RESUMO
This paper proposes the study of a solar-based photocatalytic ozonation process for the degradation of salicylic acid (SA) using a novel S-scheme ZnO/Cu2O/CuO/carbon xerogel photocatalyst. The incorporation of CuO and Cu2O aims to enhance charge mobility through the formation of p-n heterojunctions with ZnO, whereas the carbon xerogel (XC) was selected due to its eco-friendly nature, capacity to stabilize S-scheme heterojunctions as a solid-state electron mediator, and ability to function as a reducing agent under high temperatures. The characterization of the composites demonstrates that the presence of the XC during the calcination step led to the reduction of a fraction of the CuO into Cu2O, forming a ternary semiconductor heterojunction system. In terms of photocatalysis, the XC/ZnO-CuxO 5% composite achieved the best efficiency for salicylic acid degradation, mainly due to the stabilization of the S-scheme charge transfer pathway between the ZnO/CuO/Cu2O semiconductors by the XC. The total organic carbon (TOC) removal during heterogeneous photocatalysis was 80% for the solar-based process and 68% for the visible light process, after 300 min. The solar-based photocatalytic ozonation process was highly successful regarding the degradation of SA, achieving a 75% increase in the apparent reaction rate constant when compared to heterogeneous photocatalysis. Furthermore, a 78% TOC removal was achieved after 150 min, which is half the time required by the heterogeneous photocatalysis to obtain the same result. Temperature, salinity, and turbidity had major effects on the efficiency of the photocatalytic ozonation process; the system's pH did not cause any major performance variation, which holds relevance for industrial applications.
Assuntos
Ozônio , Óxido de Zinco , Temperatura , Salinidade , Carbono , Ácido Salicílico , Concentração de Íons de HidrogênioRESUMO
The present work evaluates ozone driven processes (O3, O3/UVC, O3/TiO2/UVA) in the NETmix mili-photoreactor, as a cost-effective alternative for the removal of volatile organic compounds (VOCs) from air streams, using n-decane as a model pollutant. The network of channels and chambers of the mili-photoreactor was coated with a TiO2-P25 thin film, resulting in a catalyst coated surface per reactor volume of 990â¯m2â¯m-3. Ozone and n-decane streams were fed to alternate chambers of the mili-photoreactor, promoting a good contact between O3/n-decane/catalyst. Initially, direct reaction between n-decane and ozone (ozonation) was assessed for different O3/n-decane (O3/dec) feed molar ratios and total feed flow rates. Under the best conditions, ozonation process achieved total n-decane conversion (below the limit of detection), yielding a reaction rate (rdec) of 6.8⯵molâ¯min-1 or 6.7â¯mmolâ¯m-3reactor s-1. However, the low reactivity of ozone with the degradation by-products resulted in a quite poor mineralization (~10%). For the O3/UVC system, an increase on relative humidity from 7 to 40% slight improved the n-decane oxidation rate, mainly associated with the generation of HO from the reaction of active oxygen radicals (O) and water molecules. A strong synergistic effect was observed when coupling TiO2/UVA photocatalysis with ozonation (O3/TiO2/UVA), enhancing substantially the mineralization of n-decane molecules up to 100% under O3/dec feed molar ratio of 15, photonic flux of 2.67⯱â¯0.03â¯Jâ¯s-1 and a residence time of 2.0â¯s. Different reaction intermediates were detected for O3, TiO2/UVA and O3/TiO2/UVA oxidative systems, indicating the participation of different oxidant species (O3, HO, O, etc.).