Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(34): 23154-23167, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39140713

RESUMO

Efficient delivery of nanoparticles (NPs) to plants is important for agricultural application. However, to date, we still lack knowledge about how NPs' charge matters for its translocation pathway, i.e., symplastic and apoplastic pathways, in plants. In this study, we synthesized and used negatively charged citrate sourced carbon dots (C-CDs, -37.97 ± 1.89 mV), Cy5 coated C-CDs (Cy5-C-CDs, -41.90 ± 2.55 mV), positively charged PEI coated carbon dots (P-CDs, +43.03 ± 1.71 mV), and Cy5 coated P-CDs (Cy5-P-CDs, +48.80 ± 1.21 mV) to investigate the role of surface charges and coatings on the employed translocation pathways (symplastic and apoplastic pathways) of charged NPs in plants. Our results showed that, different from the higher fluorescence intensity of P-CDs and Cy5-P-CDs in extracellular than intracellular space, the fluorescence intensity of C-CDs and Cy5-C-CDs was similar between intracellular and extracellular space in cucumber and cotton roots. It suggests that the negatively charged CDs were translocated via both symplastic and apoplastic pathways, but the positively charged CDs were mainly translocated via the apoplastic pathway. Furthermore, our results showed that root applied negatively charged C-CDs demonstrated higher leaf fluorescence than did positively charged P-CDs in both cucumber (8.09 ± 0.99 vs 3.75 ± 0.23) and cotton (7.27 ± 1.06 vs 3.23 ± 0.22), indicating that negatively charged CDs have a higher translocation efficiency from root to leaf than do positively charged CDs. It should be noted that CDs do not affect root cell activities, ROS level, and photosynthetic performance in cucumber and cotton, showing its good biocompatibility. Overall, this study not only figured out that root applied negatively charged CDs employed both symplastic and apoplastic pathways to do the transportation in roots compared with mainly the employment of apoplastic pathway for positively charge CDs, but also found that negatively charge CDs could be more efficiently translocated from root to leaf than positively charged CDs, indicating that imparting negative charge to NPs, at least CDs, matters for its efficient delivery in crops.


Assuntos
Carbono , Raízes de Plantas , Pontos Quânticos , Carbono/química , Carbono/metabolismo , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Cucumis sativus/metabolismo , Carbocianinas/química
2.
Plants (Basel) ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124128

RESUMO

In China, cotton is a significant cash crop, and cold stress negatively impacts the crop's development, production, and quality formation. Recent studies have shown that melatonin (MT) can alleviate the damage to plants under cold stress and promote good growth and development. In this study, the morphological and physiological changes induced by exogenous melatonin pretreatment on 'Xinluzao 33' cotton seedlings under cold stress were examined to investigate its defensive effects. The results showed that 100 µM MT pretreatment improved the cold resistance of cotton most significantly. It also improved the wilting state of cotton under cold stress, greatly increased the photosynthetic rate (Pn), stomatal conductance (Gs), maximum photochemical efficiency (Fv/Fm), and photosynthetic performance index (PIabs) by 116.92%, 47.16%, 32.30%, and 50.22%, respectively, and mitigated the adverse effects of low-temperature. In addition, MT supplementation substantially reduced the accumulation of superoxide anion (O2•-) and hydrogen peroxide (H2O2) by 14.5% and 45.49%, respectively, in cold-stressed cotton leaves by modulating the antioxidant system, thereby mitigating oxidative damage. Furthermore, MT pretreatment increased the endogenous melatonin content (23.80%) and flavonoid content (21.44%) and considerably induced the expression of biosynthesis enzyme-related genes. The above results indicate that exogenous melatonin improves the low-temperature resistance of cotton seedlings by regulating photosynthetic performance, antioxidant enzyme activity, antioxidant content, endogenous melatonin and flavonoid content, and the expression levels of genes related to their synthesis.

3.
BMC Plant Biol ; 24(1): 690, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030485

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor) is a promising opportunity crop for arid regions of Africa due to its high tolerance to drought and heat stresses. Screening for genetic variability in photosynthetic regulation under salt stress can help to identify target trait combinations essential for sorghum genetic improvement. The primary objective of this study was to identify reliable indicators of photosynthetic performance under salt stress for forage yield within a panel of 18 sorghum varieties from stage 1 (leaf 3) to stage 7 (late flowering to early silage maturity). We dissected the genetic diversity and variability in five stress-sensitive photosynthetic parameters: nonphotochemical chlorophyll fluorescence quenching (NPQ), the electron transport rate (ETR), the maximum potential quantum efficiency of photosystem II (FV/FM), the CO2 assimilation rate (A), and the photosynthetic performance based on absorption (PIABS). Further, we investigated potential genes for target phenotypes using a combined approach of bioinformatics, transcriptional analysis, and homologous overexpression. RESULTS: The panel revealed polymorphism, two admixed subpopulations, and significant molecular variability between and within population. During the investigated development stages, the PIABS varied dramatically and consistently amongst varieties. Under higher saline conditions, PIABS also showed a significant positive connection with A and dry matter gain. Because PIABS is a measure of plants' overall photosynthetic performance, it was applied to predict the salinity performance index (SPI). The SPI correlated positively with dry matter gain, demonstrating that PIABS could be used as a reliable salt stress performance marker for forage sorghum. Eight rubisco large subunit genes were identified in-silico and validated using qPCR with variable expression across the varieties under saline conditions. Overexpression of Rubisco Large Subunit 8 increased PIABS, altered the OJIP, and growth with an insignificant effect on A. CONCLUSIONS: These findings provide insights into strategies for enhancing the photosynthetic performance of sorghum under saline conditions for improved photosynthetic performance and potential dry matter yield. The integration of molecular approaches, guided by the identified genetic variability, holds promise for genetically breeding sorghum tailored to thrive in arid and saline environments, contributing to sustainable agricultural practices.


Assuntos
Variação Genética , Fotossíntese , Estresse Salino , Sorghum , Sorghum/genética , Sorghum/fisiologia , Sorghum/metabolismo , Estresse Salino/genética , Clorofila/metabolismo
4.
Plants (Basel) ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891244

RESUMO

Rare earth elements (REEs) have been intentionally used in Chinese agriculture since the 1980s to improve crop yields. Around the world, REEs are also involuntarily applied to soils through phosphate fertilizers. These elements are known to alleviate damage in plants under abiotic stresses, yet there is no information on how these elements act in the physiology of plants. The REE mode of action falls within the scope of the hormesis effect, with low-dose stimulation and high-dose adverse reactions. This study aimed to verify how REEs affect rice plants' physiology to test the threshold dose at which REEs could act as biostimulants in these plants. In experiment 1, 0.411 kg ha-1 (foliar application) of a mixture of REE (containing 41.38% Ce, 23.95% La, 13.58% Pr, and 4.32% Nd) was applied, as well as two products containing 41.38% Ce and 23.95% La separately. The characteristics of chlorophyll a fluorescence, gas exchanges, SPAD index, and biomass (pot conditions) were evaluated. For experiment 2, increasing rates of the REE mix (0, 0.1, 0.225, 0.5, and 1 kg ha-1) (field conditions) were used to study their effect on rice grain yield and nutrient concentration of rice leaves. Adding REEs to plants increased biomass production (23% with Ce, 31% with La, and 63% with REE Mix application) due to improved photosynthetic rate (8% with Ce, 15% with La, and 27% with REE mix), favored by the higher electronic flow (photosynthetic electron transport chain) (increase of 17%) and by the higher Fv/Fm (increase of 14%) and quantum yield of photosystem II (increase of 20% with Ce and La, and 29% with REE Mix), as well as by increased stomatal conductance (increase of 36%) and SPAD index (increase of 10% with Ce, 12% with La, and 15% with REE mix). Moreover, adding REEs potentiated the photosynthetic process by increasing rice leaves' N, Mg, K, and Mn concentrations (24-46%). The dose for the higher rice grain yield (an increase of 113%) was estimated for the REE mix at 0.72 kg ha-1.

5.
Water Res ; 259: 121841, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820734

RESUMO

The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.


Assuntos
Chlorella , Microalgas , Microplásticos , Fotossíntese , Fotossíntese/efeitos dos fármacos , Chlorella/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Biomassa , Clorofila/metabolismo
6.
Front Plant Sci ; 15: 1370637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711608

RESUMO

Introduction: Substantial previous studies have reported that fulvic acid (FA) application plays an important role in Chinese agricultural production. However, little is known about the mechanisms for using FA to increase apple trees resistance to Cd toxicity. In order to clarify the mechanism underlying FA alleviation in Cd-induced growth inhibition in apple seedlings. Methods: Herein, we treated M9T337 seedlings to either 0 or 30 µM/L Cd together with 0 or 0.2 g/L FA and analyzed the root growth, antioxidant enzyme activities, carbon (C) assimilation, nitrogen (N) metabolism, and C and N transport. Results: The results presented that, compared with CK (without Cd addition or FA spraying application), Cd poisoning significantly inhibited the root growth of apple seedlings. However, this Cd-induced root growth inhibition was significantly alleviated by FA spraying relative to the Cd treatment (Cd addition alone). On the one hand, the mitigation of inhibition effects was due to the reduced oxidative damage by enhancing antioxdiant enzyme (SOD, POD, and CAT) activities in leaves and roots. On the other hand, this growth advantage demonstrated compared to the Cd treatment was found to be associated with the strengthen of photosynthetic performance and the elevation of C and N metabolism enzymes activities. Meanwhile, we also found that under Cd stress condition, the distribution of C and N nutrients in apple seedlings was optimised by FA spraying application relative to the Cd treatment, according to the results of 13C and 15N tracing. Conclusion: Conclusively, our results suggested that the inhibitory effect of Cd on apple seedlings root growth was alleviated by FA through regulating antioxdiant capacities and C and N metabolism.

7.
Plant Physiol Biochem ; 211: 108713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739963

RESUMO

The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 µM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.


Assuntos
Curcumina , Metabolômica , Fotossíntese , Spinacia oleracea , Curcumina/farmacologia , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estresse Fisiológico/efeitos dos fármacos
8.
Chemosphere ; 356: 141977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608779

RESUMO

Residues of veterinary antibiotics are a worldwide problem of increasing concern due to their persistence and diverse negative effects on organisms, including crops, and limited understanding of their phytotoxicity. Therefore, this study aimed to compare the phytotoxic effects of veterinary antibiotics tetracycline (TC) and ciprofloxacin (CIP) applied in a wide range of concentrations on model plant oilseed rape (Brassica napus). Overall phytotoxicity of 1-500 mg kg-1 of TC and CIP was investigated based on morphological, biochemical, and physiological plant response. Photosystem II (PSII) performance was suppressed by TC even under environmentally relevant concentration (1 mg kg-1), with an increasing effect proportionally to TC concentration in soil. In contrast, CIP was found to be more phytotoxic than TC when applied at high concentrations, inducing a powerful oxidative burst, impairment of photosynthetic performance, collapse of antioxidative protection and sugar metabolism, and in turn, complete growth retardation at 250 and 500 mg kg-1 CIP treatments. Results of our study suggest that TC and CIP pollution do not pose a significant risk to oilseed rapes in many little anthropogenically affected agro-environments where TC or CIP concentrations do not exceed 1 mg kg-1; however, intensive application of manure with high CIP concentrations (more than 50 mg kg-1) might be detrimental to plants and, in turn, lead to diminished agricultural production and a potential risk to human health.


Assuntos
Antibacterianos , Brassica napus , Poluentes do Solo , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Antibacterianos/toxicidade , Poluentes do Solo/toxicidade , Tetraciclina/toxicidade , Ciprofloxacina/toxicidade , Fotossíntese/efeitos dos fármacos , Drogas Veterinárias/toxicidade , Complexo de Proteína do Fotossistema II/metabolismo
9.
Ann Bot ; 134(1): 71-84, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38470192

RESUMO

BACKGROUND AND AIMS: Niche differentiation is a crucial issue in speciation. Although it has a well-known role in adaptive processes of hybrid angiosperms, it is less understood in hybrid ferns. Here, we investigate whether an intermediate ecological niche of a fern hybrid is a novel adaptation that provides insights into fern hybrid speciation. METHODS: Pteris fauriei (Pteridaceae) is a natural hybrid fern, occurring in environments between its parent species. The maternal Pteris minor is found in sunny areas, but the habitat of the paternal Pteris latipinna is shady. We combined data from morphology, leaf anatomy and photosynthetic traits to explore adaptation and differentiation, along with measuring the environmental features of their niches. We also performed experiments in a common garden to understand ecological plasticity. KEY RESULTS: The hybrid P. fauriei was intermediate between the parent species in stomatal density, leaf anatomical features and photosynthetic characteristics in both natural habitats and a common garden. Interestingly, the maternal P. minor showed significant environmental plasticity and was more similar to the hybrid P. fauriei in the common garden, suggesting that the maternal species experiences stress in its natural habitats but thrives in environments similar to those of the hybrid. CONCLUSIONS: Based on the similar niche preferences of the hybrid and parents, we propose hybrid superiority. Our results indicate that the hybrid P. fauriei exhibits greater fitness and can compete with and occupy the initial niches of the maternal P. minor. Consequently, we suggest that the maternal P. minor has experienced a niche shift, elucidating the pattern of niche differentiation in this hybrid group. These findings offer a potential explanation for the frequent occurrence of hybridization in ferns and provide new insights into fern hybrid speciation, enhancing our understanding of fern diversity.


Assuntos
Ecossistema , Hibridização Genética , Fenótipo , Pteris , Pteris/fisiologia , Pteris/anatomia & histologia , Pteris/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Especiação Genética , Fotossíntese/fisiologia , Gleiquênias/fisiologia , Gleiquênias/anatomia & histologia , Adaptação Fisiológica
10.
Plant Physiol Biochem ; 208: 108509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461751

RESUMO

Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 µM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 µM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.


Assuntos
Melatonina , Melatonina/farmacologia , Cromo/toxicidade , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese , Clorofila/metabolismo
11.
J Phycol ; 60(2): 554-573, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38402562

RESUMO

Algal blooms are increasing worldwide, driven by elevated nutrient inputs. However, it is still unknown how tropical benthic algae will respond to heatwaves, which are expected to be more frequent under global warming. In the present study, a multifactorial experiment was carried out to investigate the potential synergistic effects of increased ammonium inputs (25 µM, control at 2.5 µM) and a heatwave (31°C, control at 25°C) on the growth and physiology (e.g., ammonium uptake, nutrient assimilation, photosynthetic performance, and pigment concentrations) of two bloom-forming algal species, Cladophoropsis sp. and Laurencia sp. Both algae positively responded to elevated ammonium concentrations with higher growth and chlorophyll a and lutein concentrations. Increased temperature was generally a less important driver, interacting with elevated ammonium by decreasing the algaes' %N content and N:P ratios. Interestingly, this stress response was not captured by the photosynthetic yield (Fv/Fm) nor by the carbon assimilation (%C), which increased for both algae at higher temperatures. The negative effects of higher temperature were, however, buffered by nutrient inputs, showing an antagonistic response in the combined treatment for the concentration of VAZ (violaxanthin, antheraxanthin, zeaxanthin) and thalli growth. Ammonium uptake was initially higher for Cladophoropsis sp. and increased for Laurencia sp. over experimental time, showing an acclimation capacity even in a short time interval. This experiment shows that both algae benefited from increased ammonium pulses and were able to overcome the otherwise detrimental stress of increasingly emerging temperature anomalies, which provide them a strong competitive advantage and might support their further expansions in tropical marine systems.


Assuntos
Compostos de Amônio , Clorófitas , Laurencia , Clorofila A , Eutrofização
12.
Environ Technol ; : 1-12, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953712

RESUMO

Cadmium (Cd) pollution is a serious threat to food safety and human health. Minimization of Cd uptake and enhancing Cd tolerance in plants are vital to improve crop yield and reduce hazardous effects to humans. In this study, we investigate the effect of a synergistic system with phytohormone (24-Epibrassinolide, EBL) and silicon (Si) on Cd toxicity and accumulation of rice plants. The results revealed that Si, EBL and their combination rescued Cd-induced growth inhibition, as evidenced by the increased dry weight of root and shoot. The chlorophyll content and photosynthetic performance were improved. The activity of antioxidant enzymes (SOD, POD and CAT) was increased and oxidative stress was alleviated. More importantly, Cd content in root was decreased by 20.25%, 17.72% and 27.84%, while Cd content in shoot decreased by 21.17%, 16.47% and 25.88%, respectively. Moreover, Si, EBL and Si + EBL treatment enriched cell wall-bound Cd and reduced Cd toxicity to functional organelles. Meanwhile, the residual form of Cd was enriched and the highly toxic forms of Cd (inorganic and water-soluble Cd) were decreased. The joint application showed better effects than applying Si and EBL alone. Collectively, this study provides an effective way for Cd toxicity mitigation in rice plants.

13.
J Photochem Photobiol B ; 249: 112812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972447

RESUMO

Light-Emitting Diodes (LED) play a major role in manipulating light spectra that helps in regulating the growth and specialized metabolite synthesis relevant to the plant defence system. In this study, we assessed photosynthetic performance, phytonutrients, and anatomical variations of an aromatic herb Anethum graveolens (also known as dill), grown under various combinations of LED lights viz. red (100R:0B), red:blue (50R:50B); blue (0R:100B) and warm white (WW, served as control). Exposure to 0R:100B LED lights led to the tallest stem height, whereas, the number of leaves were highest under 50R:50B LED lights. The photosynthetic performance was observed to be highest under 50R:50B LED lights. HPLC analysis revealed chlorogenic acid and rosmarinic acid as the major phenolic compounds accumulated under different spectral irradiations. The highest chlorogenic acid content was observed in 50R:50B LED treated dill plants, while 100R:0B light showed the highest accumulation of rosmarinic acid. Dill plants grown under 50R:50B light displayed a relatively higher content of volatile compounds including, myristicin (phenylpropene), psi-limonene, and α-phellandrene (monoterpenoids). Expression analyses of candidate genes of phenylpropanoid and monoterpenoid biosynthetic pathways showed good correlations with the enhanced phenolic compounds and monoterpenes detected under appropriate light treatments. Further, the stem anatomy revealed higher vascularization under the influence of 0R:100B LED lights, whereas, intense histochemical localization of specialized metabolites could be correlated with enhanced accumulation of phenolic compounds and terpenoids observed in this study. Taken together, these studies suggest that proper combinations of blue and red spectra of light could play important role to augment the growth and phytochemical characteristics of dill, thus improving its value addition in the food industry.


Assuntos
Anethum graveolens , Anethum graveolens/química , Ácido Clorogênico/análise , Depsídeos/análise , Monoterpenos , Compostos Fitoquímicos/análise , Fenóis/análise , Valor Nutritivo , Ácido Rosmarínico
14.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960882

RESUMO

AIMS: To quickly obtain the biomass of bait microalgae with high value-added products, researchers have examined the influence of biochemical and environmental factors on the growth rates and biochemical composition of microalgae. Previous studies have shown that lactate plays an important role in metabolic regulation in Phaeodactylum tricornutum. In this study, we investigated the effect of exogenous lactate on the growth rates, photosynthetic efficiency, and biochemical composition of four commonly used bait microalgae in aquaculture. METHODS AND RESULTS: The optical density of the algal cultures at specific time points, YII, Fv/Fm, and the total lipid, protein, soluble sugar, insoluble sugar, chlorophyll a, and carotenoid content of P. tricornutum, Isochrysis galbana (I. galbana), Chaetoceros muelleri, and Cylindrotheca fusiformis were determined. In I. galbana, the growth rate was enhanced with the addition of lactate, even though higher concentrations of lactate were associated with a decrease in YII and Fv/Fm. In general, the total lipid content of these microalgal strains increased gradually in a concentration-dependent manner over the range of lactate concentrations. In addition, higher concentrations of lactate also induced significant changes in the total soluble and insoluble sugar levels in all microalgal strains. However, chlorophyll a and carotenoid contents increased at lower but decreased at higher concentrations of lactate in all microalgal strains. The total protein content was significantly elevated at all concentrations of lactate in P. tricornutum, whereas there were no significant differences in that of C. fusiformis. CONCLUSIONS: Lactate effective influences in the growth, metabolism, and synthesis of important biochemical components in the four microalgal strains under investigation.


Assuntos
Microalgas , Clorofila A/metabolismo , Microalgas/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/metabolismo , Carotenoides/metabolismo , Lipídeos , Açúcares/metabolismo , Biomassa
15.
Front Plant Sci ; 14: 1235686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692443

RESUMO

In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalance upon metal exposure. In contrast, a mitigation of oxidative stress was highlighted in Cu-VPH and VPH+Cu-VPH, where the treatments reduced stress-related metabolites. Overall, these results highlight an interaction between Cu and VPH, hence paving the way towards the combined use of Cu and biostimulants to optimize agronomic interventions.

16.
Front Plant Sci ; 14: 1225939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719208

RESUMO

Introduction: Low agricultural nutrient input efficiency remains a significant impediment for crop production globally. To address this issue in cotton agroecosystems, there is a need to develop sustainable crop nutrient management strategies to achieve high crop yields. We hypothesized that organic liquid fertilizer (OF) combined with reduced chemical fertilizer (CF) would enhance cotton yield by improving leaf functioning and soil properties. However, the underlying mechanism and its related process is poorly understood. Methods: This study explored the effects of OF combined with reduced CF on cotton yield, physiology and soil properties. Treatments included a single application of CF (CF: N, P2O5 and K2O applied at 228, 131 and 95 kg ha-1) and combined applications of OF and CF (OF0.6-OF1.4) in the following ratios: OF0.6, OF+60% CF; OF0.8, OF+80% CF; OF1.0, OF+100% CF; OF1.2, OF+120% CF; OF1.4, OF+140% CF. Results and discussion: The result showed that compared with CF, OF0.8, OF1.0 and OF1.2 increased soil organic matter (SOM) content by 9.9%, 16.3% and 23.7%, respectively. Compared with CF, the OF0.6, OF0.8, OF1.0, and OF1.2 treatments increased leaf area (LA) by 10.6-26.1%, chlorophyll content (Chl content) by 6.8-39.6%, and the efficiency of photosystem II (PSII) light energy (Y(II)), electron transfer rate of PSII (ETR) and photochemical quenching (qP) by 3.6-26.3%, 4.7-15.3% and 4.3-9.8%, respectively. The OF0.8 treatment increased net photosynthetic rate (P n), stomatal conductance (G s) and transpiration rate (E) by 22.0%, 27.4% and 26.8%, respectively, resulting in higher seed cotton yield. The seed cotton yield and economic coefficient were positively correlated with P n, E, G s and Y(II) from the full boll stage to the boll opening stage. In summary, the OF0.8 treatment can maintain a high SOM content and photosynthetic performance with reduced chemical fertilizer input without sacrificing yield. The integration of OF+80% CF (OF0.8) is a promising nutrient management strategy for highly efficient cotton production under mulch drip irrigation systems.

17.
J Environ Manage ; 345: 118856, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619383

RESUMO

Mulching practices have been widely adopted to improve rainfed crop productivity. However, the major resources including water, heat, and light that influenced the yield of broomcorn millet in different dryland regions have rarely been explored. A three-season field experiment with three mulching practices i.e. traditional planting with non-mulching (TP), ridge-furrow mulching system (RF), and plastic film mulching (PFM) was conducted in three semi-arid regions in the Loess Plateau, China, i.e. Guyuan city (GY), Huining county (HN), and Yulin city (YL) between 2020 and 2022 to investigate the impacts of mulching regimes on soil hydrothermal conditions, agronomic characteristics, leaf photosynthetic properties, broomcorn millet yield, and water use efficiency (WUE). Results showed that both PFM and RF treatments increased soil temperature and moisture, and enhanced dry matter accumulation by promoting leaf photosynthetic capacity and chlorophyll content, thereby improving broomcorn millet yield and WUE. PFM and RF increased the average broomcorn millet yield by 15.08% and 24.86% at GY site, 20.86% and 25.61% at HN site, and 15.75% and 25.57% at YL site, respectively, and increased the average WUE by 16.31% and 27.48% at GY site, 23.21% and 28.80% at HN site, 15.55% and 28.57% at YL site, respectively. Partial least squares path modeling analysis revealed that soil moisture was an important environmental factor in determining broomcorn millet yield. Overall, RF practice can be taken to improve the management of agricultural climate factors and maximize yield, thereby promoting the sustainable development of dryland agriculture in the Loess Plateau.


Assuntos
Panicum , Água/análise , Agricultura/métodos , Solo , China , Zea mays
18.
Plant Physiol Biochem ; 201: 107897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487369

RESUMO

The rice breeding process for grain yield could be effectively enhanced by developing efficient tools that accelerate plant selection through the rapid determination of reliable predictors. In this study, we have described various associations between grain yield and photosynthetic parameters, which can be easily and quickly obtained using a non-invasive technique on the flag leaf during the anthesis stage. Among the analyzed photosynthetic parameters, the photosynthetic performance index (PIABS) stood out due to its strong association with grain yield. A genome-wide association analysis conducted on plants from a rice diversity panel at the tillering stage revealed the presence of a quantitative trait locus on chromosome 9. This locus was characterized by a group of candidate chloroplastic genes that exhibited contrasting haplotypes for PIABS. An analysis of these haplotypes revealed a clear division into two groups. One group consisted of haplotypes linked to high values of PIABS, which were predominantly associated with Japonica spp. subpopulations. The other group consisted of haplotypes linked to low values of PIABS, which were exclusively associated with Indica spp. subpopulations. Japonica spp. genotypes exhibited higher values in the yield component panicle weight compared with the Indica spp. genotypes. The findings of this study indicate that PIABS could serve as an early predictor of yield parameters during the tillering stage in rice breeding processes.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genótipo , Grão Comestível/genética
19.
Front Plant Sci ; 14: 1070472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409289

RESUMO

Chenopodium quinoa Willd. is a native species that originated in the High Andes plateau (Altiplano) and its cultivation spread out to the south of Chile. Because of the different edaphoclimatic characteristics of both regions, soils from Altiplano accumulated higher levels of nitrate (NO3-) than in the south of Chile, where soils favor ammonium (NH4 +) accumulation. To elucidate whether C. quinoa ecotypes differ in several physiological and biochemical parameters related to their capacity to assimilate NO3- and NH4 +, juvenile plants of Socaire (from Altiplano) and Faro (from Lowland/South of Chile) were grown under different sources of N (NO3- or NH4 +). Measurements of photosynthesis and foliar oxygen-isotope fractionation were carried out, together with biochemical analyses, as proxies for the analysis of plant performance or sensitivity to NH4 +. Overall, while NH4 + reduced the growth of Socaire, it induced higher biomass productivity and increased protein synthesis, oxygen consumption, and cytochrome oxidase activity in Faro. We discussed that ATP yield from respiration in Faro could promote protein production from assimilated NH4 + to benefit its growth. The characterization of this differential sensitivity of both quinoa ecotypes for NH4 + contributes to a better understanding of nutritional aspects driving plant primary productivity.

20.
Plant Physiol Biochem ; 200: 107649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267755

RESUMO

Boron (B) is essential for normal and healthy plant growth. Therefore, Boron stress is a common abiotic stress that limits plant growth and productivity. However, how mulberry copes with boron stress remains unclear. In this study, seedlings of the Morus alba cultivar, Yu-711, were treated with five different concentrations of boric acid (H3BO3), including deficient (0 and 0.02 mM), sufficient (0.1 mM) and toxic (0.5 and 1 mM) levels. Physiological parameters, enzymatic activities and non-targeted liquid chromatography-mass spectrometry (LC-MS) technique were employed to evaluate the effects of boron stress on the net photosynthetic rate (Pn), chlorophyll content, stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci) and metabolome signatures. Physiological analysis revealed that Boron deficiency and toxicity induced a decline in Pn, Ci, Gs, Tr, and chlorophyll content. Also, enzymatic activities, including catalase (CAT) and superoxide dismutase (SOD), decreased, while POD activity increased in response to Boron stress. Osmotic substances such as soluble sugars, soluble proteins, and proline (PRO) presented elevated levels under all Boron concentrations. Metabolome analysis indicated that differential metabolites, including amino acids, secondary metabolites, carbohydrates, and lipids, played a key role in Yu-711's response to Boron stress. These metabolites were mainly involved in amino acid metabolism, biosynthesis of other secondary metabolites, lipid metabolism, metabolism of cofactors and vitamins, and metabolism of other amino acids pathways. Our findings reveal the various metabolites pathways in mulberry response to boron nutrient supply and may serve as fundamental knowledge in breeding resistance mulberry plants, so that it can cope with climate changes.


Assuntos
Morus , Morus/fisiologia , Boro/metabolismo , Melhoramento Vegetal , Fotossíntese , Clorofila/metabolismo , Metabolômica , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA