Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.844
Filtrar
1.
J Environ Sci (China) ; 147: 652-664, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003080

RESUMO

Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.


Assuntos
Recuperação e Remediação Ambiental , Oxigênio , Petróleo , Poluentes do Solo , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes do Solo/química , Poluentes do Solo/análise , Adsorção , Águas Residuárias/química , Oxigênio/química , Oxigênio/análise , Eliminação de Resíduos Líquidos/métodos , Recuperação e Remediação Ambiental/métodos , Solo/química , Catálise
2.
J Environ Sci (China) ; 147: 550-560, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003070

RESUMO

This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in one Chinese petroleum refinery facility. It was found that, following with high concentrations of 16 EPA PAHs (∑Parent-PAHs) in smelting subarea of studied petroleum refinery facility, total derivatives of PAHs [named as XPAHs, including nitro PAHs (NPAHs), chlorinated PAHs (Cl-PAHs), and brominated PAHs (Br-PAHs)] in gas (mean= 1.57 × 104 ng/m3), total suspended particulate (TSP) (mean= 4.33 × 103 ng/m3) and soil (mean= 4.37 × 103 ng/g) in this subarea had 1.76-6.19 times higher levels than those from other subareas of this facility, surrounding residential areas and reference areas, indicating that petroleum refining processes would lead apparent derivation of PAHs. Especially, compared with those in residential and reference areas, gas samples in the petrochemical areas had higher ∑NPAH/∑PAHs (mean=2.18), but lower ∑Cl-PAH/∑PAHs (mean=1.43 × 10-1) and ∑Br-PAH/∑PAHs ratios (mean=7.49 × 10-2), indicating the richer nitrification of PAHs than chlorination during petrochemical process. The occupational exposure to PAHs and XPAHs in this petroleum refinery facility were 24-343 times higher than non-occupational exposure, and the ILCR (1.04 × 10-4) for petrochemical workers was considered to be potential high risk. Furthermore, one expanded high-resolution screening through GC Orbitrap/MS was performed for soils from petrochemical area, and another 35 PAHs were found, including alkyl-PAHs, phenyl-PAHs and other species, indicating that profiles and risks of PAHs analogs in petrochemical areas deserve further expanded investigation.


Assuntos
Monitoramento Ambiental , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Petróleo/análise , Humanos , Indústria de Petróleo e Gás , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Medição de Risco
3.
J Hazard Mater ; 478: 135506, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39151360

RESUMO

Nitrogen addition is commonly used to remediate total petroleum hydrocarbons (TPH) in petroleum-contaminated soils. However, acceptable exogenous nitrogen dosages and their utilization efficiency for the degradation of hydrocarbons in oil-polluted soils are not well understood. This study compared the hydrocarbon bioremediation capacity by applying different doses of NH4Cl as a stimulant in soils contaminated with TPH at 8553 and 17090 mg/kg. The results showed acceptable exogenous nitrogen levels ranging from 60 to 360 mg N/kg soil, and the optimal nitrogen dosage for TPH remediation was 136 mg N/kg in soils with different TPH concentrations. The nitrogen availability efficiency (NAE) and nitrogen polarization factor availability (NPFA) in the 136 mg N/kg addition treatments were 6.69 and 20.47 mg/mg in 8533 mg/kg TPH-polluted soil, and 6.03 and 31.11 mg/mg in 17090 mg/kg TPH-polluted soil, respectively. Metagenomic analysis revealed that the application of 136 mg/kg nitrogen facilitated ammonia oxidation and nitrite reduction to nitric oxide, and induced soil microorganisms to undergo regulatory or adaptive changes in energy supply and metabolic state, which could aid in restoring the ecological functions of petroleum-contaminated soils. These findings underscore that 136 mg/kg of nitrogen dosage application is optimal for remediation of petroleum-contaminated soils irrespective of the TPH concentrations. This exogenous nitrogen application dosage for TPH remediation aligns with the nitrogen requirements for crop growth in agriculture.

4.
Int J Phytoremediation ; : 1-8, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154232

RESUMO

Low remediation efficiency due to low bioavailability is a primary restrictive factor for phytoremediation applications. Specifically, this investigation examines whether Suaeda heteroptera Kitagawa (S. heteroptera) can be used in combination with ß-cyclodextrin (ß-CD) to remediate contaminated site. The study was conducted on the growth response of S. heteroptera, bioavailability and dissipation of petroleum hydrocarbons (PHs) in soil under the influence of ß-CD Our preliminary studies confirmed that ß-CD is effective in increasing the biomass and height of plants. The presence of ß-CD could dramatically elevate polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in S. heteroptera. Moreover, a remarkable positive correlation between PHs levels in roots with the dosage of ß-CD and a negative correlation between the PHs levels in roots with KOW of PHs have been observed. The dissipation of n-alkanes was estimated to be 38.73-62.27%, and the dissipation of PAHs was 36.59-60.10%. In addition, the dissipation behavior of n-alkanes and PAHs was well agreement with the first-order kinetic model. These results display that applying ß-CD accelerated the desorption process of PHs from soil and promoted the absorption process of PHs onto the root epidermis. The enhancement of phytoremediation was achieved by increasing the bioavailability of PHs.


There has been an increasing concern regarding soil contamination by petroleum hydrocarbons (PHs) released by industrial activities. The study attempted to investigate how ß-CD affects the phytoremediation of PHs-contaminated sites. The findings of this study offer an environmentally friendly and cost-effective method of phytoremediating industrially contaminated sites using ß-CD enhanced-phytoremediation.

5.
Heliyon ; 10(15): e34739, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157331

RESUMO

The energy sector is a main driver of African growth, particularly in regions with geopolitical conflicts like Sudan and South Sudan. The oil and gas industry notably influences these regions' economy, politics, humanitarian situation, and social stability. This study seeks to investigate how the Khartoum War affected the energy sector of both Sudan and South Sudan, particularly looking at the disruptions caused by recent conflicts and their impact on oil production, economic stability, and environmental conditions. The study employs a multi-disciplinary approach, utilising different sources such as regional legal agreements, government reports, academic articles, and press releases from international organisations. The key methodology includes qualitative analysis of several documents and quantitative assessment of production data and economic reports. The study's key findings show a significant decline in oil production and transportation due to the shutdown of key oilfields and pipelines, intensifying economic and humanitarian crises. Additionally, the damage to oil infrastructure has presented serious environmental risks, highlighting the delicate balance between resource management and regional stability. In conclusion, the study's findings underscore the intense impact of the Khartoum War on the energy sector of Sudan and South Sudan, and the urgent need for policy recommendations to mitigate these effects and foster sustainable development.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39160407

RESUMO

The present work investigated the effects of different doses of biochar (2.5%, 5%, 10%), a by-product of the pyrolysis of woody biomass, on the growth of oat plants (Avena sativa L., cv "Danko") grown under different crude oil concentrations (0.5%, 1%, 2%, 3%, 6%) added to the soil, evaluating both biometric (i.e. fresh weight) and biochemical (i.e., content of malondialdehyde and proline, and total antioxidant power) parameters. The findings indicate that biochar positively influences the fresh weight of oat plants across all concentrations of crude oil investigated. On the other hand, regarding oxidative stress, measured by malondialdehyde and proline content, biochar led to a significant reduction, with statistical significance observed at biochar concentrations > 2.5% and crude oil levels > 2% (malondialdehyde: ranging from -25% to -38%; proline ranging from -33% to -52%). Soil amendment with biochar increased the total antioxidant power, particularly at biochar concentrations > 2.5% and crude oil levels > 2% (ranging from + 20% to + 98%). These results suggest that biochar has a great potential in mitigating the negative effects of crude oil contamination on plant growth and oxidative stress levels, thereby highlighting its value as a conditioner in contaminated soils.

7.
Huan Jing Ke Xue ; 45(8): 4967-4979, 2024 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-39168712

RESUMO

Petroleum pollution has become a prominent global environmental problem, restricting the coordinated development of the economy and the ecological environment. Although bioremediation has the advantages of low carbon, high efficiency, and safety, the complexity and severity of the pollution makes it difficult to achieve the remediation purpose with a single bioremediation. Ecological remediation based on bioremediation can integrate carbon neutrality and ecological environmental protection, synergistically promote pollution reduction and carbon reduction, ensure the sustainability of soil and sediment to fulfil ecosystem service functions, and ultimately achieve soil health and sediment health. Therefore, the transition from bioremediation to ecological restoration is the optimal choice for environmental management and ecosystem maintenance at this stage. Here, we first analyzed the micro-removal mechanism of petroleum hydrocarbons in different bioremediation techniques and discussed the types and characteristics of different bioremediation techniques from an ecological point of view. Based on this, the necessity of bioremediation for ecological restoration was analyzed in detail. Finally, a reasonable outlook on the development of ecological remediation is given to provide theoretical support for optimizing ecological remediation of petroleum pollution.

8.
Int J Biol Macromol ; 278(Pt 2): 134704, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147343

RESUMO

Chitosan is a natural biodegradable biopolymer, and the structure of its unit is 2-amino-d-glucopyranose that has been it more attractive to applied as natural corrosion inhibitor of metals for different area. Functionalization chitosan by surfactant is necessary to improve some of its properties such as solubility, surface activity, and corrosion inhibition efficiency. Corrosion of metals is a global problem particularly in petroleum industry field needs to favorably inhibition process using environmentally friendly inhibitors such chitosan. In this work, it was presented on researches which taken chitosan functionalized by different types of surfactants as green corrosion inhibitor of metals in petroleum field. It was concluded from displayed researches data that functionalization of chitosan by surfactant could be on three categories; cationic, anionic and nonionic form. Otherwise, the unsaturated chain, benzene rings, and quaternary ammonium groups greatly increase the inhibition efficiency compared to hydrophobic chains. Furthermore, the nanoparticles of chitosan nonionic surfactant or those assembled on silver nanoparticles exhibited high inhibition efficiency. The inhibition performance of chitosan surfactant categories are more effective even at lower concentrations, and form a protective film onto metal surface, as well as and the inhibitor adsorption mechanism is mostly mixed type and obey Langmuir model.

9.
Water Environ Res ; 96(8): e11078, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087861

RESUMO

Petroleum hydrocarbons (PHCs) can be biodegraded into CO2, and PHC-contaminated aquifers are always deemed as carbon sources. Fortunately, some carbon fixation microorganisms have been found in PHC-contaminated sites. However, most of the studies are related to volatile short-chain PHC, and few studies focus on long-chain PHC-contaminated sites. To reveal the carbon fixation microorganisms in these sites, in the study, a long-chain PHC polluted site in North China was selected. Through hydrochemical and metagenomics analysis, the structure and capacity of carbon fixing microorganisms in the site were revealed. Results showed that there were many kinds of carbon fixed microorganisms that were identified such as Flavobacterium, Pseudomonas. HP/4HB, rTCA, and DC/4HB cycles were dominated carbon fixation pathways. The long-chain PHC were weakly correlated with carbon fixation microorganisms, but it may stimulate the growth of some carbon fixation microorganisms, such as microorganisms involved in rTCA cycle. PRACTITIONER POINTS: The microorganisms with carbon fixation gene exist in the aquifer contaminated by long-chain petroleum hydrocarbon. Microorganisms that have the ability to degrade petroleum also have the ability to carbon fixation. Long-chain petroleum hydrocarbon may promote the growth of carbon fixation microorganisms.


Assuntos
Ciclo do Carbono , Água Subterrânea , Hidrocarbonetos , Petróleo , Poluentes Químicos da Água , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Água Subterrânea/microbiologia , Água Subterrânea/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , China
10.
Chemosphere ; 364: 143023, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117086

RESUMO

Petroleum hydrocarbon contamination is a serious hazard to marine environments, affecting ecosystems and marine life. However, extracellular polymeric substances (EPS) of marine bacteria constituting various hydrophilic and hydrophobic functional groups sequester petroleum hydrocarbons (PHs). In this study, interaction of EPS of Pseudomonas furukawaii PPS-19 with PHs such as crude oil, n-dodecane, and pyrene and its impact on PHs adsorption was investigated. Protein component of EPS was increased after treatment with PHs. Red shift of UV-Vis spectra implied change in molecular structure of EPS. Functional groups of proteins (CO, NH2) and polysaccharides (C-C, C-OH, C-O-C) predominantly interacted with PHs. Interaction with PHs affected secondary structure of EPS. Change in binding energies of corresponding functionalities of C 1s, O 1s, and N 1s confirmed the interaction. Disruption of crystalline peaks led to increased pore size in EPS primarily due to the increase in surface electronegativity. Static quenching mechanism unveils formation of complex between fulvic acid of EPS and PHs. Relative expression of alg8 gene was significantly increased in the presence of n-dodecane (6.31 fold) (P < 0.05; One way ANOVA). n-dodecane and pyrene adsorption capacity of Immobilized EPS was significantly higher (356.5 and 338.2 mg g-1, respectively) (P < 0.001; One way ANOVA) than control. Adsorption rate fits into the pseudo-second-order kinetic model. This study establishes that interaction of PHs causes structural and physical changes in EPS and EPS could be used as an adsorbent material for the sequestration of PHs pollution.

11.
Environ Sci Technol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137011

RESUMO

Photo-dissolution, the photochemical production of water-soluble species from oil, can transfer oil-derived dissolved organic carbon (DOC) from floating surface slicks to the underlying seawater. Photo-dissolution was likely a quantitatively relevant fate process for the Macondo crude oil spilled during the 2010 Deepwater Horizon spill, but the importance of photo-dissolution for other oils is poorly constrained. This study evaluated the photo-dissolution reactivities (apparent quantum yields) and modeled rates for oils with diverse physical properties and chemical compositions, including an ultra low sulfur fuel oil (ULSFO). Photo-dissolution from UV (310 nm) light was strongly positively correlated with the fraction of small, gas-oil range compounds (

12.
Mar Pollut Bull ; 207: 116821, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146712

RESUMO

The chemical composition of spilt oils from events that took place on the north-eastern coast of Brazil in 2019 and 2022 was investigated to better understand their sources, and post-spill processes. Oils from both events originated from different sources, based on their fingerprints, hydrocarbons composition and specific biomarkers, such as the C23 tricyclic terpane and oleanane. Despite the differences, the source rocks share similarities in paleoenvironments and depositional conditions and both oils suffered little weathering, mainly due to evaporation and dissolution. Our findings for 2019 spilt oil reinforce that it is a mixed product, enriched both in lighter n-alkanes and 25-norhopanes. Differently, the 2022 samples exhibited characteristics of a non-processed crude oil that originated from a paraffinic deposit in storage tanks. The molecular composition and diagnostic ratios reported for samples from these spill events help to establish baselines for ongoing monitoring of oil spills in marine ecosystems.

13.
Sci Total Environ ; 949: 175215, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098416

RESUMO

Both soluble phosphorus (P) deficiency and petroleum hydrocarbon contamination represent challenges in soil environments. While phosphate-solubilizing bacteria and hydrocarbon-degrading bacteria have been identified and employed in environmental bioremediation, the bacteria co-adapted to soluble P deficiency and hydrocarbon contamination has rarely been reported. This study explored the ability of Acinetobacter oleivorans S4 (A. oleivorans S4) to solubilize phosphate using n-hexadecane (H), glucose (G), and a mixed carbon source (HG) in tricalcium phosphate (TCP) medium. A. oleivorans S4 exhibited robust growth in H-TCP, releasing 31 mg L-1 of soluble P. Conversely, A. oleivorans S4 barely grew in G-TCP, releasing 654 mg L-1 of soluble P. In HG-TCP, biomass surpassed that in H-TCP, with phosphate release comparable to that in G-TCP. HPLC analysis revealed a small amount of TCA cycle acids in H-TCP and a large amount of gluconate in G-TCP and HG-TCP. Transcriptomic analysis showed elevated expression of genes associated with alkane degradation, P starvation, N utilization, and trehalose synthesis in H-TCP, revealing the molecular co-adaptation mechanism of A. oleivorans S4. Furthermore, the addition of glucose enhanced alkane degradation, P and N utilization, and reduced trehalose synthesis. It indicated that incomplete glucose metabolism may provide energy for other reactions, and the increase in soluble P mediated by gluconate may alleviate oxidative stress. Overall, A. oleivorans S4 proves promising for remediating soluble P-deficient and hydrocarbon-contaminated environments, and glucose stimulates its transformation into a super phosphate-solubilizing bacterium.


Assuntos
Acinetobacter , Biodegradação Ambiental , Hidrocarbonetos , Fósforo , Fósforo/deficiência , Fósforo/metabolismo , Acinetobacter/metabolismo , Hidrocarbonetos/metabolismo , Poluentes do Solo/metabolismo , Alcanos/metabolismo
14.
Water Environ Res ; 96(7): e11085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39051424

RESUMO

Microorganisms in groundwater at petroleum hydrocarbon (PHC)-contaminated sites are crucial for PHC natural attenuation. Studies mainly focused on the microbial communities and functions in groundwater contaminated by PHC only. However, due to diverse raw and auxiliary materials and the complex production processes, in some petrochemical sites, groundwater suffered multi-component contamination, but the microbial structure remains unclear. To solve the problem, in the study, a petrochemical enterprise site, where the groundwater suffered multi-component pollution by PHC and sulfates, was selected. Using hydrochemistry, 16S rRNA gene, and metagenomic sequencing analyses, the relationships among electron acceptors, microbial diversity, functional genes, and their interactions were investigated. Results showed that different production processes led to different microbial structures. Overall, pollution reduced species richness but increased the abundance of specific species. The multi-component contamination multiplied a considerable number of hydrocarbon-degrading and sulfate-reducing microorganisms, and the introduced sulfates might have promoted the biodegradation of PHC. PRACTITIONER POINTS: The compound pollution of the site changed the microbial community structure. Sulfate can promote the degradation of petroleum hydrocarbons by hydrocarbon-degrading microorganisms. The combined contamination of petroleum hydrocarbons and sulfates will decrease the species richness but increase the abundance of endemic species.


Assuntos
Água Subterrânea , Petróleo , Poluentes Químicos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Biodiversidade , Microbiologia da Água
15.
Front Microbiol ; 15: 1384463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077733

RESUMO

Bioelectrochemical systems offer unique opportunities to remove recalcitrant environmental pollutants in a net positive energy process, although it remains challenging because of the toxic character of such compounds. In this study, microbial fuel cell (MFC) technology was applied to investigate the benzene degradation process for more than 160 days, where glucose was used as a co-metabolite and a control. We have applied an inoculation strategy that led to the development of 10 individual microbial communities. The electrochemical dynamics of MFC efficiency was observed, along with their 1H NMR metabolic fingerprints and analysis of the microbial community. The highest power density of 120 mW/m2 was recorded in the final period of the experiment when benzene/glucose was used as fuel. This is the highest value reported in a benzene/co-substrate system. Metabolite analysis confirmed the full removal of benzene, while the dominance of fermentation products indicated the strong occurrence of non-electrogenic reactions. Based on 16S rRNA gene amplicon sequencing, bacterial community analysis revealed several petroleum-degrading microorganisms, electroactive species and biosurfactant producers. The dominant species were recognised as Citrobacter freundii and Arcobacter faecis. Strong, positive impact of the presence of benzene on the alpha diversity was recorded, underlining the high complexity of the bioelectrochemically supported degradation of petroleum compounds. This study reveals the importance of supporting the bioelectrochemical degradation process with auxiliary substrates and inoculation strategies that allow the communities to reach sufficient diversity to improve the power output and degradation efficiency in MFCs beyond the previously known limits. This study, for the first time, provides an outlook on the syntrophic activity of biosurfactant producers and petroleum degraders towards the efficient removal and conversion of recalcitrant hydrophobic compounds into electricity in MFCs.

16.
Mar Pollut Bull ; 205: 116702, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996757

RESUMO

Petroleum hydrocarbons (PHCs) residues in commercially important fish and shrimp species from Asia's largest brackish water lagoon, Chilika and their dietary risk factors like Bioaccumulation factor (BAF), Estimated dietary intake (EDI) and Exposure risk index (ERI) were investigated. The PHCs in water samples were found within the range of 2.21 to 9.41 µg/l; while in organisms, PHCs varied from 0.74 to 3.16 µg/g (wet weight). The lowest and highest PHCs concentration was observed in Etroplus suratensis (0.74 ± 0.12; crude fat 0.57 %) and Nematalosa nasus (3.16 ± 0.12; crude fat 6.43 %) respectively. From human health risk view point, the calculated BAF, EDI, ERI were within the prescribed safe limits. Our finding suggests that Nematalosa nasus can be used as biomonitor species for petroleum hydrocarbon contamination status for this ecosystem and also continuous pollution monitoring programs must be conducted by the concerned authorities to safeguard this important aquatic ecosystem.


Assuntos
Peixes , Hidrocarbonetos , Petróleo , Poluentes Químicos da Água , Animais , Índia , Medição de Risco , Poluentes Químicos da Água/análise , Humanos , Hidrocarbonetos/análise , Ecossistema , Monitoramento Ambiental , Monitoramento Biológico , Poluição por Petróleo
17.
Data Brief ; 55: 110646, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035839

RESUMO

On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed, creating two areas where rocket propellants spilled and soil condition was monitored in 2018, 2019, 2022 and 2023. This article presents data on the content of pollutants, namely unsymmetrical dimethylhydrazine (UDMH), nitrosodimethylamine (NDMA) and total petroleum hydrocarbons (TPH), total N, organic carbon, exchangeable Ca and Mg, water-soluble NO3-, NO2-, HCO3-, CO3 2-, SO4 2-, Cl-, K +, Na+, pH values, cation exchange capacity and electrical conductivity of the water extract in disturbed and background Aridisols (more than 200 samples in total). This data set contains information on interseasonal (autumn 2022 and spring 2023) differences in the content and vertical differentiation of some soil properties in Aridisols in Central Kazakhstan. In autumn, the content of TPH, water-soluble Cl- and SO4 2- and alkalinity from CO3 2- is 1.4, 235, 201, and 2 times higher, respectively, and the content of total N and water-soluble NO3 - and NO2 -, alkalinity from HCO3 - is 2.4, 1.4, 6.4 and 1.9 times lower, respectively (p < 0.05). In spring and autumn, the content of exchangeable Ca and Mg, cation exchange capacity did not differ significantly. The presented materials can be used to optimize restoration of disturbed arid ecosystems and future monitoring work at sites of regular landing of the first stages and emergency crash sites of launch vehicles.

18.
Membranes (Basel) ; 14(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057661

RESUMO

Water contamination resulting from coal spills is one of the largest environmental problems affecting communities in the Appalachia Region of the United States. This coal slurry contains potentially toxic substances, such as hydrocarbons, heavy metals, and coal cleaning chemicals, and its leakage into water bodies (lakes, rivers, and aquifers) can lead to adverse health effects not only for freshwater bodies and plant life but also for humans. This study focused on two major experiments. The first experiment involved the use of biochar to create a biochar-polysulfone (BC-PSf) flat-sheet multifunctional membrane to remove organic contaminants, and the other major experiment compared eco-friendly (gamma-valerolactone-GVL; Rhodiasolv® PolarClean-PC) and petroleum-derived solvents (i.e., N-methyl-pyrrolidone-NMP) in the fabrication of the biochar-polysulfone membranes. The resulting membranes were tested for their efficiency in removing both positively and negatively charged organic contaminants from the collected water at varying pH values. A comparative life cycle assessment (LCA) with accompanying uncertainty and sensitivity analyses was carried out to understand the global environmental impacts of incorporating biochar, NMP, GVL, and PC in the synthesis of PSf/NMP, BC-PSf/NMP, PSf/GVL, BC-PSf/GVL, PSf/PC, and BC-PSf/PC membranes at a set surface area of 1000 m2. The results showed that the addition of biochar to the membrane matrix increased the surface area of the membranes and improved both their adsorptive and mechanical properties. The membranes with biochar incorporated in their matrix showed a higher potential for contaminant removal than those without biochar. The environmental impacts normalized to the BC-PSf/GVL membrane showed that the addition of biochar increased global warming impacts, eutrophication, and respiratory impacts by over 100% in all the membrane configurations with biochar. The environmental impacts were highly sensitive to biochar addition (Spearman's coefficient > 0.8). The BC/PSf membrane with Rhodiasolv® PolarClean had the lowest associated global environmental impacts among all the membranes with biochar. Ultimately, this study highlighted potential tradeoffs between functional performance and global environmental impacts regarding choices for membrane fabrication.

19.
Sci Rep ; 14(1): 16476, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014021

RESUMO

Pyrolytic synergistic interactions, in which the production of pyrolyzates is enhanced or inhibited, commonly occur during the co-pyrolysis of different polymeric materials, such as plastics and biomass. Although these interactions can increase the yield of desired pyrolysis products under controlled degradation conditions, the desired compounds must be separated from complex pyrolyzates and further purified. To balance these dual effects, this study was aimed at examining pyrolytic synergistic interactions during slow heating co-pyrolysis of biodegradable plastics including polylactic acid (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexaoate) (PHBH) and petroleum-based plastics including high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Comprehensive investigations based on thermogravimetric analysis, pyrolysis-gas chromatography/mass spectrometry, and evolved gas analysis-mass spectrometry revealed that PLA and PHBH decompose at lower temperatures (273-378 °C) than HDPE, PP, and PS (386-499 °C), with each polymer undergoing independent decomposition without any pyrolytic interactions. Thus, the independent pyrolysis of biodegradable plastics, such as PLA and PHBH, with common plastics, such as HDPE, PP, and PS, can theoretically be realized through temperature control, enabling the selective recovery of their pyrolyzates in different temperature ranges. Thus, pyrolytic approaches can facilitate the treatment of mixed biodegradable and common plastics.


Assuntos
Plásticos Biodegradáveis , Poliésteres , Polipropilenos , Pirólise , Poliésteres/química , Plásticos Biodegradáveis/química , Polipropilenos/química , Plásticos/química , Poliestirenos/química , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Termogravimetria , Polietileno/química
20.
Indian J Microbiol ; 64(2): 749-757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39011005

RESUMO

In this study, 13 diesel degrading bacteria were isolated from the oil contaminated soils and the promising strains identified as Acinetobacter pittii ED1 and Pseudomonas aeruginosa BN were evaluated for their diesel degrading capabilities. These strains degraded the diesel optimally at 30 °C, pH 7.0 and 1% diesel concentration. Both the strains produced biofilm at 1% diesel concentration indicating their ability to tolerate diesel induced abiotic stress. Gravimetric analysis of the spent medium after 7 days of incubation showed that A. pittii ED1 and P. aeruginosa BN degraded 68.61% and 76% diesel, respectively, while biodegradation reached more than 90% after 21 days. Fourier Transform Infrared (FTIR) analysis of the degraded diesel showed 1636.67 cm-1 (C=C stretch, N-H bond) peak corresponding to alkenes and primary amines, while GC-TOF-MS analysis showed decline in hydrocarbon intensities after 7 days of incubation. The present study revealed that newly isolated A. pittii ED1 and P. aeruginosa BN were able to degrade diesel hydrocarbons (C11-C18, and C19-C24) efficiently and have potential for bioremediation of the oil-contaminated sites. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01317-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA