Only 11 (28%) of the isolates obtained contained Penicillium italicum, for which we investigated the capability of ZnO nanoparticles biosynthesis by fungal extracellular free-cells filtrate solution. The results showed that Penicillium italicum Pit-L6 was given the peak of ZnONps 378 nm detected by UV-visible spectrophotometry, and it considered significantly optimum strain in the highest quantity (mean±S.D) 0.015±0.002 gm/100 ml with small enough average nanoparticles size. The ZnONps were characterized by UV-visible scanning spectrophotometry, atomic force microscopy (AFM), X|-RD, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The final average ZnONps through 0f in all measuring devices ranged between 53.13-69.67 nm (with different shapes and dimensions). This study concluded that these fungi (FiBMs) are highly capable as eco-friendly and cheap bio-nano factories to manufacture ZnONps as alternative novel biological technology, in fine particles within average size at nano-level, as continuous renewable sources for producing nanoparticles, for different usage.


Assuntos
Nanopartículas , Penicillium , Óxido de Zinco
17.
J Fungi (Basel) ; 7(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199956

RESUMO

Penicillium phytopathogenic species provoke severe postharvest disease and economic losses. Penicillium expansum is the main pome fruit phytopathogen while Penicillium digitatum and Penicillium italicum cause citrus green and blue mold, respectively. Control strategies rely on the use of synthetic fungicides, but the appearance of resistant strains and safety concerns have led to the search for new antifungals. Here, the potential application of different antifungal proteins (AFPs) including the three Penicillium chrysogenum proteins (PAF, PAFB and PAFC), as well as the Neosartorya fischeri NFAP2 protein to control Penicillium decay, has been evaluated. PAFB was the most potent AFP against P. digitatum, P. italicum and P. expansum, PAFC and NFAP2 showed moderate antifungal activity, whereas PAF was the least active protein. In fruit protection assays, PAFB provoked a reduction of the incidence of infections caused by P. digitatum and P. italicum in oranges and by P. expansum in apples. A combination of AFPs did not result in an increase in the efficacy of disease control. In conclusion, this study expands the antifungal inhibition spectrum of the AFPs evaluated, and demonstrates that AFPs act in a species-specific manner. PAFB is a promising alternative compound to control Penicillium postharvest fruit decay.

18.
Microorganisms ; 9(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946160

RESUMO

Penicillium italicum, the cause of citrus blue mold, is a pathogenic fungus that seriously affects the postharvest quality of citrus fruit and causes serious economic loss. In this study, a eugenol nanoemulsion containing limonin, an antimicrobial component from citrus seeds, was prepared using a high-pressure microfluidizer and the antifungal activity of the nanoemulsions against P. italicum was evaluated based on the conidial germination rate, mycelial growth, and scanning electron microscopy analysis. The results showed that the minimum inhibitory concentration and the inhibition rate of limonin-loaded eugenol nanoemulsion was 160 µg/mL and 59.21%, respectively, which was more potent than that of the limonin-free eugenol emulsion. After treatment with the nanoemulsions, the integrity of the P. italicum cell membrane was disrupted, the cell morphology was abnormal, and the leakage of nucleic acid and protein was observed. In addition, the challenge test on citrus fruits revealed that the limonin-loaded eugenol emulsion inhibited citrus infection for longer periods, with an infection rate of 29.2% after 5 days. The current research shows that nanoemulsions containing limonin and eugenol have effective antifungal activity against P. italicum, and may be used as a substitute for inhibiting blue mold in citrus fruits.

19.
Nat Prod Res ; 35(22): 4394-4401, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31984766

RESUMO

The present work reports the bioassay-guided isolation of four bioactive fatty acid derivatives involving a new butenolide, namely sinulolide I (1) together with three known metabolites (2-4) from the deep-sea sediment derived fungus Aspergillus terreus SCSIO 41202. The chemical structure of compound 1 was elucidated based on extensive spectroscopic methods (1D/2D NMR and HR-ESI-MS), optical rotation and circular dichroism analyses, while the structures of the known compounds (2-4) were established by comparison of NMR spectral data with those reported in literature. All of these four compounds (1-4) exhibited significant antifungal activity against citrus postharvest pathogen Penicillium italicum (MICs around 0.031-0.125 mg/mL).


Assuntos
Penicillium , Antifúngicos/farmacologia , Aspergillus , Ácidos Graxos , Fungos , Estrutura Molecular
20.
Plant Dis ; 105(4): 1013-1018, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33103964

RESUMO

Green and blue molds are the most important postharvest diseases affecting citrus in storage. These diseases are commonly controlled with fungicides, but legislative restrictions, consumer concerns, and the development of resistant strains of the pathogens have increasingly led to the search for alternative methods of control. A pomegranate peel extract (PGE) was very effective in controlling Valencia orange and clementine postharvest rot under commercial conditions. After cold storage and 7 days of shelf life, the incidence of decay on oranges sprayed before harvest with PGE at 12, 6, and 3 g/liter was reduced by 78.9, 76.0, and 64.6%, respectively. Similarly, postharvest dipping treatments with PGE reduced rot by 90.2, 84.3, and 77.6%, respectively. Comparable levels of protection were also achieved on clementines. On both oranges and clementines, the extract provided a significantly higher level of protection compared with imazalil, a fungicide commonly used for postharvest treatments. The high level of efficacy and the consistent results on different fruit species (clementines and oranges) and with different application methods (preharvest and postharvest) were evidence of reliability and flexibility. PGE also showed a strong antimicrobial activity against fungi and bacteria, suggesting its possible use in sanitizers to reduce the microbial contamination of recirculated water in packinghouses. The results of the present study encourage the integration of conventional chemical fungicides and sanitizers with PGE to control citrus postharvest rot.


Assuntos
Citrus , Penicillium , Punica granatum , Conservação de Alimentos , Frutas , Extratos Vegetais/farmacologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA