Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.175
Filtrar
1.
Hum Mol Genet ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39231530

RESUMO

Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology. Here we report the generation and initial characterization of a gene-edited animal model for PRPH2 disease associated with a nonsense mutation (c.1095:C>A, p.Y285X), which is predicted to truncate the peripherin-2 C-terminal domain. Young (P21) Prph2Y285X/WT mice developed near-normal photoreceptor numbers; however, OS membrane architecture was disrupted, OS protein levels were reduced, and in vivo and ex vivo electroretinography (ERG) analyses found that rod and cone photoreceptor function were each severely reduced. Interestingly, ERG studies also revealed that rod-mediated downstream signaling (b-waves) were functionally compensated in the young animals. This resiliency in retinal function was retained at P90, by which time substantial IRD-related photoreceptor loss had occurred. Altogether, the current studies validate a new mouse model for investigating PRPH2 disease pathophysiology, and demonstrate that rod and cone photoreceptor function and structure are each directly and substantially impaired by the Y285X mutation. They also reveal that Prph2 mutations can induce a functional compensation that resembles homeostatic plasticity, which can stabilize rod-derived signaling, and potentially dampen retinal dysfunction during some PRPH2-associated IRDs.

2.
Dev Cell ; 59(16): 2158-2170.e6, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39096897

RESUMO

Unlike humans, teleosts like zebrafish exhibit robust retinal regeneration after injury from endogenous stem cells. However, it is unclear if regenerating cone photoreceptors regain physiological function and integrate correctly into post-synaptic circuits. We used two-photon calcium imaging of living adult retina to examine photoreceptor responses before and after light-induced lesions. To assess functional recovery of cones and downstream outer retinal circuits, we exploited color opponency; UV cones exhibit intrinsic Off-response to blue light, but On-response to green light, which depends on feedback signals from outer retinal circuits. Accordingly, we assessed the presence and quality of Off- vs. On-responses and found that regenerated UV cones regain both Off-responses to short-wavelength and On-responses to long-wavelength light within 3 months after lesion. Therefore, physiological circuit functionality is restored in regenerated cone photoreceptors, suggesting that inducing endogenous regeneration is a promising strategy for human retinal repair.


Assuntos
Regeneração , Retina , Células Fotorreceptoras Retinianas Cones , Peixe-Zebra , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Retina/fisiologia , Regeneração/fisiologia , Cálcio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-39120725

RESUMO

To sense light, animals often utilize mechanisms that rely on visual pigments composed of opsin and retinal. The photon-induced isomerization of 11-cis-retinal to the all-trans configuration triggers phototransduction cascades, resulting in a change in the membrane potential of the photoreceptor. In mollusks, the most abundant opsin in the eye is Gq-coupled rhodopsin (Gq-rhodopsin). The Gq-rhodopsin-based visual pigment is bistable, with the regeneration of 11-cis-retinal occurring in a light-dependent manner without leaving the opsin moiety. 11-cis-retinal is also regenerated by the action of retinochrome in the cell bodies. Retinal binding protein (RALBP) mediates retinal transport between Gq-rhodopsin and retinochrome in the cytoplasm. However, recent studies have identified additional bistable opsins in mollusks, including Opn5 and xenopsin. It is unknown whether these bistable opsins require RALBP and retinochrome for the continuous regeneration of 11-cis-retinal. In the present study, we examined the expression of RALBP and retinochrome in the photoreceptors expressing Opn5 or Xenopsin in the heterobranch gastropods Limax and Peronia. Our findings revealed that retinochrome, but not RALBP, was present in some of the Opn5A-positive brain photosensory neurons of Limax. The ciliary cells in the dorsal eye of Peronia, which express Xenopsin2, lacked both retinochrome and RALBP. Therefore, bistable opsins do not necessarily depend on the RALBP-retinochrome system in a cell. We also examined the expression of other proteins that support visual function, such as ß-arrestin, Gq, and Go, in all types of photoreceptors in these animals, and uncovered differences in the molecular composition among the photoreceptors.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119816, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159686

RESUMO

Exposure to the non-protein amino acid cyanotoxin ß-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.

5.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39149333

RESUMO

Background: An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results: We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions: Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.

6.
Front Ophthalmol (Lausanne) ; 4: 1349297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148554

RESUMO

Non-confocal split-detection imaging reveals the cone photoreceptor inner segment mosaic in a plethora of retinal conditions, with the potential of providing insight to ageing, disease, and response to treatment processes, in vivo, and allows the screening of candidates for cell rescue therapies. This imaging modality complements confocal reflectance adaptive optics scanning light ophthalmoscopy, which relies on the waveguiding properties of cones, as well as their orientation toward the pupil. Split-detection contrast, however, is directional, with each cone inner segment appearing as opposite dark and bright semicircles, presenting a challenge for either manual or automated cell identification. Quadrant-detection imaging, an evolution of split detection, could be used to generate images without directional dependence. Here, we demonstrate how the embossed-filtered quadrant-detection images, originally proposed by Migacz et al. for visualising hyalocytes, can also be used to generate photoreceptor mosaic images with better and non-directional contrast for improved visualisation. As a surrogate of visualisation improvement between legacy split-detection images and the images resulting from the method described herein, we provide preliminary results of simple image processing routines that may enable the automated identification of generic image features, as opposed to complex algorithms developed specifically for photoreceptor identification, in pathological retinas.

7.
Biochem Soc Trans ; 52(4): 1895-1908, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39171690

RESUMO

Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.


Assuntos
Luz , Raízes de Plantas , Transdução de Sinais , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Desenvolvimento Vegetal
8.
Int J Mol Sci ; 25(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39201444

RESUMO

Emerging evidence suggests that retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR), preceding the development of microvascular abnormalities. Here, we assessed the impact of neuroinflammation on the retina of diabetic-induced rats. For this aim we have used a two-photon microscope to image the photoreceptors (PRs) at different eccentricities in unstained retinas obtained from both control (N = 4) and pathological rats (N = 4). This technique provides high-resolution images where individual PRs can be identified. Within each image, every PR was located, and its transversal area was measured and used as an objective parameter of neuroinflammation. In control samples, the size of the PRs hardly changed with retinal eccentricity. On the opposite end, diabetic retinas presented larger PR transversal sections. The ratio of PRs suffering from neuroinflammation was not uniform across the retina. Moreover, the maximum anatomical resolving power (in cycles/deg) was also calculated. This presents a double-slope pattern (from the central retina towards the periphery) in both types of specimens, although the values for diabetic retinas were significantly lower across all retinal locations. The results show that chronic retinal inflammation due to diabetes leads to an increase in PR transversal size. These changes are not uniform and depend on the retinal location. Two-photon microscopy is a useful tool to accurately characterize and quantify PR inflammatory processes and retinal alterations.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/patologia , Ratos , Diabetes Mellitus Experimental/patologia , Masculino , Células Fotorreceptoras de Vertebrados/patologia , Modelos Animais de Doenças , Retina/patologia , Retina/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Microscopia/métodos
9.
Sci Rep ; 14(1): 20146, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39209978

RESUMO

Microglia are resident immune cells in the central nervous system, including the retina that surveil the environment for damage and infection. Following retinal damage, microglia undergo morphological changes, migrate to the site of damage, and express and secrete pro-inflammatory signals. In the zebrafish retina, inflammation induces the reprogramming and proliferation of Müller glia and the regeneration of neurons following damage or injury. Immunosuppression or pharmacological ablation of microglia reduce or abolish Müller glia proliferation. We evaluated the retinal architecture and retinal regeneration in adult zebrafish irf8 mutants, which have significantly depleted numbers of microglia. We show that irf8 mutants have normal retinal structure at 3 months post fertilization (mpf) and 6 mpf but fewer cone photoreceptors by 10 mpf. Surprisingly, light-induced photoreceptor ablation induced Müller glia proliferation in irf8 mutants and cone and rod photoreceptor regeneration. Light-damaged retinas from both wild-type and irf8 mutants show upregulated expression of mmp-9, il8, and tnfß pro-inflammatory cytokines. Our data demonstrate that adult zebrafish irf8 mutants can regenerate normally following acute retinal injury. These findings suggest that microglia may not be essential for retinal regeneration in zebrafish and that other mechanisms can compensate for the reduction in microglia numbers.


Assuntos
Fatores Reguladores de Interferon , Microglia , Retina , Peixe-Zebra , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Microglia/metabolismo , Retina/metabolismo , Retina/patologia , Mutação , Regeneração , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Proliferação de Células , Luz , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia
10.
IUCrJ ; 11(Pt 5): 645-646, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39212519

RESUMO

The photo-reaction of the LOV1 domain of the Chlamydomonas reinhardtii phototropin is investigated by room-temperature time-resolved serial crystallography. A covalent adduct forms between the C4a atom of the central flavin-mononucleotide chromophore and a protein cysteine. The structure of the adduct is very similar to that of LOV2 determined 23 years ago from the maidenhair fern Phy3.


Assuntos
Chlamydomonas reinhardtii , Fototropinas , Síncrotrons , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cristalografia por Raios X/métodos , Fototropinas/química , Fototropinas/metabolismo , Modelos Moleculares , Mononucleotídeo de Flavina/química , Domínios Proteicos , Chlamydomonas/química , Chlamydomonas/metabolismo
11.
FASEB J ; 38(17): e70021, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39215566

RESUMO

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play an essential role in phototransduction and cellular Ca2+ homeostasis. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 are associated with achromatopsia, progressive cone dystrophy, and early-onset macular degeneration. Cone loss in patients with achromatopsia and cone dystrophy associated with CNG channel mutations has been documented by optical coherence tomography and in mouse models of CNG channel deficiency. Cone death in CNG channel-deficient retinas involves endoplasmic reticulum (ER) stress-associated apoptosis, dysregulation of cellular/ER Ca2+ homeostasis, impaired protein folding/processing, and impaired ER-associated degradation (ERAD). The E3 ubiquitin-protein ligase synoviolin 1 (SYVN1) is the primary component of the SYVN1/SEL1L ER retrotranslocon responsible for ERAD. Previous studies have shown that manipulations that protect cones and reduce ER stress/cone death in CNG channel deficiency, such as increasing ER Ca2+ preservation or treatment with an ER chaperone, increase the expression of SYVN1 and other components of the ER retrotranslocon. The present work investigated the effects of SYVN1 overexpression. Intraocular injection of AAV5-IRBP/GNAT2-Syvn1 resulted in overexpression of SYVN1 in cones of CNG channel-deficient mice. Following treatment, cone density in Cnga3-/- mice was significantly increased, compared with untreated controls, outer segment localization of cone opsin was improved, and ER stress/apoptotic cell death was reduced. Overexpression of SYVN1 also led to increased expression levels of the retrotranslocon components, degradation in ER protein 1 (DERL1), ERAD E3 ligase adaptor subunit (SEL1L), and homocysteine inducible ER protein with ubiquitin-like domain 1 (HERPUD1). Moreover, overexpression of SYVN1 likely enhanced protein ubiquitination/proteasome degradation in CNG channel-deficient retinas. This study demonstrates the role of SYVN1/ERAD in cone preservation in CNG channel deficiency and supports the strategy of promoting ERAD for cone protection.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Células Fotorreceptoras Retinianas Cones , Ubiquitina-Proteína Ligases , Animais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Camundongos , Retículo Endoplasmático/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Degradação Associada com o Retículo Endoplasmático , Camundongos Knockout , Camundongos Endogâmicos C57BL
12.
Ophthalmol Sci ; 4(6): 100551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161750

RESUMO

Purpose: To understand the spatial relationship between local rod-mediated visual function and reticular pseudodrusen (RPD) in eyes with large drusen. Design: Retrospective cross-sectional study. Participants: One eye with large drusen (>125 µm) each from 91 individuals with intermediate age-related macular degeneration, with and without RPD. Methods: All participants underwent dark adaptation testing using a dark-adapted chromatic perimeter, where visual sensitivities were measured over 30 minutes of dark adaptation after photobleach. The rod intercept time (RIT; a measure of dynamic rod function) and pointwise sensitivity difference (PWSD; a relative measure of rod- compared with cone-mediated function) was determined at multiple retinal locations, and their association with the overall (central 20° × 20° region) and local (2° diameter region centered on the location tested) extent of RPD and drusen (quantified using multimodal imaging) was examined. Main Outcome Measures: Association between overall and local extent of RPD and drusen with RIT and PWSD at each retinal location tested. Results: In a multivariable analysis, delayed RIT was associated with an increasing overall (P < 0.001), but not local (P = 0.884), extent of RPD. In contrast, the increasing local (P < 0.001), but not overall (P = 0.475), extent of drusen was associated with delayed RIT. Furthermore, only an increasing overall extent of RPD (P < 0.001) was associated with reduced PWSD (or worse rod compared with cone function), but not the local extent of RPD and drusen, or overall extent of drusen (P ≥ 0.344). Conclusions: Local rod-mediated function was associated with the overall, rather than local, extent of RPD in eyes with large drusen, suggesting that there may be widespread pathologic changes in eyes with RPD that account for this. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

13.
Front Ophthalmol (Lausanne) ; 4: 1384473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984108

RESUMO

Purpose: To characterize retinal structural biomarkers for progression in adult-onset Stargardt disease from multimodal retinal imaging in-vivo maps. Methods: Seven adult patients (29-69 years; 3 males) with genetically-confirmed and clinically diagnosed adult-onset Stargardt disease and age-matched healthy controls were imaged with confocal and non-confocal Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO), optical coherence tomography (OCT), fundus infrared (FIR), short wavelength-autofluorescence (FAF) and color fundus photography (CFP). Images from each modality were scaled for differences in lateral magnification before montages of AOSLO images were aligned with en-face FIR, FAF and OCT scans to explore changes in retinal structure across imaging modalities. Photoreceptors, retinal pigment epithelium (RPE) cells, flecks, and other retinal alterations in macular regions were identified, delineated, and correlated across imaging modalities. Retinal layer-thicknesses were extracted from segmented OCT images in areas of normal appearance on clinical imaging and intact outer retinal structure on OCT. Eccentricity dependency in cell density was compared with retinal thickness and outer retinal layer thickness, evaluated across patients, and compared with data from healthy controls. Results: In patients with Stargardt disease, alterations in retinal structure were visible in different image modalities depending on layer location and structural properties. The patients had highly variable foveal structure, associated with equally variable visual acuity (-0.02 to 0.98 logMAR). Cone and rod photoreceptors, as well as RPE-like structures in some areas, could be quantified on non-confocal split-detection AOSLO images. RPE cells were also visible on dark field AOSLO images close to the foveal center. Hypo-reflective gaps of non-waveguiding cones (dark cones) were seen on confocal AOSLO in regions with clinically normal CFP, FIR, FAF and OCT appearance and an intact cone inner segment mosaic in three patients. Conclusion: Dark cones were identified as a possible first sign of retinal disease progression in adult-onset Stargardt disease as these are observed in retinal locations with otherwise normal appearance and outer retinal thickness. This corroborates a previous report where dark cones were proposed as a first sign of progression in childhood-onset Stargardt disease. This also supports the hypothesis that, in Stargardt disease, photoreceptor degeneration occurs before RPE cell death.

14.
Front Ophthalmol (Lausanne) ; 4: 1373549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984134

RESUMO

Introduction: Clinical tools have been widely used in the diagnosis, description, and monitoring the progression of retinitis pigmentosa (RP); however, many of these methods have inherently low sensitivity and specificity, and significant photoreceptor disruption can occur before RP progression has clinically manifest. Adaptive optics scanning light ophthalmoscopy (AOSLO) has shown promise as a powerful tool for assessing photoreceptor disruption both structurally and functionally due to its increased resolution. Methods: Here we assess photoreceptor structure and function at the cellular level through AOSLO by acquiring intensity based optoretinography (iORG) in 15 individuals with no reported retinal pathology and 7 individuals with a prior clinical diagnosis of RP. Photoreceptor structure was quantified by calculating cone nearest neighbor distance (NND) across different retinal eccentricities from the AOSLO images. Cone outer segment length was measured across different retinal eccentricities using optical coherence tomography (OCT) derived longitudinal reflectivity profiles (LRPs). Finally, iORG measures of photoreceptor function were compared to retinal sensitivity as measured using the macular integrity assessment (MAIA) microperimeter. Results: Broadly, participants with RP exhibited increasing cone nearest neighbor distances and decreasing cone outer segment length as a function of retinal eccentricity, consistent with prior reports for both controls and individuals with RP. Nearly all individuals with RP had reduced iORG amplitudes for all retinal eccentricities when compared to the control cohort, and the reduction was greater in eccentricities further from the fovea. Comparing iORG amplitudes to MAIA retinal sensitivity, we found that the iORG was more sensitive to early changes in photoreceptor function whereas MAIA was more sensitive to later stages of disease. Discussion: This highlights the utility of iORG as a method to detect sub-clinical deficits in cone function in all stages of disease progression and supports the future use of iORG for identifying cells that are candidates for cellular based therapies.

15.
Bio Protoc ; 14(13): e5024, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39011369

RESUMO

Adult mammals lack the ability to regenerate retinal neurons after injury. However, in previous studies from this lab, topical application of the selective alpha7 nicotinic acetylcholine receptor (nAChR) agonist, PNU-282987, has been associated with an increase in the number of retinal neurons in adult murine models both in the presence and absence of injury to the retina. Additionally, studies assaying mitotic markers have shown a substantial increase in the amount of mitotically active and proliferating cells with the topical application of the alpha7 nAChR agonist. However, these previous studies were performed using fluorescent immunolabeling and subsequent confocal microscopy, thus limiting the number of antibodies that can be multiplexed. As a result, we have developed a flow cytometry method that allows for the multiplexing and analysis of multiple external and internal markers in dissociated retinal cells. In this paper, a step-by-step protocol is described for the labeling of multiple retinal cell types such as retinal ganglion cells, rod photoreceptors, and Müller glia, concurrently with Müller glia-derived progenitor cells that arise after treatment with PNU-282987. Key features • Neurogenesis in the adult mammalian retina. • Flow cytometry of retinal cells. • PNU-282987-induced mitotic activity in the retina. • Dissociation of the retina for flow cytometry analysis. Graphical overview Schematic demonstrating the protocol for preparation of retinal cells for flow cytometry analysis. (A) Adult mice (3-6 months) are subjected to topical PBS eyedrop treatment containing DMSO (control groups) or PNU-282987 (experimental groups). Both eyedrop treatments contain 1 mg/mL of BrdU to label proliferating cells. After treatment, mice are euthanized, and retinae are harvested for dissociation using papain. (B) Dissociated retina cells are fixed and permeabilized before aliquots are taken for cell counts on a hemocytometer. After determining the number of cells present, conjugated antibodies and unconjugated primary antibodies are added at the appropriate dilutions. Fluorescent secondary antibodies are added for markers that are unconjugated. Cells are then subjected to flow cytometric analysis using a BD LSRFortessa.

16.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000174

RESUMO

Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.


Assuntos
Regulação da Expressão Gênica de Plantas , Luz , Fenóis , Plantas , Fenóis/metabolismo , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
17.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026765

RESUMO

The distribution of dietary vitamin A/all-trans retinol (ROL) throughout the body is critical for maintaining retinoid function in peripheral tissues and for generating visual pigments for photoreceptor cell function. ROL circulates in the blood bound to the retinol binding protein 4 (RBP4) as RBP4-ROL. Two membrane receptors, RBPR2 in the liver and STRA6 in the eye are proposed to bind circulatory RBP4 and this mechanism is critical for internalizing ROL into cells. Here, we present a longitudinal investigation towards the importance of RBPR2 and influence of the diet on systemic retinoid homeostasis for visual function. Age matched Rbpr2-KO (Rbpr2 -/- ) and wild-type (WT) mice were fed either a vitamin A sufficient (VAS) or a vitamin A deficient (VAD) diet. At 3- and 6-months, we performed retinoid quantification of ocular and non-ocular tissues using HPLC analysis and complemented the data with visual physiology, rhodopsin quantification by spectrophotometry, and biochemical analysis. At 3-months and compared to WT mice, Rbpr2 -/- mice fed either vitamin A diets displayed lower scotopic and photopic electroretinogram (ERG) responses, which correlated with HPLC analysis that revealed Rbpr2 -/- mice had significantly lower hepatic and ocular retinoid content. Interestingly, with the exception of the liver, long-term feeding of Rbpr2 -/- mice with a VAS diet promoted all-trans retinol accumulation in most peripheral tissues. However, even under VAS dietary conditions significant amounts of unliganded opsins in rods, together with decreased visual responses were evident in aged mice lacking RBPR2, when compared to WT mice. Together, our analyses characterize the molecular events underlying nutritional blindness in a novel mouse model and indicate that loss of the liver specific RBP4-ROL receptor, RBPR2, influences systemic retinoid homeostasis and rhodopsin synthesis, which causes profound visual function defects under severe vitamin A deficiency conditions.

18.
Neurobiol Aging ; 141: 171-181, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964014

RESUMO

Age-related neuronal adaptations are known to help maintain function. This study aims to examine gross age-related in vivo retinal functional adaptations (using electroretinography) in young and middle aged C57BL/6J and Thy1-YFPh mice and to relate this to in vivo retinal structure (using optical coherence tomography). Electroretinography responses were generally larger in Thy1-YFPh mice than in C57BL/6J mice, with similar in vivo retinal layer thicknesses except for longer inner/outer photoreceptor segment in Thy1-YFPh mice. Relative to 3-month-old mice, 12-month-old mice showed reduced photoreceptor (C57BL/6J 84.0±2.5 %; Thy1-YFPh 80.2±5.2 %) and bipolar cell (C57BL/6J 75.6±2.3 %; Thy1-YFPh 68.1±5.5 %) function. There was relative preservation of ganglion cell function (C57BL/6J 79.7±3.7 %; Thy1-YFPh 91.7±5.0 %) with age, which was associated with increased b-wave (bipolar cell) sensitivities to light. Ganglion cell function was correlated with both b-wave amplitude and sensitivity. This study shows that there are normal age-related adaptations to preserve functional output. Different mouse strains may have varied age-related adaptation capacity and should be taken into consideration when examining age-related susceptibility to injury.


Assuntos
Envelhecimento , Eletrorretinografia , Retina , Animais , Masculino , Camundongos , Envelhecimento/fisiologia , Envelhecimento/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Retina/fisiologia , Células Bipolares da Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Antígenos Thy-1/genética , Tomografia de Coerência Óptica/métodos
19.
Sci Rep ; 14(1): 15672, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977737

RESUMO

Bacteria perceive light signals via photoreceptors and modulate many physiological and genetic processes. The impacts played by light, oxygen, or voltage (LOV) and blue light (BL) photosensory proteins on the virulence-related traits of plant bacterial pathogens are diverse and complex. In this study, we identified LOV protein (Pc-LOV1) from Pseudomonas cichorii JBC1 (PcJBC1) and characterized its function using LOV1-deficient mutant (JBC1Δlov1). In the dark state, the recombinant Pc-LOV1 protein showed an absorption band in UV-A region with a double peak at 340 nm and 365 nm, and within the blue-region, it exhibited a main absorption at 448 nm along with two shoulder peaks at 425 nm and 475 nm, which is a typical feature of oxidized flavin within LOV domain. The adduct-state lifetime (τrec) of Pc-LOV1 was 67.03 ± 4.34 min at 25 °C. BL negatively influenced the virulence of PcJBC1 and the virulence of JBC1Δlov1 increased irrespective of BL, indicating that Pc-LOV1 negatively regulates PcJBC1 virulence. Pc-LOV1 and BL positively regulated traits relevant to colonization on plant surface, such as adhesion to the plant tissue and biofilm formation. In contrast, swarming motility, exopolysaccharide production, and siderophore synthesis were negatively controlled. Gene expression supported the modulation of bacterial features by Pc-LOV1. Overall, our results suggest that the LOV photosensory system plays crucial roles in the adaptive responses and virulence of the bacterial pathogen PcJBC1. The roles of other photoreceptors, sensing of other wavelengths, and signal networking require further investigation.


Assuntos
Proteínas de Bactérias , Luz Azul , Pseudomonas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Pseudomonas/genética , Pseudomonas/patogenicidade , Virulência
20.
Mol Med ; 30(1): 109, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060957

RESUMO

Primary cilia are sensory organelles that extend from the cellular membrane and are found in a wide range of cell types. Cilia possess a plethora of vital components that enable the detection and transmission of several signaling pathways, including Wnt and Shh. In turn, the regulation of ciliogenesis and cilium length is influenced by various factors, including autophagy, organization of the actin cytoskeleton, and signaling inside the cilium. Irregularities in the development, maintenance, and function of this cellular component lead to a range of clinical manifestations known as ciliopathies. The majority of people with ciliopathies have a high prevalence of retinal degeneration. The most common theory is that retinal degeneration is primarily caused by functional and developmental problems within retinal photoreceptors. The contribution of other ciliated retinal cell types to retinal degeneration has not been explored to date. In this review, we examine the occurrence of primary cilia in various retinal cell types and their significance in pathology. Additionally, we explore potential therapeutic approaches targeting ciliopathies. By engaging in this endeavor, we present new ideas that elucidate innovative concepts for the future investigation and treatment of retinal ciliopathies.


Assuntos
Cílios , Ciliopatias , Doenças Neurodegenerativas , Retina , Cílios/metabolismo , Cílios/patologia , Humanos , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Animais , Retina/metabolismo , Retina/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/etiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA