Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.291
Filtrar
1.
J Environ Sci (China) ; 150: 545-555, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306428

RESUMO

Persulfate (PS) is a widely used oxidant for the chemical oxidation of organic pollutants. The accurate measurement of PS concentration is crucial for the practical application process. The iodometry is the most recommended method for PS determination, and its principle is based on the redox reaction between S2O82- and iodide ions. However, hydrogen peroxide (H2O2), an important intermediate product in the process of PS use, often leads to abnormally high determination concentrations of PS. Given this, a novel method was developed for the determination of PS based on the principle of the oxidation of chloride ion (Cl-). The concentration of PS is calculated according to the consumption of Cl- concentration, which is not disturbed by H2O2. The optimized test conditions were explored as: C(H+) = 2 mol/L, T = 80℃, C(Cl-):C(PS) = 4:1 and t = 30 min. Under the optimized conditions, the limit of detection and the limit of quantification of PS concentration determined by this method were 0.26 and 0.85 g/L, respectively. And the linear range of the PS determination was 1-100 g/L with an error of 0.53%-12.06%. The spike recovery rate for determining PS concentration in the actual wastewater ranged from 94.07%-109.52%. Interfering factors such as H2O2, Fe3+, MnO2 and natural organic matter had almost no effect on the results. This method could not only accurately determine the concentration of PS in industrial wastewater, but also determine the purity of PS industrial products.


Assuntos
Cloretos , Peróxido de Hidrogênio , Oxirredução , Sulfatos , Poluentes Químicos da Água , Sulfatos/análise , Sulfatos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Cloretos/análise , Cloretos/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Águas Residuárias/química
2.
J Environ Sci (China) ; 150: 704-718, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306441

RESUMO

Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement. Unfortunately, this method is significantly hindered in practical applications by the low efficiency and difficult recovery of the catalysts in a powdery form. Herein, a three-dimensional (3D) framework of Fe-incorporated Ni3S2 nanosheets in-situ grown on Ni foam (Fe-Ni3S2@NF) was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate (PMS) oxidation of organic compounds in water. A homogeneous growth environment enabled the uniform and scalable growth of Fe-Ni3S2 nanosheets on the Ni foam. Fe-Ni3S2@NF possessed outstanding activity and durability in activating PMS, as it effectively facilitated electron transfer from organic pollutants to PMS. Fe-Ni3S2@NF initially supplied electrons to PMS, causing the catalyst to undergo oxidation, and subsequently accepted electrons from organic compounds, returning to its initial state. The introduction of Fe into the Ni3S2 lattice enhanced electrical conductivity, promoting mediated electron transfer between PMS and organic compounds. The 3D conductive Ni foam provided an ideal platform for the nucleation and growth of Fe-Ni3S2, accelerating pollutant abatement due to its porous structure and high conductivity. Furthermore, its monolithic nature simplified the catalyst recycling process. A continuous flow packed-bed reactor by encapsulating Fe-Ni3S2@NF catalyst achieved complete pollutant abatement with continuous operation for 240 h, highlighting its immense potential for practical environmental remediation. This study presents a facile synthesis method for creating a novel type of monolithic catalyst with high activity and durability for decontamination through Fenton-like processes.


Assuntos
Ferro , Níquel , Oxirredução , Peróxidos , Poluentes Químicos da Água , Níquel/química , Ferro/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Nanoestruturas/química , Transporte de Elétrons
3.
Environ Sci Pollut Res Int ; 31(42): 55022-55034, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222229

RESUMO

The technical feasibility of advanced oxidation process, in particular persulfate (PS) oxidation followed by struvite precipitation for landfill leachate treatment and nutrient recovery has been depicted in the current study. Furthermore, the impact of activation of PS with thermal and ultraviolet (UV) irradiation techniques on COD removal efficiency is also investigated. A maximum COD removal efficiency of 96% is accomplished at 65 °C together with supply of UV irradiation. The impact of persulfate dose, pH, and PS/65 °C/UV system on COD and biodegradability is also illustrated in the current study. Additionally, decomposition rate constant values are also ascertained in the present study. Afterwards, nutrient recovery using struvite precipitation is carried out for sustainable utilization of resources. Preliminary treatment of leachate with PS/65 °C/UV system is greatly conducive to recovering high quality struvite crystals. Besides, 94.9%, 83.5%, and 91.3% of PO43- - P, NH4+ - N, and Mg2+ recovery efficiency attained respectively at pH 9.5 and 1.2:1:1 molar ratio of Mg2+: NH4+ - N: PO43- - P. Additionally, all the nutrient recovery studies are validated using chemical equilibrium model Visual MINTEQ. Later, bioavailable fraction of PO43- - P in the recovered struvite is also investigated for utilization as fertilizer. The presence of Cu and Zn in the recovered struvite precipitate enhanced its economic value as a fertilizer. Since Cu and Zn are vital micronutrients for growth of plants. The low soluble values of recovered struvite precipitate confirmed its utilization as slow releasing fertilizer.


Assuntos
Oxirredução , Estruvita , Poluentes Químicos da Água , Estruvita/química , Poluentes Químicos da Água/química , Nutrientes
4.
Environ Sci Pollut Res Int ; 31(45): 56565-56577, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39276286

RESUMO

The release of synthetic dyes into water bodies poses many environmental issues, and their removal is a necessity. Advanced oxidation processes (AOPs) can be employed for removal, in many of which a catalyst is used. graphene oxide (GO) is a viable catalyst due to its distinctive structural properties; however, it is reportedly incapable of effectively activating persulfate. Thus, this study delves for the first time into the influence of doping silica on enhancing GO's catalytic performance to activate persulfate for decolorizing Acid Blue 25 (AB25). Based on the results, an equal weight proportion of GO to silica was selected as the most efficient ratio. In addition, pH had no significant effect on removal efficiency, while temperature had the highest impact. Within 150 min with 0.075 gr/L of GO-SiO2 as the catalyst and 1 gr/L of Na2S2O8 as the oxidant, the investigated process removed Acid Blue 25 up to 82%, which was 9% higher than when GO alone was used as the catalyst. As for COD removal, the contribution of doping silica was more significant and led to 37% COD removal, which was 17% higher than when GO alone was used.


Assuntos
Grafite , Dióxido de Silício , Grafite/química , Dióxido de Silício/química , Catálise , Poluentes Químicos da Água/química , Oxirredução , Sulfatos/química , Corantes/química
5.
Chemosphere ; 364: 143245, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233302

RESUMO

This study presents novel composites of biochar (BC) derived from spinach stalks and zinc oxide (ZnO) synthesized from water hyacinth to be used for the first time in a hybrid system for activating persulfate (PS) with photocatalysis for the degradation of bromothymol blue (BTB) dye. The BC/ZnO composites were characterized using innovative techniques. BC/ZnO (2:1) showed the highest photocatalytic performance and BC/ZnO (2:1)@(PS + light) system attained BTB degradation efficiency of 89.47% within 120 min. The optimum operating parameters were determined as an initial BTB concentration of 17.1 mg/L, a catalyst dosage of 0.7 g/L, and a persulfate initial concentration of 8.878 mM, achieving a BTB removal efficiency of 99.34%. The catalyst showed excellent stability over five consecutive runs. Sulfate radicals were the predominant radicals involved in the degradation of BTB. BC/ZnO (2:1)@(PS + light) system could degrade 88.52%, 84.64%, 81.5%, and 77.53% of methylene blue, methyl red, methyl orange, and Congo red, respectively. Further, the BC/ZnO (2:1)@(PS + light) system effectively activated PS to eliminate 97.49% of BTB and 85.12% of dissolved organic carbon in real industrial effluents from the textile industry. The proposed degradation system has the potential to efficiently purify industrial effluents which facilitates the large-scale application of this technique.


Assuntos
Carvão Vegetal , Corantes , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Carvão Vegetal/química , Catálise , Corantes/química , Poluentes Químicos da Água/química , Sulfatos/química , Fotólise , Spinacia oleracea , Compostos Azo/química , Alimentos , Química Verde/métodos , Perda e Desperdício de Alimentos
6.
Chemosphere ; 364: 143262, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236913

RESUMO

This study explored Mason pine-derived hydrochar (MPHC) as an effective adsorbent and persulfate (PS) activator for degrading bisphenol A (BPA). Increasing MPHC dosage from 0.25 to 2.0 g L-1 raised BPA removal from 42% to 87%. Similarly, at the same MPHC dosage range and fixed PS concentration (8 mM), BPA removal by MPHC/PS increased from 66% to 91%. Additionally, at a fixed MPHC dosage (1.0 g L-1), higher PS concentrations (2-32 mM) resulted in an overall BPA removal increase from 78% to 99%. The optimal pH for BPA removal by MPHC was at pH 3, while for MPHC/PS was at pH 9. BPA degradation by MPHC was optimal at pH 3, whereas MPHC/PS was at pH 3 and pH 9. Additionally, pH 7 favored BPA adsorption for both MPHC and MPHC/PS. The study also considered the influence of coexisting anions and humic acid (HA). PO43- and NO3- influence adsorption on MPHC, but these anions' effect on MPHC/PS is limited. Furthermore, the existence of HA had minimal influence on BPA removal by MPHC/PS. The contributions of different reactive species by MPHC for BPA degradation are as follows: electron-hole (h+) 2%, singlet oxygen (1O2) 7%, superoxide radicals (O2•-) 13%, electron (e-) 2%, hydroxyl radical (•OH) 3%, whereas the remaining 48% removal was the contribution of adsorption. For MPHC/PS, adsorption accounted for 39 %, more reactive species were involved in degradation, and the donations are (h+) 3%, sulfate radicals (SO4•-) 3%, (1O2) 19%, (O2•-) 15%, (e-) 2%, and (•OH) 2%. Additionally, the performance of MPHC remains stable after three operational cycles. The preparation cost of MPHC is 3.01 € kg-1. These results highlight the potential of MPHC as an environmentally friendly material for activating PS and removing organic pollutants, suggesting its promising application in future environmental remediation efforts.


Assuntos
Compostos Benzidrílicos , Fenóis , Sulfatos , Poluentes Químicos da Água , Compostos Benzidrílicos/química , Fenóis/química , Poluentes Químicos da Água/química , Sulfatos/química , Adsorção , Concentração de Íons de Hidrogênio , Substâncias Húmicas , Recuperação e Remediação Ambiental/métodos , Purificação da Água/métodos
7.
Chemosphere ; 364: 143291, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243904

RESUMO

Nature iron is considered one of the promising catalysts in advanced oxidation processes (AOPs) that are utilized for soil remediation from polycyclic aromatic hydrocarbons (PAHs). However, the existence of anions, cations, and organic matter in soils considered impurities that restricted the utilization of iron that was harnessed naturally in the soil matrix and reduced the catalytic performance. In this regard, tropical soil naturally containing iron and relatively poor with impurities was artificially contaminated with 100 mg/50 g benzo[α]pyrene (B[α]P) and remediated using a slurry phase reactor supported with persulfate (PS). The results indicated that tropical soil containing iron and relatively poor with impurities capable of activating the oxidants and formation of radicals which successfully degraded B[α]P. The optimum removal result was 86% and obtained under the following conditions airflow = 260 mL/min, temperature 55 °C, pH 7, and [PS]0 = 1.0 g/L, at the same experimental conditions soil organic matter (SOM) mineralization was 48%. After the remediation process, there was a significant reduction in iron and aluminum contents, which considered the drawbacks of this system. Experiments to scavenge reactive species highlighted O2•- and SO4•- as the main radicals that oxidized B[α]P. Additionally, monitoring of by-products post-remediation aimed to assess toxicity and elucidate degradation pathways. Mutagenicity tests yielded positive results for two B[α]P by-products. The toxicity tests considered were the lethal concentration of 50% (LC50 96 h) for fat-head minnows revealed that all B[α]P by-products were less toxic than the parent pollutant itself. This research marks a significant advancement in soil remediation by advancing the use of the AOP method, removing the requirement for additional catalysts in the AOP system for the removal of B[α]P from soil.


Assuntos
Benzo(a)pireno , Recuperação e Remediação Ambiental , Ferro , Poluentes do Solo , Solo , Poluentes do Solo/química , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Benzo(a)pireno/química , Benzo(a)pireno/análise , Ferro/química , Solo/química , Oxirredução , Catálise
8.
Environ Sci Pollut Res Int ; 31(43): 55636-55647, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39240438

RESUMO

The existence of natural organic matter (NOM) causes many problems in drinking water treatment processes. The degradation of different fractions of NOM in drinking water was studied using the ultraviolet/persulfate (UV/PS) process. The NOM was separated into hydrophobic (HPO), transition hydrophilic (TPI) and hydrophilic (HPI) fractions by reverse osmosis and XAD series resins. The effects of degradation were evaluated by dissolved organic carbon (DOC), UV254, three-dimensional fluorescence-parallel factor analysis (EEM-PARAFAC), and trihalomethane formation potential (THMFP). The results showed that UV/PS process could remove the three fractions of DOC, UV254, as well as the fluorescent components humic acid-like (C1 and C2) and protein-like (C3). The maximum removal rates of DOC of HPO, TPI, and HPI fractions were 34.6%, 38.4%, and 73.9%, respectively, and the maximum removal rates of UV254 were 72.1%, 86.3%, and 86.8%, respectively. The removal rate of the three fluorescent components can reach 100%, and C3 is easier to remove than C1 and C2 under the low PS dosage conditions. The order of kinetic degradation rate constant of UV254 first-order reaction is HPI > TPI > HPO. The optimum pH conditions for the degradation of HPO, TPI, and HPI fractions were acidic, basic, and neutral, respectively. The specific THMFP of HPO was higher than that of TPI and HPI. The specific THMFP of HPO and TPI fractions increased with the increase of radiation time, while the HPI fraction showed the opposite trend. THMFP has different degrees of correlation with DOC, UV254, C1, and C2. This study can provide a theoretical basis for the selection of the UV/PS process for drinking water sources containing NOM with different characteristics.


Assuntos
Água Potável , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Água Potável/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Substâncias Húmicas , Sulfatos/química
9.
Environ Pollut ; 362: 124924, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278557

RESUMO

Ferryl ions (Fe(IV)) are often thought to play an important role in iron-based advanced oxidation processes (AOPs), and their presence is typically inferred through the unique pathway of methyl phenyl sulfoxide (PMSO) conversion to methyl phenyl sulfone (PMSO2). Here, we first employed probe method by degrading the mixed system containing PMSO, benzoic acid (BA), nitrobenzene (NB) to analyze the steady-state concentration of Fe (IV) in the iron-based heterogeneous persulfate reaction system. In addition, studies were conducted on the direct oxidation of PMSO by different oxidants under different pH conditions, and the results showed that peroxymonosulfate (PMS), sodium hypochlorite (NaClO) and sodium periodate (PI) can directly oxidize PMSO and convert it into PMSO2. Furthermore, the influence of different types of iron salts and biomass on the prepared iron-biochar (Fe-BC) for the activation of persulfate on degradation of PMSO and the formation of PMSO2 was also investigated. This study may provide new insights into the use of PMSO as a probe for the analysis of Fe(IV) in heterogeneous reaction systems.

10.
J Hazard Mater ; 479: 135743, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236534

RESUMO

Direct current (DC) has promising potential for persulfate delivery and activation in heterogeneous site remediation, yet requires deeper understanding. Here, we investigated the efficiency of DC for persulfate delivery and activation and compared with alternating current (AC). While AC electric field only influenced persulfate fate by Joule heating effect, DC electric field induced electrokinetic migration of persulfate and contaminants, as well as promoted persulfate activation with Joule heating and electrochemical reactions. DC system achieved 95 % MCB removal which was 3.1 times of that in AC system using the same voltage input (60 V) with a velocity of 0.5 m/d. When the applied DC voltage increased from 20 V to 60 V (0.5-1.5 V/cm), persulfate activation pathway changed from electrode reactions to the coupled activation pathways of electrode, chemical and heat reactions, thus resulting in increasing MCB removal efficiency from 57 % (20 V) to 95 % (40 V and 60 V). The energy consumption with 40 V (11.6 kWh/g) was 2.6 times of that using 20 V (4.4 kWh/g), and dramatically increased to 11.7 times with 60 V (50.2 kWh/g). This study provides a new perspective on improving the efficiency of persulfate delivery and activation in heterogeneous sites remediation using DC-driven system.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39292306

RESUMO

A synergistic photocatalytic system based on Fe-based perovskite with persulfate was constructed for alkali lignin (AL) degradation in pulp and paper wastewater. The degradation performance and mechanism on AL were carried out under ambient temperature and pressure, accompanied by visible light irradiation. The results showed that the synergistic photocatalytic system exhibited much better performance on AL degradation than the single catalytic system. The degradation efficiency reached 73.5% under the optimal conditions and was constant at around 65% over the pH range from 2 to 8. A significant escalation of the AL degradation was observed at pH 10, reaching 80.1%. The photogenerated holes, 1O2 and SO4-·, generated by the system were involved in the degradation, and the holes played a dominant role. During the degradation process, the efficient promotion of cleavage events in lignin methoxy, ß-O-4 bond, and benzene ring was observed. Consequently, the depolymerization process led to the generation of high-value compounds, namely p-hydroxybenzaldehyde and vanillin. Remarkably, the yields of the high-value compounds in the synergistic photocatalytic system were five times larger than those in the control. This study offered a viable method to activate persulfate for alkali lignin degradation and to achieve a mutually beneficial strategy for wastewater treatment and recycling.

12.
Environ Res ; 263(Pt 1): 119957, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307229

RESUMO

Surface sulfidation has been widely investigated to effectively enhance the utilization and selectivity of iron electrons for enhanced pollutant reduction. However, there is relatively less knowledge on whether sulfidation facilitates the catalytic oxidation process and the mechanism of enhancement. Therefore, in this study, the role of surface sulfidation in modulating the oxidant decomposition pathway and reactive oxygen species generation was investigated with the sulfidated zerovalent iron (S-ZVI) activated persulfate (PS) system. The results revealed that sulfur on the surface of S-ZVI not only facilitates PS activation to generate more SO4•-, but also acts as an essential in the dynamic equilibrium between SO4•- and •OH. Specifically, the S-ZVI surface sulfide first forms sulfur monomers during catalysis, which promotes electron transfer to accelerate Fe3+ to Fe2+ cycling, prompting the generation of more SO4•- also generates SO32-. Then, SO32- is further reacted with •OH to generate the [O--O-SO3-] intermediate of SO4•-, which leads to a dynamic equilibrium of SO4•- and •OH, mitigating the further conversion of SO4•- to •OH. These findings unveiled the dynamic variation of sulfur on the surface of S-ZVI during PS activation, elevating new insights for the sulfate radical-based efficient degradation.

13.
J Hazard Mater ; 480: 135946, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326144

RESUMO

A sequential reduction-oxidation process using silica-coated nanosized zero-valent iron (nZVI) particles (nZVI@SiO2) and persulfate for mineralizing recalcitrant compounds was developed, and the effects of the process on nitrobenzene were evaluated. This sequential process significantly enhanced contaminant mineralization, which could not be effectively achieved by reduction or oxidation alone. The nZVI@SiO2 rapidly reduced nitrobenzene to aniline, then the aniline concentration gradually decreased after persulfate had been added and initiated sequential oxidative degradation. The SiO2 coating on the nZVI@SiO2 limited outward mass transfer of reaction products and increased the efficiency with which nitrobenzene was converted into aniline. Slow release of Fe(II) caused by the coating caused persulfate activation and subsequent aniline oxidation to be more sustained and efficient than without the coating. The final nitrobenzene-aniline mineralization efficiency was higher for the nZVI@SiO2/persulfate system than the nZVI/persulfate system. The SiO2 coating of the nZVI@SiO2 particles was an excellent protective layer, protecting the particles from undesirable consumption through reactions with groundwater components. nZVI@SiO2 particle transformations during the sequential process were investigated, and the operating conditions were optimized to maximize the recalcitrant compound removal efficiency. The results indicated that nZVI@SiO2 and persulfate could be used to mineralize organic contaminants in groundwater through sequential reduction-oxidation.

14.
Environ Res ; 262(Pt 2): 119972, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260721

RESUMO

Photocatalytic property of nano Ag is weak and its enhancement is important to enlarge its application. Herein, a novel strategy of constructing silver g-C3N4 biochar composite (Ag-CN@BC) as photocatalyst is developed and its photocatalytic degradation of bisphenol A (BPA) coupled with peroxydisulfate (PDS) oxidation process is characterized. Characterization result showed that silver was evenly embedded into the g-C3N4 structure of the nitrogen atoms format, impeding agglomeration of Ag by distributing stably on biochar. In optimum condition, BPA of 10 mg/L could be degraded completely at pH of 9.0 with a 0.5 g/L photocatalyst, 2 mM PDS in Ag-CN@BC-2 (Ag/melamine molar ratio of 0.5)/PDS system (99.2%, k = 4.601 h-1). Ag-CN@BC shows superior mineralization ratio in degrading BPA to CO2 and H2O via active radical way, including holes (h⁺), superoxide radicals (•O2⁻), sulfate radicals (SO4•⁻), and hydroxyl radicals (•OH). Proper amount of silver can be dispersed effectively by gC3N4, which is responsible for improving the visible-light absorbing capability and accelerate charge transfer during activation of PDS for BPA degradation, while biochar as carrier in the composite is supposed to enhance the photoelectric degradation of BPA by reducing the band gap and increasing the photocurrent of Ag-CN@BC catalyst. Ag-CN@BC exhibits excellent catalyst stability and photocatalytic activity for treatment of toxic organic contaminants in the environment.

15.
Chemosphere ; 364: 143049, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146984

RESUMO

The presence of persulfate (S2O82-) in decontamination processes favors the oxidation of organic pollutants due to its strong oxidation power. In this research we study the photoelectrochemical generation of persulfate using five mixed metal oxides electrodes (MMO) with different compositions and its effect on the degradation of sulfamethoxazole antibiotic (SMX) by photoelectrocatalysis (PEC) and electro-oxidation (EO). By PEC, all anodes generated a higher concentration of S2O82- than those not exposed to light. The high S2O82-concentration obtained by PEC was 0.150 mM using MMO[Ti/Ir/Ta] in a solution with Na2SO4 100 mM applying a current density of 2 mA/cm2. On the other hand, the maximum concentration obtained was 0.250 mM at 30 min of electrolysis for MMO[Ti/Ir/Ta] using Na2SO4 50 mM and applying current density of 5 mA/cm2. S2O82-production by EO was between 0.005 and 0.089 mM. It is observed that MMO based in Ta2O5 showed the best S2O82- production. The effect of S2O82- electro-generation (using the anode with the highest and the anode with the lowest S2O82- production) on the degradation of sulfamethoxazole by PEC and EO was studied using the experimental conditions with the best production of this oxidant. MMO[Ti/Ir/Ta] and MMO[Ti/Ru] were used as anodes, and it was observed that by PEC, 100% of SMX was degraded after 30 min of electrolysis using MMO[Ti/Ir/Ta] and 60 min using MMO[Ti/Ru]. By EO, the degradation of SMX was partial, demonstrating that the electrophotocatalytic effect favors the generation of S2O82-, enhancing the degradation of SMX at short electrolysis times.


Assuntos
Eletrodos , Oxirredução , Sulfametoxazol , Titânio , Sulfametoxazol/química , Titânio/química , Sulfatos/química , Óxidos/química , Poluentes Químicos da Água/química , Catálise , Técnicas Eletroquímicas/métodos , Eletrólise
16.
Environ Pollut ; 361: 124861, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216668

RESUMO

In this study, a novel ordered multistage porous carbon (OMPC) with a micro-mesoporous structure was prepared and used for the removal of tylosin (TYL). The porous material, carbonized at 900 °C (OMPC-900), exhibited micro-mesoporous structures with pore sizes of 0.71 nm and 3.63 nm, while had a specific surface area of 1300.02 m2 g-1. OMPC-900 demonstrated a maximum adsorption capacity of 341.28 mg g-1 for TYL in water by electrostatic attraction, hydrogen bonding, π-π interactions, and pore-filling mechanisms, which is 6.41 times higher than that of activated carbon. The TYL-saturated adsorbents could be efficiently regenerated by in-situ oxidation through the activation of persulfate (PDS), achieving a regeneration rate of 94.17%, significantly higher than that of activated carbon (55.22%). The excellent regeneration performance may be attributed to the presence of -C=O and graphitic carbon in the adsorbent, which promotes the production of free radicals (•OH, SO4•- and •O2-) and non-free radicals. Among these, the non-radical pathways (1O2 and electron transfer) played a key role in the degradation of TYL loaded on the adsorbent. OMPC-900 maintained stable regenerative adsorption performance of 80.85% after five in-situ regeneration, and the normalized adsorption capacity per unit surface area increased from 0.21 to 0.39 mg m-2, which may be due to that the increase in oxygen-carbon ratio and surface defects improved the adsorption sites activity of the regenerated adsorbent. In comparison to conventional pyrolysis and organic solvent elution, oxidative regeneration through the activation of PDS is a more efficient and sustainable method.

17.
Water Sci Technol ; 89(12): 3208-3225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39150421

RESUMO

A carbon material Cu-corn straw-sludge biochar (Cu-CSBC) was prepared by hydrothermally modifying sewage sludge and corn stover. The composite coupled to ultrasound can effectively catalyze the activation of PS for organic pollutants degradation, and the removal rate of 20 mg/L TC reached 89.15% in 5 min in the presence of 0.5 g/L Cu-CSBC and 3 mM PS. The synergistic effect between the factors in the system, the reaction mechanism, and the efficient removal of TC in the aqueous environment were explored in a Cu-CSBC/US/PS system established for that purpose. Quenching experiments and electron paramagnetic resonance analysis both demonstrated the Cu-CSBC/US/PS system generated •OH, SO4-•, 1O2, and O2- •, which involved in the reaction. The Cu, carboxyl, and hydroxyl groups on the Cu-CSBC surface promoted the generation of radicals and non-radicals for the degradation process, which was dominated by both radical and non-radical pathways. The degradation pathway is proposed by measuring the intermediate products with LC-MS. Finally, the stability of the Cu-CSBC/US/PS system was tested under various reaction conditions. This study not only prepared a novel biochar composite material for the active degradation of organic pollutants by PS but also provided an effective method for the resource utilization of solid waste and sludge treatment.


Assuntos
Antibacterianos , Carvão Vegetal , Esgotos , Poluentes Químicos da Água , Carvão Vegetal/química , Esgotos/química , Antibacterianos/química , Poluentes Químicos da Água/química , Pirólise , Biomassa , Sulfatos/química , Ondas Ultrassônicas , Eliminação de Resíduos Líquidos/métodos
18.
Sci Total Environ ; 950: 175288, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111419

RESUMO

Widely employed nitrophenols (NPs) are refractory and antioxidant due to their strong electron-withdrawing group (-NO2). Actually, NPs are readily reduced to aminophenols (APs). However, APs remain toxic and necessitate further treatment. Herein, we utilized a novel sequential reduction-oxidation system of carbon-modified zero-valent aluminum (C@ZVAl) combined with persulfate (PS) for the thorough removal of both NPs and APs. The results demonstrated that p-nitrophenol (PNP, up to 1000 mg/L) exhibited complete reduction to p-aminophenol (PAP), and then over 98.0 % of PAP could be effectively oxidized, in the meantime the removal rate of chemical oxygen demand (COD) was as high as 95.9 %. Based on the SEM and XPS characterizations, we found that C@ZVAl has exceptionally high reactivity that generates massive electrons and reduces PNP to PAP through accelerated electron transfer. In the subsequent oxidation step, PS can be rapidly activated by C@ZVAl to generate SO4- radicals for PAP oxidization. Meanwhile, the mineralization of COD proceeds. The temporal binding of reduction and oxidation can be regulated by varying the PS dosing time. Namely, the appropriate delay in PS dosing facilitates sufficient reduction to provide enough reactants for oxidation, favoring the mineralization of PNP and COD. More crucially, dinitrodiazophenol (DDNP) in an actual explosive wastewater without any pretreatment can be effectively mineralized by this sequential reduction-oxidation system, affirming the excellent performance of this process in practical applications. In conclusion, the C@ZVAl-PS based sequential reduction-oxidation looks very promising for enhanced mineralization of nitro-substituted organic contaminants.

19.
Environ Sci Ecotechnol ; 22: 100457, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39161572

RESUMO

Nanoscale zerovalent iron (nZVI) has garnered significant attention as an efficient advanced oxidation activator, but its practical application is hindered by aggregation and oxidation. Coating nZVI with carbon can effectively addresses these issues. A simple and scalable production method for carbon-coated nZVI composite is highly desirable. The anti-oxidation and catalytic performance of carbon-coated nZVI composite merit in-depth research. In this study, a highly stable carbon-coated core-shell nZVI composite (Fe0@RF-C) was successfully prepared using a simple method combining phenolic resin embedding and carbothermal reduction. Fe0@RF-C was employed as a heterogeneous persulfate (PS) activator for degrading 2,4-dihydroxybenzophenone (BP-1), an emerging contaminant. Compared to commercial nZVI, Fe0@RF-C exhibited superior PS activation performance and oxidation resistance. Nearly 95% of BP-1 was removed within 10 min in the Fe0@RF-C/PS system. The carbon layer promotes the enrichment of BP-1 and accelerates its degradation through singlet oxygen oxidation and direct electron transfer processes. This study provides a straightforward approach for designing highly stable carbon-coated nZVI composite and elucidates the enhanced catalytic performance mechanism by carbon layers.

20.
J Environ Manage ; 368: 122159, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128350

RESUMO

The degradation of antipyrine (AP) in water has been studied using persulfate activated with biochar obtained from gasification of olive pomace (BC) combined with ferric salts in the presence of UV-A radiation. Firstly, the adsorption of AP on biochar was evaluated. The data were adjusted using various kinetic models verifying that AP adsorption on BC occurs in three stages and follows pseudo-second order kinetics. Degradation tests show that the presence of iron or persulfate (PS) in binary systems with BC produces increases AP degradation when no radiation is used, reaching 75.7 % due to the ability of BC to donate electrons. On the other hand, addition of PS showed an increase in efficiency in the presence of BC (up to 79%). For ternary systems the best result was found when UVA/PS/Fe was used (100% of AP degradation in 30 min). The addition of UV-A radiation to the BC/PS system improves the degradation of the contaminant by only 6.7%, while the presence of iron in the studied conditions does not cause any improvement. A Central Composite Factorial Design of experiments was used to optimize the UVA/BC/PS/Fe system, leading to an 89.3% AP degradation rate in 90 min (k = 0.0134 min-1) under optimal conditions ([Fe(III)] = 10 mg/L, [PS] = 379 mg/L, [BC] = 500 mg/L). Although the best results were obtained for the UVA/PS/Fe process without BC, systems based on BC/PS can be considered as an alternative in cloudy days or when simple processes are selected due to economical/technical reasons.


Assuntos
Antipirina , Carvão Vegetal , Olea , Poluentes Químicos da Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Antipirina/química , Adsorção , Cinética , Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA