Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Nanotechnology ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39389091

RESUMO

CoFe and NiFe are used in the construction of Si-based MS-type photodiodes. Thin film layers are sputtered onto the p-Si surface where Al metal contacts are deposited by thermal evaporation technique. Film characteristics of the layers are investigated in terms of crystalline structure and surface morphology. Their electrical and optical properties are investigated by dark and illuminated current-voltage measurements. When these two diodes are compared, Al/NiFe/p-Si shows better rectification properties than Al/CoFe/p-Si diode. It has also a high barrier height where these values for both diodes increase with illumination. According to current-voltage analysis, the existence of an interlayer causes a deviation in diode ideality. In addition, the response to bias voltage and derivation of electrical parameters, the light sensitivity of diodes are evaluated by current-voltage measurements under different illumination intensities and also transient photosensitive characteristics.

2.
ACS Appl Mater Interfaces ; 16(40): 54367-54376, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39330931

RESUMO

The van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been thoroughly investigated with regard to practical applications. Recent studies on 2D materials have reignited attraction in the p-n junction, with promising potential for applications in both electronics and optoelectronics. 2D materials provide exceptional band structural diversity in p-n junction devices, which is rare in regular bulk semiconductors. In this article, we demonstrate a p-n diode based on multiheterostructure configuration, WTe2-GaTe-ReSe2-WTe2, where WTe2 acts as heterocontact with GaTe/ReSe2 junction. Our devices with heterocontacts of WTe2 showed excellent performance in electronic and optoelectronic characteristics as compared to contacts with basic metal electrodes. However, the highest rectification ratio was achieved up to ∼2.09 × 106 with the lowest ideality factor of ∼1.23. Moreover, the maximum change in photocurrent (Iph) is measured around 312 nA at Vds = 0.5 V. The device showed a high responsivity (R) of 4.7 × 104 m·AW-1, maximum external quantum efficiency (EQE) of 2.49 × 104 (%), and detectivity (D*) of 2.1 × 1011 Jones at wavelength λ = 220 nm. Further, we revealed the bipolar photoresponse mechanisms in WTe2-GaTe-ReSe2-WTe2 devices due to band alignment at the interface, which can be modified by applying different gate voltages. Hence, our promising results render heterocontact engineering of the GaTe-ReSe2 heterostructured diode as an excellent candidate for next-generation optoelectronic logic and neuromorphic computing.

3.
Adv Mater ; : e2406316, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246216

RESUMO

Organic photodetectors (OPDs) have received considerable attention owing to their superior absorption coefficient and tunable bandgap. The introduction of bulk-heterojunction (BHJ) structure aims to maximize charge generation, however, its response speed is constrained by the random distribution of donor and acceptor. Herein, a multiple-active layer design consisting of a single acceptor layer and a bulk-heterojunction layer (A/BHJ structure) is introduced, which combines the benefits of both the planar junction and the BHJ, improving photo-sensing. A transfer process is employed for this structure, which involves calculating the energy release rate at each interface, considering temperature and velocity. Consequently, the OPD with the A/BHJ structure is successfully fabricated through transfer printing, resulting in reduced dark current, superior detectivity (1.06 × 1013 Jones), and rapid response, achieved by creating a high hole injection barrier and suppressing trap sites within the interfaces. By thoroughly investigating charge dynamics in the structure, the A/BHJ structure-based OPD attains large bandwidth detection with high signal-to-noise. An efficient wireless data communication system with digital-to-analog conversion is showcased using the A/BHJ structure-based OPD.

4.
Nanomaterials (Basel) ; 14(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998671

RESUMO

The resolution of Si complementary metal-oxide-semiconductor field-effect transistor (C-MOSFET) image sensors (CISs) has been intensively enhanced to follow the technological revolution of smartphones, AI devices, autonomous cars, robots, and drones, approaching the physical and material limits of a resolution increase in conventional Si CISs because of the low quantum efficiency (i.e., ~40%) and aperture ratio (i.e., ~60%). As a novel solution, a hybrid organic-Si image sensor was developed by implementing B, G, and R organic photodiodes on four n-MOSFETs for photocurrent sensing. Photosensitive organic donor and acceptor materials were designed with cost-effective small molecules, i.e., the B, G, and R donor and acceptor small molecules were Coumarin6 and C_60, DMQA and MePTC, and ZnPc and TiOPc, respectively. The output voltage sensing margins (i.e., photocurrent signal difference) of the hybrid organic-Si B, G, and R image sensor pixels presented results 17, 11, and 37% higher than those of conventional Si CISs. In addition, the hybrid organic-Si B, G, and R image sensor pixels could achieve an ideal aperture ratio (i.e., ~100%) compared with a Si CIS pixel using the backside illumination process (i.e., ~60%). Moreover, they may display a lower fabrication cost than image sensors because of the simple image sensor structure (i.e., hybrid organic-Si photodiode with four n-MOSFETs).

5.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000882

RESUMO

Vibration measurements pose specific experimental challenges to be faced. In particular, optical methods can be used to obtain full-field vibration information. In this scenario, stereo-camera systems can be developed to obtain 3D displacement measurements. As vibration frequency increases, the common approach is to reduce camera exposure time to avoid blurred images, which can lead to under-exposed images and data loss, as well as issues with the synchronization of the stereo pair. Both of these problems can be solved by using high-intensity light pulses, which can produce high-quality images and guarantee camera synchronization since data is saved by both cameras only during the short-time light pulse. To this extent, high-power Light-Emitting Diodes (LEDs) can be used, but even if the LED itself can have a fast response time, specific electronic drivers are needed to ensure the desired timing of the light pulse. In this paper, a circuit is specifically designed to achieve high-intensity short-time light pulses in the range of 1 µs. A prototype of the designed board was assembled and tested to check its capability to respect the specification. Three different measurement methods are proposed and validated to achieve short-time light pulse measurements: shunt voltage measurement, direct photodiode measurement with a low-cost sensor, and indirect pulse measurement through a low-frame-rate digital camera.

6.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001000

RESUMO

We present a novel photon-acid diffusion method to integrate polymer microlenses (MLs) on a four-channel, high-speed photo-receiver consisting of normal-incidence germanium (Ge) p-i-n photodiodes (PDs) fabricated on a 200 mm Si substrate. For a 29 µm diameter PD capped with a 54 µm diameter ML, its dark current, responsivity, 3 dB bandwidth (BW), and effective aperture size at -3 V bias and 850 nm wavelength are measured to be 138 nA, 0.6 A/W, 21.4 GHz, and 54 µm, respectively. The enlarged aperture size significantly decouples the tradeoff between aperture size and BW and enhances the optical fiber misalignment tolerance from ±5 µm to ±15 µm to ease the module packaging precision. The sensitivity of the photo-receiver is measured to be -9.2 dBm at 25.78 Gb/s with a bit error rate of 10-12 using non-return-to-zero (NRZ) transmission. Reliability tests are performed, and the results show that the fabricated Ge PDs integrated with polymer MLs pass the GR-468 reliability assurance standard. The demonstrated photo-receiver, a first of its kind to the best of our knowledge, features decent performance, high yield, high throughput, low cost, and compatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes, and may be further applied to 400 Gb/s pulse-amplitude modulation four-level (PAM4) communication.

7.
ACS Appl Mater Interfaces ; 16(30): 39572-39579, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39036878

RESUMO

Flexible photodetectors are pivotal in contemporary optoelectronic technology applications, such as data reception and image sensing, yet their performance and yield are often hindered by the challenge of heterogeneous integration between photoactive materials and flexible substrates. Here, we showcase the potential of an electrostatic force-assisted transfer printing technique for integrating Si PIN photodiodes onto flexible substrates. This clean and dry process eliminates the need for chemical etchants, making it a highly desirable method for manufacturing high-performance flexible photodetector arrays, expanding their widespread applications in electronic eyes, robotics, and human-machine interaction. As a demonstration, a 5 × 5 flexible Si photodetector focal plane array is constructed for imaging sensors and shaped into a convex semicylindrical form to achieve a π field of view with long-term mechanical and thermal stability. Such an approach provides a high yield rate and consistent performance, with the single photodetector demonstrating exceptional characteristics, including a responsivity of 0.61 A/W, a response speed of 39.77 MHz, a linear dynamic range of 108.53 dB, and a specific detectivity of 2.75 × 1012 Jones at an applied voltage of -3 V at 940 nm.

8.
Front Pharmacol ; 15: 1326996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989139

RESUMO

Phenytoin is a first-line antiepileptic drug with narrow therapeutic range and follows non-linear pharmacokinetics. Pharmacokinetics of phenytoin have been studied in plasma matrix before, however, there were several disadvantages. This study aimed to obtain partial validation data of the analytical method and the pharmacokinetic profile of phenytoin in Dried Blood Spot (DBS) of six healthy subjects. DBS has the advantage of only requiring small sample volumes and could be transported more efficiently. Phenytoin along with carbamazepine as the chosen internal standard was analyzed with a reversed-phase high performance-liquid chromatography system and a photodiode array detector at 205 nm. The results of partial validation, which evaluated the linearity, within-run accuracy, and precision, were within the criteria acceptance range. The pharmacokinetic profile showed that average AUC0-t was 83.81 ± 37.32 µg.h/mL and AUC0-∞ was 83.65 ± 38.89 µg.h/mL with an average ratio of 93%. Previous study quantifying phenytoin in the plasma matrix found the average AUC0-t was 39.41 ± 8.57 µg.h/mL and AUC0-∞ was 42.94 ± 9.55 µg.h/mL. Despite the difference between parameters of phenytoin analyzed in DBS and plasma matrices, the pharmacokinetic profiles obtained from both matrices were similar indicated by comparable concentration-time curves, thus, proving that DBS matrix can be used interchangeably with the plasma matrix as a more comfortable and effective alternative to phenytoin quantification in blood.

9.
ACS Appl Mater Interfaces ; 16(30): 40139-40148, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024130

RESUMO

We introduce an enhanced performance organic-inorganic hybrid p-n junction photodiode, utilizing poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) and ZnO, fabricated through a solution-based process at a low temperature under 100 °C. Improved interfacial electronic structure, characterized by shallower Gaussian standard deviation of the density-of-state distribution and a larger interface dipole, has resulted in a remarkable fold increase of ∼102 in signal-to-noise ratio for the device. This photodiode exhibits a high specific detectivity (2.32 × 1011 Jones, cm×Hz×W-1) and exceptional rectification ratio (5.47 × 104 at ±1 V). The primary light response, concentrated in the optimal thickness of the PTAA layer, contributes to response over the entire UVA region and rapid response speed, with rise and fall times of 0.24 and 0.64 ms, respectively. Furthermore, this work demonstrates immense potential of our device for health monitoring applications by enabling real-time and continuous measurements of UV intensity.

10.
Materials (Basel) ; 17(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893816

RESUMO

The cooling requirement for long-wave infrared detectors still creates significant limitations to their functionality. The phenomenon of minority-carrier exclusion and extraction in narrow-gap semiconductors has been intensively studied for over three decades and used to increase the operating temperatures of devices. Decreasing free carrier concentrations below equilibrium values by a stationary non-equilibrium depletion of the device absorber leads to a suppression of Auger generation. In this paper, we focus on analyzing exclusion and extraction effects separately, based on experimental and theoretical results for a HgCdTe photodiode. To carry out an experiment, the n+-P+-π-N+ heterostructure was grown by metal organic chemical vapor deposition on CdTe-buffered GaAs substrate. In order to separate the extraction and exclusive junctions, three different devices were evaluated: (1) a detector etched through the entire n+-P+-π-N+ heterostructure, (2) a detector made of the P+-π photoconductive junction and (3) a detector made of the π-N+ photodiode junction. For each device, the dark current density-voltage characteristics were measured at a high-temperature range, from 195 K to 300 K. Next, the carrier concentration distribution across the entire heterostructure and individual junctions was calculated using the APSYS simulation program. It was shown that when the n+-P+-π-N+ photodiode is reverse biased, the electron concentration in the π absorber drops below its thermal equilibrium value, due to the exclusion effect at the P+-π junction and the extraction effect at the π-N+ junction. To maintain the charge neutrality, the hole concentration is also reduced below the equilibrium value and reaches the absorber doping level (NA), leading to the Auger generation rate's reduction by a factor of 2ni/NA, where ni is the intrinsic carrier concentration. Our experiment conducted for three separate detectors showed that the exclusion P+-π photoconductive junction has the most significant effect on the Auger suppression-the majority of the hole concentration drops to the doping level not only at the P+-π interface but also deep inside the π absorber.

11.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894280

RESUMO

Underwater optical wireless communication (UOWC) has gained interest in recent years with the introduction of autonomous and remotely operated mobile systems in blue economic ventures such as offshore food production and energy generation. Here, we devised a model for estimating the received power distribution of diffused line-of-sight mobile optical links, accommodating irregular intensity distributions beyond the beam-spread angle of the emitter. We then used this model to conduct a spatial analysis investigating the parametric influence of the placement, orientation, and angular spread of photodiodes in array-based receivers on the mobile UOWC links in different Jerlov seawater types. It revealed that flat arrays were best for links where strict alignment could be maintained, whereas curved arrays performed better spatially but were not always optimal. Furthermore, utilizing two or more spectrally distinct wavelengths and more bandwidth-efficient modulation may be preferred for received-signal intensity-based localization and improving link range in clearer oceans, respectively. Considering the geometric implications of the array of receiver photodiodes for mobile UOWCs, we recommend the use of dynamically shape-shifting array geometries.

12.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894464

RESUMO

A new cost-effective radiometer has been designed, built, and tested to measure direct normal solar irradiance (DNI). The proposed instrument for solar irradiance measurement is based on an optical fiber as the light beam collector, a semiconductor photodiode to measure the optical power, and a calibration algorithm to convert the optical power into solar irradiance. The proposed radiometer offers the advantage of separating the measurement point, where the optical fiber collects the solar irradiation, from the place where the optical power is measured. A calibration factor is mandatory because the semiconductor photodiode is only spectrally responsive to a limited part of the spectral irradiance. Experimental tests have been conducted under different conditions to evaluate the performance of the proposed device. The measurements confirm that the proposed instrument performs similarly to the expensive high-accuracy pyrheliometer used as a reference.

13.
Front Optoelectron ; 17(1): 20, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866994

RESUMO

In this paper, we first present an experimental demonstration of terahertz radiation pulse generation with energy up to 5 pJ under the electron emission during ultrafast optical discharge of a vacuum photodiode. We use a femtosecond optical excitation of metallic copper photocathode for the generation of ultrashort electron bunch and up to 45 kV/cm external electric field for the photo-emitted electron acceleration. Measurements of terahertz pulses energy as a function of emitted charge density, incidence angle of optical radiation and applied electric field have been provided. Spectral and polarization characteristics of generated terahertz pulses have also been studied. The proposed semi-analytical model and simulations in COMSOL Multiphysics prove the experimental data and allow for the optimization of experimental conditions aimed at flexible control of radiation parameters.

14.
Nano Lett ; 24(27): 8369-8377, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38885458

RESUMO

The metal-semiconductor interface fabricated by conventional methods often suffers from contamination, degrading transport performance. Herein, we propose a one-pot chemical vapor deposition (CVD) process to create a two-dimensional (2D) MoO2-MoSe2 heterostructure by growing MoO2 seeds under a hydrogen environment, followed by depositing MoSe2 on the surface and periphery. The ultraclean interface is verified by cross-sectional scanning transmission electron microscopy and photoluminescence. Along with the high work function of semimetallic MoO2 (Ef = -5.6 eV), a high-rectification Schottky diode is fabricated based on this heterostructure. Furthermore, the Schottky diode exhibits an excellent photovoltaic effect with a high open-circuit voltage of 0.26 eV and ultrafast photoresponse, owing to the naturally formed metal-semiconductor contact with suppressed pinning effect. Our method paves the way for the fabrication of an ultraclean 2D metal-semiconductor interface, without defects or contamination, offering promising prospects for future nanoelectronics.

15.
ACS Appl Mater Interfaces ; 16(26): 33740-33751, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38907704

RESUMO

A two-dimensional (2D) broken-gap (type-III) p-n heterojunction has a unique charge transport mechanism because of nonoverlapping energy bands. In light of this, type-III band alignment can be used in tunneling field-effect transistors (TFETs) and Esaki diodes with tunable operation and low consumption by highlighting the advantages of tunneling mechanisms. In recent years, 2D tunneling photodiodes have gradually attracted attention for novel optoelectronic performance with a combination of strong light-matter interaction and tunable band alignment. However, an in-depth understanding of the tunneling mechanisms should be further investigated, especially for developing electronic and optoelectronic applications. Here, we report a type-III tunneling photodiode based on a 2D multilayered p-GeS/n+-SnSe2 heterostructure, which is first fabricated by the mechanical exfoliation and dry transfer method. Through the Simmons approximation, its various tunneling transport mechanisms dependent on bias and light are demonstrated as the origin of excellent bidirectional photoresponse performance. Moreover, compared to the traditional p-n photodiode, the device enables bidirectional photoresponse capability, including maximum responsivity values of 43 and 8.7 A/W at Vds = 1 and -1 V, respectively, with distinctive photoactive regions from the scanning photocurrent mapping. Noticeably, benefiting from the in-plane anisotropic structure of GeS, the device exhibits an enhanced photocurrent anisotropic ratio of 9, driven by the broader depletion region at Vds = -3 V under 635 nm irradiation. Above all, the results suggest that our designed architecture can be potentially applied to CMOS imaging sensors and polarization-sensitive photodetectors.

16.
Nano Lett ; 24(19): 5774-5782, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709116

RESUMO

Flexible shortwave infrared detectors play a crucial role in wearable devices, bioimaging, automatic control, etc. Commercial shortwave infrared detectors face challenges in achieving flexibility due to the high fabrication temperature and rigid material properties. Herein, we develop a high-performance flexible Te0.7Se0.3 photodetector, resulting from the unique 1D crystal structure and small elastic modulus of Te-Se alloying. The flexible photodetector exhibits a broad-spectrum response ranging from 365 to 1650 nm, a fast response time of 6 µs, a broad linear dynamic range of 76 dB, and a specific detectivity of 4.8 × 1010 Jones at room temperature. The responsivity of the flexible detector remains at 93% of its initial value after bending with a small curvature of 3 mm. Based on the optimized flexible detector, we demonstrate its application in shortwave infrared imaging. These results showcase the great potential of Te0.7Se0.3 photodetectors for flexible electronics.

17.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732860

RESUMO

Contactless and label-free detection of urea content in aqueous solutions is of great interest in chemical, biomedical, industrial, and automotive applications. In this work, we demonstrate a compact and low-cost instrumental configuration for label-free, reagent-free, and contactless detection of urea dissolved in water, which exploits the absorption properties of urea in the near-infrared wavelength region. The intensity of the radiation transmitted through the fluid under test, contained in a rectangle hollow glass tubing with an optical pathlength of 1 mm, is detected in two spectral bands. Two low-cost, low-power LEDs with emission spectra centered at λ = 1450 nm and λ = 2350 nm are used as readout sources. The photodetector is positioned on the other side of the tubing, in front of the LEDs. The detection performances of a photodiode and of a thermal optical power detector have been compared, exploiting different approaches for LED driving current modulation and photodetected signal processing. The implemented detection system has been tested on urea-water solutions with urea concentrations from 0 up to 525 mg/mL as well as on two samples of commercial diesel exhaust fluid ("AdBlue™"). Considering the transmitted intensity in presence of the urea-water solution, at λ = 1450 nm and λ = 2350 nm, normalized to the transmitted intensity in presence of water, we demonstrate that their ratio is linearly related to urea concentration on a wide range and with good sensitivity.

18.
Adv Mater ; 36(40): e2403647, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38708960

RESUMO

The near-infrared (NIR) sensor technology is crucial for various applications such as autonomous driving and biometric tracking. Silicon photodetectors (SiPDs) are widely used in NIR applications; however, their scalability is limited by their crystalline properties. Organic photodetectors (OPDs) have attracted attention for NIR applications owing to their scalability, low-temperature processing, and notably low dark current density (JD), which is similar to that of SiPDs. However, the still high JD (at NIR band) and few measurements of noise equivalent powers (NEPs) pose challenges for accurate performance comparisons. This study addresses these issues by quantitatively characterizing the performance matrix and JD generation mechanism using electron-blocking layers (EBLs) in OPDs. The energy offset at an EBL/photosensitive layer interface determines the thermal activation energy and directly affects JD. A newly synthesized EBL (3PAFBr) substantially enhances the interfacial energy barrier by forming a homogeneous contact owing to the improved anchoring ability of 3PAFBr. As a result, the OPD with 3PAFBr yields a noise current of 852 aA (JD = 12.3 fA cm⁻2 at V → -0.1 V) and several femtowatt-scale NEPs. As far as it is known, this is an ultralow of JD in NIR OPDs. This emphasizes the necessity for quantitative performance characterization.

19.
Anal Sci ; 40(7): 1239-1248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598051

RESUMO

Alpha-fetoprotein (AFP), commonly employed for early diagnosis of liver cancer, serves as a biomarker for cancer screening and diagnosis. Combining the high sensitivity and specificity of fluorescence immunoassay (FIA), developing a low-cost and efficient immunoassay system for AFP detection holds significant importance in disease diagnosis. In this work, we developed a miniaturized oblique laser-induced fluorescence (LIF) immunoassay system, coupled with a microfluidic PMMA/paper hybrid chip, for rapid detection of AFP. The system employed an avalanche photodiode (APD) as the detector, and implemented multi-level filtering in the excitation light channel using the dichroic mirror and optical trap. At first, we employed the Savitzky-Golay filter and baseline off-set elimination methods to denoise and normalize the original data. Then the cutoff frequency of the low-pass filter and the reverse voltage of the APD were optimized to enhance the detection sensitivity of the system. Furthermore, the effect of laser power on the fluorescence excitation efficiency was investigated, and the sampling time during the scanning process was optimized. Finally, a four-parameter logistic (4PL) model was utilized to establish the concentration-response equation for AFP. The system was capable of detecting concentrations of AFP standard solution within the range of 1-500 ng/mL, with a detection limit of 0.8 ng/mL. The entire immunoassay process could be completed within 15 min. It has an excellent potential for applications in low-cost portable diagnostic instruments for the rapid detection of biomarkers.


Assuntos
Lasers , alfa-Fetoproteínas , alfa-Fetoproteínas/análise , Técnicas Analíticas Microfluídicas/instrumentação , Humanos , Imunoensaio/métodos , Fatores de Tempo , Fluorescência
20.
Methods Mol Biol ; 2779: 11-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526780

RESUMO

Flow cytometry is a critical technology for biomedical analysis and is an essential component of almost any study of the immune system. Widespread usage and increasing instrument complexity have, however, led to increasing neglect of education in their basic operating principles, a common situation with many technologies. This chapter describes the basics of flow cytometer operation using the Make Your Own Flow Cytometer ( https://www.cytometryworks.com ), a working cytometer than can be assembled by students into a functional instrument. This project and others like it is seeing widespread usage in biomedical education and can serve as models for like-minded investigators who wish to build their own systems. They also provide a good mechanism to introduce the key operational principles of flow cytometry as illustrated here.


Assuntos
Tecnologia , Humanos , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA