Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106481

RESUMO

The rhizosphere hosts complex and abundant microbiomes whose structure and composition are now well described by metagenomic studies. However, the dynamic mechanisms that enable micro-organisms to establish along a growing plant root are poorly characterized. Here, we studied how a motile bacterium utilizes the microhabitats created by soil pore space to establish in the proximity of plant roots. We have established a model system consisting of Bacillus subtilis and lettuce seedlings co-inoculated in transparent soil microcosms. We carried out live imaging experiments and developed image analysis pipelines to quantify the abundance of the bacterium as a function of time and position in the pore space. Results showed that the establishment of the bacterium in the rhizosphere follows a precise sequence of events where small islands of mobile bacteria were first seen forming near the root tip within the first 12-24 h of inoculation. Biofilm was then seen forming on the root epidermis at distances of about 700-1000 µm from the tip. Bacteria accumulated predominantly in confined pore spaces within 200 µm from the root or the surface of a particle. Using probabilistic models, we could map the complete sequence of events and propose a conceptual model of bacterial establishment in the pore space. This study therefore advances our understanding of the respective role of growth and mobility in the efficient colonization of bacteria in the rhizosphere.


Assuntos
Bacillus subtilis , Lactuca , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Raízes de Plantas/microbiologia , Lactuca/microbiologia , Biofilmes/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/crescimento & desenvolvimento
2.
Heliyon ; 10(14): e34356, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108881

RESUMO

Indole acetic acid (IAA) is one of the prime communicator playing a chief role in the interaction between host plant and endophytes. IAA produced by the endophytes primarily contributes to plant growth and development. Here, we optimized IAA production by an endophytic fungus Diaporthe terebinthifolli GG3F6 isolated from the asymptomatic rhizome of Glycyrrhiza glabra employing response surface methodology (RSM) and exploring its effect on the host plant biology. The methodology revealed 1.1 fold increases in IAA accumulation. The maximum IAA (121.20 µg/mL) was achieved using tryptophan substrate (1 mg/mL) in Potato dextrose broth (48 g/L) adjusted to pH 12 and incubated at 35 °C for 7 days. The significantly low p-value (p < 0.0001) of the experiment propounded that the model best fits the experimental data, and the independent variables have considerable effects on the production of IAA. Morphologically, the in-vitro grown G. glabra plants showed enhanced root and shoot growth when co-cultivated with the isolated endophytic fungal strain (GG3F6) relative to the control plants. Also, the enhanced accumulation of total phenolic (10.7 %) and flavonoid (10.2 %) in the endophyte treated plants was observed. The optimization of IAA production by an endophytic fungus using (RSM) has not been reported so far. Interestingly, 2.1 fold increase in glycyrrhizin content was recorded in GG3F6 treated in-vitro host plants as compared to the control plants. This suggested a potential use of D. terebinthifolli as a biostimulator for plant and enhanced accumulation of glycyrrhizin. The study highlights the dynamic host-endophyte interaction for exploitation in agricultural and pharmaceutical applications.

4.
Microb Ecol ; 87(1): 90, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958675

RESUMO

Endophytes play an important role in plant development, survival, and establishment, but their temporal dynamics in young conifer plants are still largely unknown. In this study, the bacterial community was determined by metabarcoding of the 16S rRNA gene in the rhizoplane, roots, and aerial parts of 1- and 5-month-old seedlings of natural populations of Abies religiosa (Kunth) Schltdl. & Cham. In 1-month-old seedlings, Pseudomonas dominated aerial parts (relative abundance 71.6%) and roots (37.9%). However, the roots exhibited significantly higher bacterial species richness than the aerial parts, with the dissimilarity between these plant sections mostly explained by the loss of bacterial amplification sequence variants. After 5 months, Mucilaginibacter dominated in the rhizoplane (9.0%), Streptomyces in the roots (12.2%), and Pseudomonas in the aerial parts (18.1%). The bacterial richness and community structure differed significantly between the plant sections, and these variations were explained mostly by 1-for-1 substitution. The relative abundance of putative metabolic pathways significantly differed between the plant sections at both 1 and 5 months. All the dominant bacterial genera (e.g., Pseudomonas and Burkholderia-Caballeronia-Paraburkholderia) have been reported to have plant growth-promoting capacities and/or antagonism against pathogens, but what defines their role for plant development has still to be determined. This investigation improves our understanding of the early plant-bacteria interactions essential for natural regeneration of A. religiosa forest.


Assuntos
Abies , Bactérias , Endófitos , Raízes de Plantas , RNA Ribossômico 16S , Plântula , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/fisiologia , Endófitos/genética , RNA Ribossômico 16S/genética , Abies/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodiversidade , Microbiota , DNA Bacteriano/genética
5.
Res Microbiol ; : 104229, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992820

RESUMO

The global human population is growing and demand for food is increasing. Global agriculture faces numerous challenges, including excessive application of synthetic pesticides, emergence of herbicide-and pesticide-resistant pathogenic microbes, and more frequent natural disasters associated with global warming. Searches for valuable endophytes have increased, with the aim of making agriculture more sustainable and environmentally friendly. Endophytic microbes are known to have a variety of beneficial effects on plants. They can effectively transfer nutrients from the soil into plants, promote plant growth and development, increase disease resistance, increase stress tolerance, prevent herbivore feeding, reduce the virulence of pathogens, and inhibit the growth of rival plant species. Endophytic microbes can considerably minimize the need for agrochemicals, such as fertilizers, fungicides, bactericides, insecticides, and herbicides in the cultivation of crop plants. This review summarizes current knowledge on the roles of endophytes focusing on their mechanisms of disease control against phytopathogens through the secretion of antimicrobial substances and volatile organic compounds, and the induction of systemic resistance in plants. Additionally, the beneficial roles of these endophytes and their metabolites in the control of postharvest diseases in plants have been summarized.

6.
Front Plant Sci ; 15: 1429096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036359

RESUMO

Introduction: The importance of plant rhizodeposition to sustain microbial growth and induce xenobiotic degradation in polluted environments is increasingly recognized. Methods: Here the "cry-for-help" hypothesis, consisting in root chemistry remodeling upon stress, was investigated in the presence of polychlorinated biphenyls (PCBs), highly recalcitrant and phytotoxic compounds, highlighting its role in reshaping the nutritional and signaling features of the root niche to accommodate PCB-degrading microorganisms. Results: Arabidopsis exposure to 70 µM PCB-18 triggered plant-detrimental effects, stress-related traits, and PCB-responsive gene expression, reproducing PCB phytotoxicity. The root exudates of plantlets exposed for 2 days to the pollutant were collected and characterized through untargeted metabolomics analysis by liquid chromatography-mass spectrometry. Principal component analysis disclosed a different root exudation fingerprint in PCB-18-exposed plants, potentially contributing to the "cry-for-help" event. To investigate this aspect, the five compounds identified in the exudate metabolomic analysis (i.e., scopoletin, N-hydroxyethyl-ß-alanine, hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine) were assayed for their influence on the physiology and functionality of the PCB-degrading strains Pseudomonas alcaliphila JAB1, Paraburkholderia xenovorans LB400, and Acinetobacter calcoaceticus P320. Scopoletin, whose relative abundance decreased in PCB-18-stressed plant exudates, hampered the growth and proliferation of strains JAB1 and P320, presumably due to its antimicrobial activity, and reduced the beneficial effect of Acinetobacter P320, which showed a higher degree of growth promotion in the scopoletin-depleted mutant f6'h1 compared to Arabidopsis WT plants exposed to PCB. Nevertheless, scopoletin induced the expression of the bph catabolic operon in strains JAB1 and LB400. The primary metabolites hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine, which increased in relative abundance upon PCB-18 stress, were preferentially used as nutrients and growth-stimulating factors by the three degrading strains and showed a variable ability to affect rhizocompetence traits like motility and biofilm formation. Discussion: These findings expand the knowledge on PCB-triggered "cry-for-help" and its role in steering the PCB-degrading microbiome to boost the holobiont fitness in polluted environments.

7.
Front Plant Sci ; 15: 1417639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081520

RESUMO

Biological and abiotic stresses in plant growth are associated with reduced crop yields. Therefore, improving plant stress resistance can be a crucial strategy to improve crop production. To overcome these problems, plant growth-promoting bacteria are emphasized as one of the alternative tools for sustainable agriculture. This study found a novel strain (L3T) of a plant growth-promoting bacterium in fermented Liriope platyphylla fruit. Strain L3T showed the ability to promote plant growth. The L3T strain promoted plant growth of D. carota subsp. sativus, increasing the length (increase rate compared to the control group, 36.98%), diameter (47.06%), and weight of carrots (81.5%), ultimately increasing the edible area. In addition, we confirmed that plant growth was improved even in situations that inhibited plant growth, such as salinity and drought stress. Strain L3T performed indole production, siderophore production, phosphate solubilization, and nitrogen fixation, all characteristics of a strain that promotes plant growth. Genome analysis revealed genes involved in the growth promotion effects of strain L3T. Additionally, the properties of exopolysaccharides were identified and characterized using FTIR, TGA, and UHPLC. Our results demonstrated that L3 isolated from fermented L. platyphylla fruit can be used to simultaneously alleviate drought and NaCl stress.

8.
Plant Commun ; : 101012, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956873

RESUMO

High-light stress strongly limits agricultural production in subtropical and tropical regions owing to photo-oxidative damage, decreased growth, and decreased yield. Here, we investigated whether beneficial microbes can protect plants under high-light stress. We found that Enterobacter sp. SA187 (SA187) supports the growth of Arabidopsis thaliana under high-light stress by reducing the accumulation of reactive oxygen species and maintaining photosynthesis. Under high-light stress, SA187 triggers dynamic changes in the expression of Arabidopsis genes related to fortified iron metabolism and redox regulation, thereby enhancing the antioxidative glutathione/glutaredoxin redox system of the plant. Genetic analysis showed that the enhancement of iron and sulfur metabolism by SA187 is coordinated by ethylene signaling. In summary, beneficial microbes could be an effective and inexpensive means of enhancing high-light-stress tolerance in plants.

9.
World J Microbiol Biotechnol ; 40(8): 234, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844667

RESUMO

Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.


Assuntos
Arachis , Biofilmes , Bradyrhizobium , Fixação de Nitrogênio , Nodulação , Raízes de Plantas , Nódulos Radiculares de Plantas , Simbiose , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Interações Microbianas , Desenvolvimento Vegetal
10.
Plant Cell Environ ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847336

RESUMO

Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.

11.
Braz J Microbiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825649

RESUMO

An increasing number of microorganisms are being identified to enhance plant growth and inhibit phytopathogens. Some Cladosporium species form beneficial associations with plants, either as endophytes or by colonizing the rhizosphere. Herein, we evaluated the influence of the Cladosporium psychrotolerans (T01 strain) fungus on the in vitro growth of Arabidopsis thaliana plantlets through direct and split interactions. After 9 days post-inoculation with C. psychrotolerans, Arabidopsis plantlets exhibited a notable increase in fresh weight and lateral roots, particularly in split interactions. Chlorophyll content increased in both plant-fungus interaction conditions, whereas the primary root was inhibited during direct interaction. We observed an increase in the GUS signal from the Arabidopsis auxin-inducible DR5:uidA marker in lateral root tips in both contact and split fungal interactions, and primary root tips in a split interaction. Arabidopsis and tomato plants cultivated in soil pots and inoculated with C. psychrotolerans (T01 strain) showed a positive effect on biomass production. GC/MS analysis detected that the T01 strain emitted volatile organic compounds (VOCs), predominantly alcohols and aldehydes. These VOCs displayed potent inhibitory effects, with a 60% inhibition against Botrytis cinerea and a 50% inhibition against C. gloeosporioides. Our study demonstrates that C. psychrotolerans T01 has the potential to enhance biomass production and inhibit pathogens, making it a promising candidate for green technology applications.

12.
Microbiol Spectr ; : e0042224, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916310

RESUMO

In our study, we aimed to explore the genomic and phenotypic traits of Priestia megaterium strain B1, which was isolated from root material of healthy apple plants, to adapt to the endophytic lifestyle and promote plant growth. We identified putative genes encoding proteins involved in chemotaxis, flagella biosynthesis, biofilm formation, secretory systems, detoxification, transporters, and transcription regulation. Furthermore, B1 exhibited both swarming and swimming motilities, along with biofilm formation. Both genomic and physiological analyses revealed the potential of B1 to promote plant growth through the production of indole-3-acetic acid and siderophores, as well as the solubilization of phosphate and zinc. To deduce potential genomic features associated with endophytism across members of P. megaterium strains, we conducted a comparative genomic analysis involving 27 and 31 genomes of strains recovered from plant and soil habitats, respectively, in addition to our strain B1. Our results indicated a closed pan genome and comparable genome size of strains from both habitats, suggesting a facultative host association and adaptive lifestyle to both habitats. Additionally, we performed a sparse Partial Least Squares Discriminant Analysis to infer the most discriminative functional features of the two habitats based on Pfam annotation. Despite the distinctive clustering of both groups, functional enrichment analysis revealed no significant enrichment of any Pfam domain in both habitats. Furthermore, when assessing genetic elements related to adaptation to endophytism in each individual strain, we observed their widespread presence among strains from both habitats. Moreover, all members displayed potential genetic elements for promoting plant growth.IMPORTANCEBoth genomic and phenotypic analyses yielded valuable insights into the capacity of P. megaterium B1 to adapt to the plant niche and enhance its growth. The comparative genomic analysis revealed that P. megaterium members, whether derived from soil or plant sources, possess the essential genetic machinery for interacting with plants and enhancing their growth. The conservation of these traits across various strains of this species extends its potential application as a bio-stimulant in diverse environments. This significance also applies to strain B1, particularly regarding its application to enhance the growth of plants facing apple replant disease conditions.

13.
Ecol Appl ; 34(5): e2981, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38738945

RESUMO

Predicting how biological communities assemble in restored ecosystems can assist in conservation efforts, but most research has focused on plants, with relatively little attention paid to soil microbial organisms that plants interact with. Arbuscular mycorrhizal (AM) fungi are an ecologically significant functional group of soil microbes that form mutualistic symbioses with plants and could therefore respond positively to plant community restoration. To evaluate the effects of plant community restoration on AM fungi, we compared AM fungal abundance, species richness, and community composition of five annually cultivated, conventionally managed agricultural fields with paired adjacent retired agricultural fields that had undergone prairie restoration 5-9 years prior to sampling. We hypothesized that restoration stimulates AM fungal abundance and species richness, particularly for disturbance-sensitive taxa, and that gains of new taxa would not displace AM fungal species present prior to restoration due to legacy effects. AM fungal abundance was quantified by measuring soil spore density and root colonization. AM fungal species richness and community composition were determined in soils and plant roots using DNA high-throughput sequencing. Soil spore density was 2.3 times higher in restored prairies compared to agricultural fields, but AM fungal root colonization did not differ between land use types. AM fungal species richness was 2.7 and 1.4 times higher in restored prairies versus agricultural fields for soil and roots, respectively. The abundance of Glomeraceae, a disturbance-tolerant family, decreased by 25% from agricultural to restored prairie soils but did not differ in plant roots. The abundance of Claroideoglomeraceae and Diversisporaceae, both disturbance-sensitive families, was 4.6 and 3.2 times higher in restored prairie versus agricultural soils, respectively. Species turnover was higher than expected relative to a null model, indicating that AM fungal species were gained by replacement. Our findings demonstrate that restoration can promote a relatively rapid increase in the abundance and diversity of soil microbial communities that had been degraded by decades of intensive land use, and community compositional change can be predicted by the disturbance tolerance of soil microbial taxonomic and functional groups.


Assuntos
Pradaria , Micorrizas , Microbiologia do Solo , Micorrizas/fisiologia , Biodiversidade , Simbiose , Recuperação e Remediação Ambiental , Conservação dos Recursos Naturais , Agricultura
14.
Appl Environ Microbiol ; 90(6): e0058924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814059

RESUMO

Dormant microsclerotia play a vital role in the survival and spread of Verticillium longisporum, as they can stay viable in the soil and maintain their infectivity for many years. In our previous work, we revealed that soil bacterial volatiles are a key inhibitory factor causing microsclerotia dormancy in the soil. In this study, we further demonstrate that root exudates collected from both host and non-host plants can effectively rescue microsclerotia from bacterial suppression and initiate germination. To identify the specific compounds in root exudates responsible for microsclerotia germination, we fractionated the collected root exudates into polar and non-polar compounds. Subsequently, we conducted comprehensive bioassays with each fraction on germination-suppressed microsclerotia. The result revealed a pivotal role of primary metabolites in root exudates, particularly glutamic acid, in triggering microsclerotia germination and overcoming bacterial inhibition. Moreover, our studies revealed a decrease in inhibitory bacterial volatile fatty acids when bacteria were cultured in the presence of root exudates or glutamic acid. This suggests a potential mechanism, by which root exudates set-off bacterial suppression on microsclerotia. Here, we reveal for the first time that plant root exudates, instead of directly inducing the germination of microsclerotia, enact a set-off effect by counteracting the suppressive impact of soil bacteria on the microsclerotia germination process. This nuanced interaction advances our understanding of the multifaceted dynamics governing microsclerotia dormancy and germination in the soil environment. IMPORTANCE: Our research provides first-time insights into the crucial interaction between plant root exudates and soil bacteria in regulating the germination of Verticillium longisporum microsclerotia, a significant structure in the survival and proliferation of this soil-borne pathogen. We describe so far unknown mechanisms, which are key to understand how root infections on oilseed rape can occur. By pinpointing primary metabolites in root exudates as key factors in overcoming bacteria-induced dormancy and promote microsclerotia germination, our study highlights the potential for exploiting plant - as well as soil microbe-derived - compounds to control V. longisporum. This work underscores the importance of elucidating the nuanced interactions within the soil ecosystem to devise innovative strategies for managing root infective plant diseases, thereby contributing to the resilience and health of cropping systems.


Assuntos
Exsudatos de Plantas , Raízes de Plantas , Microbiologia do Solo , Verticillium , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Verticillium/crescimento & desenvolvimento , Verticillium/fisiologia , Exsudatos de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bactérias/metabolismo , Bactérias/classificação
15.
Sci Total Environ ; 939: 173144, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768718

RESUMO

This review paper analyses the significance of microbial activity in permafrost carbon feedback (PCF) and emphasizes the necessity for enhanced modeling tools to appropriately predict carbon fluxes associated with permafrost thaw. Beginning with an overview of experimental findings, both in situ and laboratory, it stresses the key role of microbes and plants in PCF. The research investigates several modeling techniques, starting with current models of soil respiration and plant-microorganism interactions built outside of the context of permafrost, and then moving on to specific models dedicated to PCF. The review of the current literature reveals the complex nature of permafrost ecosystems, where various geophysical factors have considerable effects on greenhouse gas emissions. Soil properties, plant types, and time scales all contribute to carbon dynamics. Process-based models are widely used for simulating greenhouse gas production, transport, and emissions. While these models are beneficial at capturing soil respiration complexity, adjusting them to the unique constraints of permafrost environments often calls for novel process descriptions for proper representation. Understanding the temporal coherence and time delays between surface soil respiration and subsurface carbon production, which are controlled by numerous parameters such as soil texture, water content, and temperature, remains a challenge. This review highlights the need for comprehensive models that integrate thermo-hydro-biogeochemical processes to understand permafrost system dynamics in the context of changing climatic circumstances. Furthermore, it emphasizes the need for rigorous validation procedures to reduce model complexity biases.


Assuntos
Carbono , Pergelissolo , Plantas , Plantas/metabolismo , Carbono/análise , Carbono/metabolismo , Ciclo do Carbono , Microbiologia do Solo , Modelos Teóricos , Ecossistema , Solo/química
16.
Chemosphere ; 360: 142364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768790

RESUMO

In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.


Assuntos
Biodegradação Ambiental , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Adsorção
17.
Mol Microbiol ; 122(1): 50-67, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38798055

RESUMO

Sensory adaptation in bacterial chemotaxis is mediated by posttranslational modifications of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli, the adaptation proteins CheR and CheB tether to a conserved C-terminal receptor pentapeptide. Here,we investigated the function of the pentapeptide motif (N/D)WE(E/N)F in Sinorhizobium meliloti chemotaxis. Isothermal titration calorimetry revealed stronger affinity of the pentapeptides to CheR and activated CheB relative to unmodified CheB. Strains with mutations of the conserved tryptophan in one or all four MCP pentapeptides resulted in a significant decrease or loss of chemotaxis to glycine betaine, lysine, and acetate, chemoattractants sensed by pentapeptide-bearing McpX and pentapeptide-lacking McpU and McpV, respectively. Importantly, we discovered that the pentapeptide mediates chemotaxis when fused to the C-terminus of pentapeptide-lacking chemoreceptors via a flexible linker. We propose that adaptational assistance and a threshold number of available sites enable the efficient docking of adaptation proteins to the chemosensory array. Altogether, these results demonstrate that S. meliloti effectively utilizes a pentapeptide-dependent adaptation system with a minimal number of tethering units to assist pentapeptide-lacking chemoreceptors and hypothesize that the higher abundance of CheR and CheB in S. meliloti compared to E. coli allows for ample recruitment of adaptation proteins to the chemosensory array.


Assuntos
Proteínas de Bactérias , Quimiotaxia , Proteínas Quimiotáticas Aceptoras de Metil , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oligopeptídeos/metabolismo , Fatores Quimiotáticos/metabolismo , Metiltransferases
19.
Plant Physiol Biochem ; 210: 108632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657546

RESUMO

Plants are not passively exposed to microbes during their life cycles, but rather shape the microbiome in their own way. However, little information is available about when and how plants recruit their microbes in the life cycles. We scrutinized the recruitment of soil microbes by rice (Oryza sativa) at the seed germination stage. Bacteria of Enterobacteria and Weeksellaceae were the most preferentially recruited by the germinating seeds, despite of many other bacteria in the soil. The seedlings that recruited Enterobacteria and Weeksellaceae bacteria notably outperformed those without these microbes in leaf length (by 54.21%), root length (by 188.11%) and biomass (by 88.65%). Further, we detected benzaldehyde, a plant-specific volatile metabolite, in the exudates of germinating seeds. Addition of benzaldehyde to the soil resulted in enrichment of Enterobacteria bacteria, suggesting that seed-released benzaldehyde could be a cue to recruit beneficial bacteria. Taken together, our results demonstrated that plants could recruit beneficial bacteria from the soil at the very early life stage of seed germination via releasing specific metabolites.


Assuntos
Benzaldeídos , Germinação , Oryza , Sementes , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Benzaldeídos/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Sementes/metabolismo , Rizosfera , Bactérias/metabolismo , Microbiologia do Solo , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/metabolismo
20.
Sci Rep ; 14(1): 6022, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472228

RESUMO

In the Kandi zone of Punjab, India, root and rhizospheric soil samples were collected from the local vegetation near the Shivalik mountain foothills. Fifteen fungal colonies exhibiting distinct cultural morphology on Potato Dextrose Agar (PDA) plates were selected for plant-microbe interaction studies. Among these, the isolate HNB9 was identified as a nonpathogenic root colonizer. Morphological and molecular analyses confirmed HNB9 as Talaromyces albobiverticillius, characterized by the secretion of a red pigment as a secondary metabolite. Plants colonized with T. albobiverticillius HNB9 exhibited enhanced growth, manifesting in increased shoot and root length compared to untreated controls. This study unveiled the first evidence that a species from the Talaromyces genus, specifically T. albobiverticillius, possesses dual capabilities of root colonization and plant growth promotion. Moreover, HNB9 demonstrated the production of plant growth-regulating compounds like Indole Acetic Acid (IAA) and proficient solubilization of crucial nutrients (Phosphorous, Zinc, and Silica) through plate culture methods. This finding represents a significant contribution to the understanding of root-colonizing fungi with plant growth-promoting attributes, challenging the existing knowledge gap within the Talaromyces genus.


Assuntos
Talaromyces , Desenvolvimento Vegetal , Fósforo , Plantas , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA