Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.539
Filtrar
1.
iScience ; 27(8): 110411, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108731

RESUMO

Genetic basis underlying the biodiversity and phenotypic plasticity are fascinating questions in evolutionary biology. Such molecular diversity can be achieved at multi-omics levels. Here, we sequenced the first chromosome-level genome of assassin bug Rhynocoris fuscipes, a polyphagous generalist predator for biological control of agroecosystems. Compared to non-predatory true bugs Apolygus lucorum and Riptortus pedestris, the R. fuscipes-specific genes were enriched in diet-related genes (e.g., serine proteinase, cytochrome P450) which had higher expression level and more exons than non-diet genes. Extensive A-to-I RNA editing was identified in all three species and showed enrichment in genes associated with diet in R. fuscipes, diversifying the transcriptome. An extended analysis between five predaceous and 27 phytophagous hemipteran species revealed an expansion of diet-related genes in R. fuscipes. Our findings bridge the gap between genotype and phenotype, and also advance our understanding on genetic and epigenetic bases governing the diet shifts in ture bugs.

2.
Front Plant Sci ; 15: 1253260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109066

RESUMO

Seasonally tropical dry forests (SDTFs) in the American tropics are a highly diverse yet poorly understood and endangered ecosystem scattered from Northern Mexico to Southern Argentina. One floristic element of the STDFs is the genus Magoniella (Polygonaceae), which includes two liana species, M. laurifolia and M. obidensis, which have winged fruits and are distributed from Costa Rica to Southern Brazil. In a field expedition to the SDTFs of the Colombian Caribbean in 2015, morphologically distinctive individuals of Magoniella were found. In this study, we investigated the species boundaries within Magoniella and determined the phylogenetic position of these morphologically distinctive individuals in the tribe Triplaridae. We compiled morphological trait data across 19 specimens of both species and produced newly sequenced nuclear-plastid DNA data for M. obidensis. Morphometric analyses revealed significant differences in fruit length and perianth size among individuals from the Colombian Caribbean compared to M. obidensis and bract length when compared to M. laurifolia. Maximum likelihood analysis of non-conflicting nuclear and plastid datasets placed the Colombian Caribbean individuals as sister to M. obidensis with maximum statistical support. Additionally, pairwise sequence comparisons of the nuclear ribosomal ITS and the lfy2i loci consistently showed 15-point mutations (10 transitions, five transversions) and six 2 bp-long substitutions that differ between M. obidensis and the Colombian Caribbean individuals. Our morphological and molecular evidence thus suggests that the Colombian Caribbean individuals of Magoniella represent a divergent population from M. laurifolia and M. obidensis, which we describe and illustrate as a new species, M. chersina. Additionally, we provide nomenclatural updates for M. laurifolia and M. obidensis. This study highlights the power of combining morphological and molecular evidence in documenting and naming plant diversity.

3.
Acta Trop ; 258: 107337, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098751

RESUMO

Angiostrongylus vasorum is a metastrongylid parasite infecting wild canids and domestic dogs. Its patchy distribution, high pathogenicity and taxonomical classification makes the evolutionary history of A. vasorum intriguing and important to study. First larval stages of A. vasorum were recovered from feces of two grey foxes, Urocyon cinereoargenteus, from Costa Rica. Sequencing and phylogenetic and haplotypic analyses of the ITS2, 18S and cytochrome oxidase subunit 1 (cox1) fragments were performed. Then p- and Nei´s genetic distance, nucleotide substitution rates and species delimitation analyses were conducted with cox1 data of the specimens collected herein and other Angiostrongylus spp. Cophylogenetic congruence and coevolutionary events of Angiostrongylus spp. and their hosts were evaluated using patristic and phenetic distances and maximum parsimony reconciliations. Specimens from Costa Rica clustered in a separate branch from European and Brazilian A. vasorum sequences in the phylogenetic and haplotype network analyses using the ITS2 and cox1 data. In addition, cox1 p-distance of the sequences derived from Costa Rica were up to 8.6 % different to the ones from Europe and Brazil, a finding mirrored in Nei´s genetic distance PCoA. Species delimitation analysis supported a separate group with the sequences from Costa Rica, suggesting that these worms may represent cryptic variants of A. vasorum, a new undescribed taxon or Angiocaulus raillieti, a synonym species of A. vasorum described in Brazil. Moreover, nucleotide substitution rates in A. vasorum were up to six times higher than in the congener Angiostrongylus cantonensis. This finding and the long time elapsed since the last common ancestor between both species may explain the larger diversity in A. vasorum. Finally, cophylogenetic congruence was observed between Angiostrongylus spp. and their hosts, with cospeciation events occurring at deeper taxonomic branching of host order. Altogether, our data suggest that the diversity of the genus Angiostrongylus is larger than expected, since additional species may be circulating in wild canids from the Americas.

4.
Bull Math Biol ; 86(9): 114, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101994

RESUMO

Bayesian phylogenetic inference is powerful but computationally intensive. Researchers may find themselves with two phylogenetic posteriors on overlapping data sets and may wish to approximate a combined result without having to re-run potentially expensive Markov chains on the combined data set. This raises the question: given overlapping subsets of a set of taxa (e.g. species or virus samples), and given posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we optimize a probability distribution on phylogenetic tree topologies for the entire taxon set? In this paper we develop a variational approach to this problem and demonstrate its effectiveness. Specifically, we develop an algorithm to find a suitable support of the variational tree topology distribution on the entire taxon set, as well as a gradient-descent algorithm to minimize the divergence from the restrictions of the variational distribution to each of the given per-subset probability distributions, in an effort to approximate the posterior distribution on the entire taxon set.


Assuntos
Algoritmos , Teorema de Bayes , Cadeias de Markov , Conceitos Matemáticos , Modelos Genéticos , Filogenia , Simulação por Computador , Probabilidade
5.
BMC Plant Biol ; 24(1): 751, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103763

RESUMO

BACKGROUND: LIM (Lineage-11 (LIN-11), Insulin-1 (ISL-1), and Mechanotransduction-3 (MEC-3)) genes belong to a family that hold ubiquitous properties contributing to organ, seed, and pollen development as well as developmental and cellular responses to biotic and abiotic stresses. Lettuce (Lactuca sativa) is a highly consumed vegetable crop susceptible heat stress. High temperatures limit lettuce's overall yield, quality and marketability. Lettuce LIM genes have not been identified and their role in response to high temperatures is not known. Aiming to identify potential new targets for thermoresilience, we searched for LIM genes in lettuce and compared them with orthologous of several dicotyledons and monocotyledons plant species. RESULTS: We identified fourteen lettuce LIM genes distributed into eight different subgroups using a genome-wide analysis strategy. Three belonging to DAR (DA means "large" in Chinese) class I, two DAR class II, one in the WLIM1, two in the WLIM2, one in the PLIM1, two in the PLIM2 class, one ßLIM and two δLIMs. No DAR-like were identified in any of the species analyzed including lettuce. Interestingly, unlike other gene families in lettuce which underwent large genome tandem duplications, LIM genes did not increase in number compared to other plant species. The response to heat stress induced a dynamic transcriptional response on LsLIM genes. All heat stress regimes, including night stress, day stress and day and night stress were largely responsible for changes in LIM transcriptional expression. CONCLUSIONS: Our global analysis at the genome level provides a detailed identification of LIM genes in lettuce and other dicotyledonous and monocotyledonous plant species. Gene structure, physical and chemical properties as well as chromosomal location and Cis-regulatory element analysis together with our gene expression analysis under different temperature regimes identified LsWLIM1, LsWLIM2b, LsDAR3 and LsDAR5 as candidate genes that could be used by breeding programs aiming to produce lettuce varieties able to withstand high temperatures.


Assuntos
Resposta ao Choque Térmico , Lactuca , Proteínas de Plantas , Lactuca/genética , Lactuca/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico/genética , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Filogenia
6.
Plant Syst Evol ; 310(4): 29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105137

RESUMO

Connaraceae is a pantropical family of about 200 species containing lianas and small trees with remarkably diverse floral polymorphisms, including distyly, tristyly, homostyly, and dioecy. To date, relationships within the family have not been investigated using a targeted molecular phylogenetic treatment, severely limiting systematic understanding and reconstruction of trait evolution. Accordingly, their last infrafamilial classification was based only on morphological data. Here, we used phylogenomic data obtained using the Angiosperms353 nuclear target sequence capture probes, sampling all tribes and almost all genera, entirely from herbarium specimens, to revise infrafamilial classification and investigate the evolution of heterostyly. The backbone of the resulting molecular phylogenetic tree is almost entirely resolved. Connaraceae consists of two clades, one containing only the African genus Manotes (4 or 5 species), which we newly recognize at the subfamily level. Vegetative and reproductive synapomorphies are proposed for Manotoideae. Within Connaroideae, Connareae is expanded to include the former Jollydoreae. The backbone of Cnestideae, which contains more than half of the Connaraceae species, remains incompletely resolved. Reconstructions of reproductive system evolution are presented that tentatively support tristyly as the ancestral state for the family, with multiple parallel losses, in agreement with previous hypotheses, plus possible re-gains. However, the great diversity of stylar polymorphisms and their phylogenetic lability preclude a definitive answer. Overall, this study reinforces the usefulness of herbarium phylogenomics, and unlocks the reproductive diversity of Connaraceae as a model system for the evolution of complex biological phenomena. Supplementary Information: The online version contains supplementary material available at 10.1007/s00606-024-01909-y.

7.
Pak J Med Sci ; 40(6): 1190-1195, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952530

RESUMO

Objective: This study was aimed to investigate the multidrug resistance patterns in clinical isolates of Escherichia coli and their correlation with integrons and phylogenetic groupings. Methods: A total of 37 clinical E. coli isolates were evaluated for drug resistance patterns by disk diffusion method. Phylogenetic groupings and the presence of integrons among E. coli were determined by multiplex PCR assays. Results: Multidrug resistance was identified in 84% of the clinical isolates of E. coli with higher resistance found against cephalosporins (94.6%) and fluoroquinolones (83.8%), while lower resistance was observed against polymyxins (24.3%) and carbapenems (29.7%). Metallo-ß-lactamases were found in all carbapenem resistant isolates. The phylogenetic group B2 was the most dominant (40.5%), followed by groups A (35.1%), D (13.5%) and B1 (10.8%). Integrons were detected in 25 (67.6%) isolates and intI1, intI2, and intI3 genes were found in 62.2%, 18.9% and 10.8% of isolates respectively. Conclusion: Our results show that phylogenetic classification of E. coli is not relevant with antimicrobial resistance. However, there was strong association between the integron classes and resistance against ß-lactam and fluoroquinolones antimicrobials. Additionally, this study highlighted that the presence of integrons plays a crucial role in the development of multidrug resistance in clinical isolates of E. coli. Most significantly, this is the first report of detection of three classes of integron among clinical isolates of E. coli in Pakistan.

8.
Biochem Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954211

RESUMO

Annonaceae is the largest family in Magnoliales, exhibiting the greatest diversity among and within genera. In this study, we conducted an analysis of repetitive sequences and codon usage bias in the previously acquired plastome of Miliusa glochidioides. Using a concatenated dataset of shared genes, we constructed the phylogenetic relationships among 27 Annonaceae species. The results showed that the size of the plastomes in the Annonaceae ranged from 159 to 202 kb, with the size of the inverted repeat region ranging from 40 to 65 kb. Within the plastome of M. glochidioides, we identified 42 SSRs, 36 tandem repeats, and 9 dispersed repeats. These SSRs consist of three nucleotide types and eight motif types, with a preference for A/T bases, primarily located in the large single-copy regions and intergenic spacers. Tandem and dispersed repeat sequences were predominantly detected in the IR region. Through codon usage bias analysis, we identified 30 high-frequency codons and 11 optimal codons. The plastome of M. glochidioides demonstrated relatively weak codon usage bias, favoring codons with A/T endings, primarily influenced by natural selection. Phylogenetic analysis revealed that all four subfamilies formed monophyletic groups, with Cananga odorata (Ambavioideae) and Anaxagorea javanica (Anaxagoreoideae) successively nested outside Annonoideae + Malmeoideae. These findings improve our understanding of the plastome of M. glochidioides and provide additional insights for studying plastome evolution in Annonaceae.

9.
PhytoKeys ; 243: 149-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961998

RESUMO

Campanula L. is among the genera with the highest number of endemics in the Caucasus ecoregion. A group of attractive alpine and subalpine perennial rosette plants with short single-flowered stems centred in the Caucasus has been treated as Campanulasubg.Scapiflorae or at other ranks, with considerably varying circumscription and classification. Molecular phylogenetic analysis of three plastid DNA regions (trnK/matK, petD, rpl16) of a strongly extended sampling, comprising 23 of the 27 commonly accepted taxa (85%) with 330 accessions built on and guided by the results of our previous study of the group, confirmed the polyphyly of C.subg.Scapiflorae in any of its circumscriptions. The core clade of the group comprises exclusively endemics and near-endemics of the Caucasus and is treated here as C.sect.Tridentatae in a revised circumscription. The phylogenetic relationships of the disparate other elements of the Scapiflorae group are outlined.

10.
Syst Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963801

RESUMO

Phylogenetic trees establish a historical context for the study of organismal form and function. Most phylogenetic trees are estimated using a model of evolution. For molecular data, modeling evolution is often based on biochemical observations about changes between character states. For example, there are four nucleotides, and we can make assumptions about the probability of transitions between them. By contrast, for morphological characters, we may not know a priori how many characters states there are per character, as both extant sampling and the fossil record may be highly incomplete, which leads to an observer bias. For a given character, the state space may be larger than what has been observed in the sample of taxa collected by the researcher. In this case, how many evolutionary rates are needed to even describe transitions between morphological character states may not be clear, potentially leading to model misspecification. To explore the impact of this model misspecification, we simulated character data with varying numbers of character states per character. We then used the data to estimate phylogenetic trees using models of evolution with the correct number of character states and an incorrect number of character states. The results of this study indicate that this observer bias may lead to phylogenetic error, particularly in the branch lengths of trees. If the state space is wrongly assumed to be too large, then we underestimate the branch lengths, and the opposite occurs when the state space is wrongly assumed to be too small.

11.
Methods Mol Biol ; 2833: 121-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949706

RESUMO

Going back in time through a phylogenetic tree makes it possible to evaluate ancestral genomes and assess their potential to acquire key polymorphisms of interest over evolutionary time. Knowledge of this kind may allow for the emergence of key traits to be predicted and pre-empted from currently circulating strains in the future. Here, we present a novel genome-wide survival analysis and use the emergence of drug resistance in Mycobacterium tuberculosis as an example to demonstrate the potential and utility of the technique.


Assuntos
Mycobacterium tuberculosis , Filogenia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Genoma Bacteriano , Humanos , Evolução Molecular , Farmacorresistência Bacteriana/genética , Tuberculose/microbiologia , Tuberculose/genética
12.
Front Cell Infect Microbiol ; 14: 1325977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071164

RESUMO

This study reviews chronologically the international scientific and health management literature and resources relating to impacts of highly pathogenic avian influenza (HPAI) viruses on pinnipeds in order to reinforce strategies for the conservation of the endangered Caspian seal (Pusa caspica), currently under threat from the HPAI H5N1 subtype transmitted from infected avifauna which share its haul-out habitats. Many cases of mass pinniped deaths globally have occurred from HPAI spill-overs, and are attributed to infected sympatric aquatic avifauna. As the seasonal migrations of Caspian seals provide occasions for contact with viruses from infected migratory aquatic birds in many locations around the Caspian Sea, this poses a great challenge to seal conservation. These are thus critical locations for the surveillance of highly pathogenic influenza A viruses, whose future reassortments may present a pandemic threat to humans.


Assuntos
Caniformia , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Caniformia/virologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Virus da Influenza A Subtipo H5N1/patogenicidade , Espécies em Perigo de Extinção , Aves/virologia , Focas Verdadeiras/virologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária
13.
Microorganisms ; 12(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065265

RESUMO

Epichloë fungal endophytes hold promise in sustainable agriculture by fortifying cool-season grasses such as Elymus spp. against various stresses. Elymus spp. are widely distributed in Northwest China with a high incidence of endophyte infections. In this study, we identified 20 Epichloë endophytic fungal strains carried by five Elymus spp. from five areas of Northwest China and systematically characterized their morphology, molecular phylogeny, mating type, and alkaloid diversity for the first time. The morphological characterization underscores strain diversity, with variable colony textures and growth rates. A phylogenetic analysis confirms all strains are E. bromicola, emphasizing their taxonomic status. Alkaloid-encoding gene profiling delineates distinct alkaloid synthesis capabilities among the strains, which are crucial for host adaptability and resistance. A mating-type analysis reveals uniformity (mtAC) across the Epichloë strains, simplifying breeding strategies. Notably, the Epichloë strains exhibit diverse alkaloid synthesis gene profiles, impacting host interactions. This research emphasizes the ecological significance of Epichloë endophytes in Elymus spp. ecosystems, offering insights into their genetic diversity and potential applications in sustainable agriculture.

14.
Viruses ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39066280

RESUMO

We conducted an integrative analysis to elucidate the spatial epidemiological patterns of the Vesicular Stomatitis New Jersey virus (VSNJV) during the 2014-15 epizootic cycle in the United States (US). Using georeferenced VSNJV genomics data, confirmed vesicular stomatitis (VS) disease cases from surveillance, and a suite of environmental factors, our study assessed environmental and phylogenetic similarity to compare VS cases reported in 2014 and 2015. Despite uncertainties from incomplete virus sampling and cross-scale spatial processes, patterns suggested multiple independent re-invasion events concurrent with potential viral overwintering between sequential seasons. Our findings pointed to a geographically defined southern virus pool at the US-Mexico interface as the source of VSNJV invasions and overwintering sites. Phylodynamic analysis demonstrated an increase in virus diversity before a rise in case numbers and a pronounced reduction in virus diversity during the winter season, indicative of a genetic bottleneck and a significant narrowing of virus variation between the summer outbreak seasons. Environment-vector interactions underscored the central role of meta-population dynamics in driving disease spread. These insights emphasize the necessity for location- and time-specific management practices, including rapid response, movement restrictions, vector control, and other targeted interventions.


Assuntos
Surtos de Doenças , Genoma Viral , Filogenia , Estações do Ano , Estomatite Vesicular , Vírus da Estomatite Vesicular New Jersey , Animais , Estomatite Vesicular/virologia , Estomatite Vesicular/epidemiologia , Vírus da Estomatite Vesicular New Jersey/genética , Estados Unidos/epidemiologia , Genômica , Geografia , Bovinos , Variação Genética , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia
15.
Curr Biol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067451

RESUMO

The extraordinary diversification of beetles on Earth is a textbook example of adaptive evolution. Yet, the tempo and drivers of this super-radiation remain largely unclear. Here, we address this problem by investigating macroevolutionary dynamics in darkling beetles (Coleoptera: Tenebrionidae), one of the most ecomorphologically diverse beetle families (with over 30,000 species). Using multiple genomic datasets and analytical approaches, we resolve the long-standing inconsistency over deep relationships in the family. In conjunction with a landmark-based dataset of body shape morphology, we show that the evolutionary history of darkling beetles is marked by ancient rapid radiations, frequent ecological transitions, and rapid bursts of morphological diversification. On a global scale, our analyses uncovered a significant pulse of phenotypic diversification proximal to the Cretaceous-Palaeogene (K/Pg) mass extinction and convergence of body shape associated with recurrent ecological specializations. On a regional scale, two major Australasian radiations, the Adeliini and the Heleine clade, exhibited contrasting patterns of ecomorphological diversification, representing phylogenetic niche conservatism versus adaptive radiation. Our findings align with the Simpsonian model of adaptive evolution across the macroevolutionary landscape and highlight a significant role of ecological opportunity in driving the immense ecomorphological diversity in a hyperdiverse beetle group.

16.
Fungal Biol ; 128(5): 1917-1932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059847

RESUMO

Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.


Assuntos
Coffea , Cordyceps , Endófitos , Filogenia , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/fisiologia , Cordyceps/genética , Cordyceps/classificação , Coffea/microbiologia , Coffea/parasitologia , Animais , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Etiópia , DNA Fúngico/genética , DNA Fúngico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Caules de Planta/microbiologia , Caules de Planta/parasitologia , Análise de Sequência de DNA , Análise por Conglomerados
17.
BMC Genomics ; 25(1): 724, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060998

RESUMO

BACKGROUND: The obligate intracellular bacterial family Chlamydiaceae comprises a number of different species that cause disease in various vertebrate hosts including humans. Chlamydia suis, primarily found in the gastrointestinal tract of pigs, is the only species of the Chlamydiaceae family to have naturally gained tetracycline resistance (TetR), through a genomic island (Tet-island), integrated into the middle of chromosomal invasin-like gene inv. Previous studies have hypothesised that the uptake of the Tet-island from a host outside the Chlamydiaceae family was a unique event, followed by spread among C. suis through homologous recombination. In vitro recombination studies have shown that Tet-island exchange between C. suis strains is possible. Our aim in this study was to gain a deeper understanding of the interclade recombination of the Tet-island, among currently circulating C. suis field strains compared to in vitro-generated recombinants, using published whole genome sequences of C. suis field strains (n = 35) and in vitro-generated recombinants (n = 63). RESULTS: We found that the phylogeny of inv better reflected the phylogeny of the Tet-island than that of the whole genome, supporting recombination rather than site-specific insertion as the means of transfer. There were considerable differences between the distribution of recombinations within in vitro-generated strains compared to that within the field strains. These differences are likely because in vitro-generated recombinants were selected for a tetracycline and rifamycin/rifampicin resistant background, leading to the largest peak of recombination across the Tet-island. Finally, we found that interclade recombinations across the Tet-island were more variable in length downstream of the Tet-island than upstream. CONCLUSIONS: Our study supports the hypothesis that the occurrence of TetR strains in both clades of C. suis came about through interclade recombination after a single ancestral horizontal gene transfer event.


Assuntos
Chlamydia , Ilhas Genômicas , Filogenia , Recombinação Genética , Resistência a Tetraciclina , Chlamydia/genética , Resistência a Tetraciclina/genética , Animais , Suínos , Transferência Genética Horizontal , Genoma Bacteriano
18.
Res Sq ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38947078

RESUMO

Background: The Borreliaceae family includes many obligate parasitic bacterial species which are etiologically associated with a myriad of zoonotic borrelioses including Lyme disease and vector-borne relapsing fevers. Infections by the Borreliaceae are difficult to detect by both direct and indirect methods, often leading to delayed and missed diagnoses. Efforts to improve diagnoses center around the development of molecular diagnostics (MDx), but due to deep tissue sequestration of the causative spirochaetes and the lack of persistent bacteremias, even MDx assays suffer from a lack of sensitivity. Additionally, the highly extensive genomic heterogeneity among isolates, even within the same species, contributes to the lack of assay sensitivity as single target assays cannot provide universal coverage. This within-species heterogeneity is partly due to differences in replicon repertoires and genomic structures that have likely arisen to support the complex Borreliaceae lifecycle in which these parasites have to survive in multiple hosts each with unique immune responses. Results: We constructed a Borreliaceae family-level pangenome and characterized the phylogenetic relationships among the constituent taxa which supports the recent taxonomy of splitting the family into at least two genera. Gene content pro les were created for the majority of the Borreliaceae replicons, providing for the first time their unambiguous molecular typing. Conclusion: Our characterization of the Borreliaceae pan-genome supports the splitting of the former Borrelia genus into two genera and provides for the phylogenetic placement of several non-species designated isolates. Mining this family-level pangenome will enable precision diagnostics corresponding to gene content-driven clinical outcomes while also providing targets for interventions.

19.
Mycorrhiza ; 34(4): 369-373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951211

RESUMO

Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.


Assuntos
DNA Fúngico , Micorrizas , Filogenia , Micorrizas/genética , Micorrizas/classificação , DNA Fúngico/genética , DNA Ambiental/genética , DNA Ambiental/análise , Microbiologia do Solo , DNA Ribossômico/genética
20.
Exp Appl Acarol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981973

RESUMO

The present study aimed to analyze the cladistics and population structure analysis of Rhipicephalus microplus ticks infesting buffaloes in Haryana, India, as well as the assessment of the anti-tick efficacy of the ethanolic extracts of Cassia fistula (bark, pod pulp, and flowers) against R. microplus larvae. The molecular characterization and population structure analysis were performed by targeting the amplification of the partial mitochondrial cytochrome C oxidase subunit 1 (cox1) gene, whereas anti-tick efficacy was evaluated using a larval packet test. The sequences generated herein revealed a homology of 98.26-100% to the GenBank-archived R. microplus sequences. In population structure analysis, high haplotype (0.500 ± 0.265) and low nucleotide (0.002 ± 0.001) diversities were recorded for the sequences generated in this study. Significantly negative neutrality indices were recorded for the overall dataset. The extracts were found to significantly affect mortality rates in a dose-dependent manner, and the ethanolic extracts of the bark, pod pulp, and flowers of C. fistula exhibited median lethal concentration (LC50) values of 27.989, 40.457, and 49.43 mg/mL, respectively. The LC50 value recorded for the combination of the ethanolic extracts of the bark, flower, and pod pulp of C. fistula was 19.724 mg/mL, whereas the synthetic acaricide ivermectin had an LC50 value of 351.56 mg/mL. In conclusion, R. microplus populations infesting cattle and buffalo hosts in India exhibited negligible genetic differentiation and high gene flow between them. Additionally, the combination of all C. fistula extracts could serve as a potential substitute for the synthetic acaricide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA