Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
1.
Front Pharmacol ; 15: 1445905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234111

RESUMO

Background: Despite the widely reported potentials of n-Hexadecanoic acid (HA) as a bioactive, its multi-stage antiplasmodial activity and toxicity profiles remain largely unknown. Methodology: Thus, this study uses a combination of in silico approaches and in vivo studies to assess the inhibitory activities of HA at different stages of the Plasmodium lifecycle, antiplasmodial performance, and toxicity profiles. The HA was retrieved from the PubChem database, while antiplasmodial target proteins from different stages of the Plasmodium falciparum life cycle were collated from the Protein Databank (PDB). Molecular Docking and Visualization were conducted between the compound and target proteins using AutoVina PyRx software and Biovia Discovery Studio, respectively. Also, the AdmetLab 3.0 algorithm was used to predict the absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profiles of HA. Based on a 4-day suppressive test, the antiplasmodial activity against the Plasmodium berghei ANKA strain in mice was evaluated. Furthermore, subacute toxicity and micronucleus assays were used for further toxicity assessment. Results: The molecular docking analysis indicates multi-stage, multi-target potentials of HA with favourable ligand-receptor complexes across the four Plasmodium falciparum stages. Meanwhile, the mice administered with 100 mg/kg, 50 mg/kg, and 10 mg/kg of HA demonstrated considerable chemosuppression in a dose-dependent manner of 89.74%, 83.80%, and 71.58% percentage chemosuppression, respectively, at p < 0.05. The ADMET prediction, histopathological tests, and micronucleus assays show that HA is safer at a lower dose. Conclusion: This study showed that n-Hexadecanoic acid is a potential drug candidate for malaria. Hence, it is recommended for further molecular and biochemical investigations.

2.
Malar J ; 23(1): 267, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223522

RESUMO

BACKGROUND: The spread of antimalarial drug resistance parasites is a major obstacle in eliminating malaria in endemic areas. This increases the urgency for developing novel antimalarial drugs with improved profiles to eliminate both sensitive and resistant parasites in populations. The invention of the drug candidates needs a model for sensitive and resistant parasites on a laboratory scale. METHODS: Repeated Incomplete Treatment (RIcT) method was followed in raising the rodent malaria parasite, Plasmodium berghei, resistant to sulfadoxine. Plasmodium berghei were exposed to an adequate therapeutic dose of sulfadoxine without finishing the treatment to let the parasite recover. Cycles of drug treatment and parasite recovery were repeated until phenotypic resistance appeared. RESULTS: After undergoing 3-4 cycles, phenotypic resistance was not yet found in mice treated with sulfadoxine. Nevertheless, the molecular biology of dhps gene (the target of sulfadoxine) was analyzed at the end of the RIcT cycle. There was no mutations found in the gene target. Interestingly, the appearance of gametocytes at the end of every cycle of drug treatment and parasite recovery was observed. These gametocytes later on would no longer extend their life in the RBC stage, unless mosquitoes bite the infected host. This phenomenon is similar to the case in human malaria infections treated with sulfadoxine-pyrimethamine (SP). CONCLUSIONS: In this study, the antimalarial drug sulfadoxine induced gametocytogenesis in P. berghei, which could raise the risk factor for malaria transmission.


Assuntos
Antimaláricos , Plasmodium berghei , Sulfadoxina , Plasmodium berghei/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Animais , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Camundongos , Resistência a Medicamentos/genética , Gametogênese/efeitos dos fármacos , Feminino , Malária/tratamento farmacológico , Malária/parasitologia
3.
Heliyon ; 10(14): e33739, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108859

RESUMO

Alveolar macrophages (AM) and monocytes (MO) are myeloid cells that play a substantial role in the development and establishment of the innate and adaptive immune response. These cells are crucial for host defense against various pathogens, but their role in malaria is poorly understood. Here, we characterize the dynamics of AMs and recruited leukocytes subpopulations in the airways during experimental Plasmodium berghei NK65-NY (PbNK65). We show that PbNK65 infection induces an increased pulmonary vascular permeability that provides Ly6Clow MOs, neutrophils (NEU), CD4+ and CD8+ lymphocytes in the airways. This inflammatory environment resulted in an increase in the population and alteration of the activation state of the AMs. Taken together, the data presented provide new insights into airway inflammation associated with pulmonary malaria.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39162008

RESUMO

Background and Objectives: Malaria airs a life-threatening risk in Tropical African countries, stemming from infection by Plasmodium species. This region is richly endowed by nature with a wealth of diverse and largely unexplored plants that hold the potential for managing this protozoan parasite. The currently accessible over-the-counter drugs for disease management often present affordability challenges for the average person, exacerbated by the parasite's increasing resistance to them. This study investigated the phytoconstituents present in the ethyl acetate fraction of Spilanthes filicaulis (EFSF) and explored the antimalarial effects of EFSF on mice infected with Plasmodium berghei. Methods: Standard methods and gas chromatography-mass spectrometry (GC-MS) were used to identify phytoconstituents. Chloroquine phosphate-sensitive P. berghei (NK-65) was intraperitoneally inoculated into Swiss mice. The in vivo antimalarial activity of EFSF was assessed at dose levels of 250, 500, and 750 mg/kg, using 4-day suppressive and curative antimalarial models. Parameters evaluated in the inoculated mice included rectal temperature (RT), body weight (BW), packed cell volume (PCV), level of parasitemia, and mean survival time (MST). Results: Steroids, alkaloids, flavonoids, tannins, saponins, terpenoids, and cardiac glycosides were the identified phytochemicals present in EFSF, and GC-MS alongside reveals the presence of 20 bioactive compounds predominantly fatty acids and alcohol esters. Significant prevention of reductions in RT, BW, and PCV was observed in the EFSF-treated groups dose dependently relative to the untreated group. In addition, EFSF-treated groups significantly (p < 0.05) suppressed parasitemia and exhibited chemosuppression of 79.46% and 77.38% in 4-day suppressive, whereas suppression of 59.74% and 58.66% in curative treatment, respectively, at 500 and 750 mg/kg thus consequently extending the MST of infected treated mice compared with the untreated group. Interpretation and Conclusion: Put together, the EFSF exhibited enhanced antimalarial efficacy against mice infected with P. berghei thus affirming that plants still maintain lead way as a potential source of novel antimalarial remedies.

5.
Int Immunopharmacol ; 140: 112843, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39098224

RESUMO

Neutrophils and macrophages confine pathogens by entrapping them in extracellular traps (ETs) through activating TLR9 function. However, plasmodial parasites secreted TatD-like DNases (TatD) to counteract ETs-mediated immune clearance. We found that TLR9 mutant mice increased susceptibility to rodent malaria, suggesting TLR9 is a key protein for host defense. We found that the proportion of neutrophils and macrophages in response to plasmodial parasite infection in the TLR9 mutant mice was significantly reduced compared to that of the WT mice. Importantly, PbTatD can directly bind to the surface TLR9 (sTLR9) on macrophages, which blocking the phosphorylation of mitogen-activated protein kinase and nuclear factor-κB, negatively regulated the signaling of ETs formation by both macrophages and neutrophils. Such, P. berghei TatD is a parasite virulence factor that can inhibit the proliferation of macrophages and neutrophils through directly binding to TLR9 receptors on the cell surface, thereby blocking the activation of the downstream MyD88-NF-kB pathways.


Assuntos
Desoxirribonucleases , Imunidade Inata , Macrófagos , Malária , Neutrófilos , Plasmodium berghei , Transdução de Sinais , Animais , Humanos , Camundongos , Desoxirribonucleases/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Malária/imunologia , Malária/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Neutrófilos/imunologia , NF-kappa B/metabolismo , Plasmodium berghei/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Receptor Toll-Like 9/metabolismo
6.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204168

RESUMO

Although many drugs have been discovered to treat malaria infection, many of them face resistance from the host's body with long-term use. Therefore, this study aimed to evaluate the activity of betalains (from Beta vulgaris) and chloroquine (a reference drug) against brain oxidative stress induced by Plasmodium berghei in male mice. Two protocols were applied in this study: the therapeutic and prophylactic protocols. The results of the therapeutic protocol revealed a significant decrease in the level of parasitemia caused by P. berghei. Additionally, the histopathological changes in various brain regions were markedly improved after treatment with betalains. Regarding the prophylactic protocol, betalains were able to protect the brain tissues from oxidative stress, inflammation, and disrupted neurotransmitters expected to occur as a result of infection by P. berghei. This was demonstrated by modulating the activities of brain antioxidants (SOD and GSH), inflammatory cytokines (IL-6, IL-10, IL-12, TNF-α, and INF-γ), and neurotransmitters (serotonin, epinephrine, and norepinephrine). This study has proven that using betalains as a treatment or as a preventive has a vital and effective role in confronting the brain histopathological, oxidative stress, and inflammatory changes induced by P. berghei infection.

7.
Int J Parasitol Drugs Drug Resist ; 26: 100563, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39153438

RESUMO

BACKGROUND: Studying and discovering the molecular mechanism of Plasmodium sexual development is crucial for the development of transmission blocking drugs and malaria eradication. The aim of this study was to investigate the feasibility of using phosphatase inhibitors as a tool for screening proteins essential for Plasmodium sexual development and to discover proteins affecting the sexual development of malaria parasites. METHODS: Differences in protein phosphorylation among Plasmodium gametocytes incubated with BVT-948 under in vitro ookinete culture conditions were evaluated using phosphoproteomic methods. Gene Ontology (GO) analysis was performed to predict the mechanism by which BVT-948 affected gametocyte-ookinete conversion. The functions of 8 putative proteins involved in Plasmodium berghei sexual development were evaluated. Bioinformatic analysis was used to evaluate the possible mechanism of PBANKA_0100800 in gametogenesis and subsequent sexual development. RESULTS: The phosphorylation levels of 265 proteins decreased while those of 67 increased after treatment with BVT-948. Seven of the 8 genes selected for phenotype screening play roles in P. berghei sexual development, and 4 of these were associated with gametocytogenesis. PBANKA_0100800 plays essential roles in gametocyte-ookinete conversion and transmission to mosquitoes. CONCLUSIONS: Seven proteins identified by screening affect P. berghei sexual development, suggesting that phosphatase inhibitors can be used for functional protein screening.

8.
BMC Complement Med Ther ; 24(1): 267, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997693

RESUMO

BACKGROUND: Malaria continues to wreak havoc on the well-being of the community. Resistant parasites are jeopardizing the treatment. This is a wake-up call for better medications. Folk plants are the key starting point for antimalarial drug discovery. After crushing and mixing the leaves of Coriandrum sativum with water, one cup of tea is drunk daily for a duration of three to five days as a remedy for malaria by local folks in Ethiopia. Additionally, in vitro experiments conducted on the plant leaf extract elsewhere have also demonstrated the plant's malaria parasite inhibitory effect. There has been no pharmacologic research to assert this endowment in animals, though. This experiment was aimed at evaluating the antimalarial efficacy of C. sativum in Plasmodium berghei infected mice. METHODS: The plant's leaf was extracted using maceration with distilled water. The extract was examined for potential acute toxicity. An evaluation of secondary phytoconstituents was done. Standard antimalarial screening models (prophylactic, chemosuppressive, curative tests) were utilized to assess the antiplasmodial effect. In each test, thirty mice were organized into groups of five. To the three categories, the test substance was given at doses of 100, 200 and 400 mg/kg/day before or after the commencement of P. berghei infection. Positive and negative control mice were provided Chloroquine and distilled water, respectively. Rectal temperature, parasitemia, body weight, survival time and packed cell volume were ultimately assessed. Analysis of the data was performed using Statistical Package for Social Sciences. RESULTS: No toxicity was manifested in mice. The extract demonstrated a significant inhibition of parasitemia (p < 0.05) in all the models. The inhibition of parasite load was highest with the upper dose in the suppressive test (82.74%) followed by the curative procedure (78.49%). Likewise, inhibition of hypothermia, weight loss hampering, improved survival and protection against hemolysis were elicited by the extract. CONCLUSIONS: The results of our experimental study revealed that the aqueous crude leaf extract of C. sativum exhibits significant antimalarial efficacy in multiple in vivo models involving mice infected with P. berghei. Given this promising therapeutic attribute, in depth investigation on the plant is recommended.


Assuntos
Antimaláricos , Coriandrum , Modelos Animais de Doenças , Malária , Extratos Vegetais , Folhas de Planta , Plasmodium berghei , Animais , Extratos Vegetais/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Camundongos , Plasmodium berghei/efeitos dos fármacos , Malária/tratamento farmacológico , Coriandrum/química , Etiópia , Masculino , Feminino
9.
Exp Anim ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069480

RESUMO

In humans, cerebral malaria is the most common cause of malaria-related mortality. Mouse C57BL/6 (B6) sub-strains are the major model system for experimental cerebral malaria (ECM) as they show similar pathophysiology to human cerebral malaria after infection with the rodent malaria parasite Plasmodium berghei ANKA. This model system has been used to analyze the molecular mechanisms of cerebral malaria. To develop new mouse models, we analyzed the ECM susceptibility of NOD/Shi (NOD) and NSY/Hos (NSY) strains established from the non-inbred ICR strain. Both NOD and NSY strains exhibited clinical symptoms and pathologies similar to ECM in C57BL/6J (B6J) mice and died within 11 days of infection. Thus, the NOD and NSY strains are susceptible to ECM and may be useful as new ECM models. The ECM susceptibility of both strains is suggested to be due to homozygosity for the cerebral malaria susceptibility allele of the ECM susceptible ICR strain. Although analyses using B6 sub-strains have proposed that complement component 5 (C5) plays an important role in ECM pathogenesis, we found that C5 was not essential as the ECM susceptible NOD strain is C5 deficient. Thus, results obtained from B6 sub-strains may not reflect the full picture of ECM in mice. Comparative analyses of multiple ECM models will contribute to a more accurate identification of the factors essential for ECM.

10.
Parasit Vectors ; 17(1): 304, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003498

RESUMO

BACKGROUND: Malaria, a global health concern, is caused by parasites of the Plasmodium genus, which undergo gametogenesis in the midgut of mosquitoes after ingestion of an infected blood meal. The resulting male and female gametes fuse to form a zygote, which differentiates into a motile ookinete. After traversing the midgut epithelium, the ookinete differentiates into an oocyst on the basal side of the epithelium. METHODS: Membrane proteins with increased gene expression levels from the gamete to oocyst stages in P. berghei were investigated utilizing PlasmoDB, the functional genomic database for Plasmodium spp. Based on this analysis, we selected the 184-kDa membrane protein, Pb184, for further study. The expression of Pb184 was further confirmed through immunofluorescence staining, following which we examined whether Pb184 is involved in fertilization using antibodies targeting the C-terminal region of Pb184 and biotin-labeled C-terminal region peptides of Pb184. RESULTS: Pb184 is expressed on the surface of male and female gametes. The antibody inhibited zygote and ookinete formation in vitro. When mosquitoes were fed on parasite-infected blood containing the antibody, oocyst formation decreased on the second day after feeding. Synthesized biotin-labeled peptides matching the C-terminal region of Pb184 bound to the female gamete and the residual body of male gametes, and inhibited differentiation into ookinetes in the in vitro culture system. CONCLUSIONS: These results may be useful for the further studying the fertilization mechanism of Plasmodium protozoa. There is also the potential for their application as future tools to prevent malaria transmission.


Assuntos
Fertilização , Plasmodium berghei , Proteínas de Protozoários , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animais , Feminino , Masculino , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Camundongos , Células Germinativas/metabolismo , Malária/parasitologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Zigoto/metabolismo , Anopheles/parasitologia , Anopheles/metabolismo , Oocistos/metabolismo , Gametogênese/genética
11.
Biomolecules ; 14(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39062495

RESUMO

Parasite-derived new permeation pathways (NPPs) expressed at the red blood cell (RBC) membrane enable Plasmodium parasites to take up nutrients from the plasma to facilitate their survival. Thus, NPPs represent a potential novel therapeutic target for malaria. The putative channel component of the NPP in the human malaria parasite P. falciparum is encoded by mutually exclusively expressed clag3.1/3.2 genes. Complicating the study of the essentiality of these genes to the NPP is the addition of three clag paralogs whose contribution to the P. falciparum channel is uncertain. Rodent malaria P. berghei contains only two clag genes, and thus studies of P. berghei clag genes could significantly aid in dissecting their overall contribution to NPP activity. Previous methods for determining NPP activity in a rodent model have utilised flux-based assays of radioisotope-labelled substrates or patch clamping. This study aimed to ratify a streamlined haemolysis assay capable of assessing the functionality of P. berghei NPPs. Several isotonic lysis solutions were tested for their ability to preferentially lyse infected RBCs (iRBCs), leaving uninfected RBCs (uRBCs) intact. The osmotic lysis assay was optimised and validated in the presence of NPP inhibitors to demonstrate the uptake of the lysis solution via the NPPs. Guanidinium chloride proved to be the most efficient reagent to use in an osmotic lysis assay to establish NPP functionality. Furthermore, following treatment with guanidinium chloride, ring-stage parasites could develop into trophozoites and schizonts, potentially enabling use of guanidinium chloride for parasite synchronisation. This haemolysis assay will be useful for further investigation of NPPs in P. berghei and could assist in validating its protein constituents.


Assuntos
Eritrócitos , Guanidina , Hemólise , Malária , Plasmodium berghei , Plasmodium berghei/efeitos dos fármacos , Animais , Hemólise/efeitos dos fármacos , Guanidina/farmacologia , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Camundongos , Malária/tratamento farmacológico , Malária/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos
12.
Parasites Hosts Dis ; 62(2): 193-204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835260

RESUMO

Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.


Assuntos
Antígenos de Protozoários , Vacinas Antimaláricas , Proteínas de Membrana , Plasmodium berghei , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Feminino , Camundongos , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Malária/prevenção & controle , Malária/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Proteínas de Membrana/imunologia , Camundongos Endogâmicos BALB C , Parasitemia/imunologia , Parasitemia/prevenção & controle , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
13.
Life (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38929667

RESUMO

Plakortinic acids C (1) and D (2), an unseparable pair of endoperoxide polyketides isolated and purified from the symbiotic association of Caribbean Sea sponges Plakortis symbiotica-Xestospongia deweerdtae, underwent in vitro evaluation for antiplasmodial activity against the malaria parasite Plasmodium berghei using a drug luminescence assay. Initial screening at 10 µM revealed 50% in vitro parasite growth inhibition. The title compounds displayed antiplasmodial activity with an EC50 of 5.3 µM toward P. berghei parasites. The lytic activity against erythrocytes was assessed through an erythrocyte cell lysis assay, which showed non-lytic activity at lower concentrations ranging from 1.95 to 3.91 µM. The antiplasmodial activity and the absence of hemolytic activity support the potential of plakortinic acids C (1) and D (2) as promising lead compounds. Moreover, drug-likeness (ADMET) properties assessed through the pkCSM server predicted high intestinal absorption, hepatic metabolism, and volume of distribution, indicating favorable pharmacokinetic profiles for oral administration. These findings suggest the potential suitability of these metabolites for further investigations of antiplasmodial activity in multiple parasitic stages in the mosquito and Plasmodium falciparum. Notably, this study represents the first report of a marine natural product exhibiting the unique 7,8-dioxatricyclo[4.2.2.02,5]dec-9-ene motif being evaluated against malaria.

14.
J Ethnopharmacol ; 333: 118413, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38824975

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Novel drugs are needed to address the issue of malarial infection resistance; natural items can be a different source of these medications. Albizia malacophylla (A. Rich.) Walp. (Leguminosae) is listed as one of the antimalarial medicinal plants in Ethiopian folk medicine. However, there are no reports regarding the biological activity or phytochemistry of the plant. AIM OF THE STUDY: Thus, this study aimed to evaluate the A. malacophylla crude extract and solvent fractions' in vivo antimalarial activity utilizing 4-day suppressive, preventative, and curative tests in mice infected with P. berghei. MATERIALS AND METHODS: The parasite Plasmodium berghei, which causes rodent malaria, was used to infect healthy male Swiss Albino mice, weighing 23-28 g and aged 6-8 weeks. Solvent fractions such as methanol, water, and chloroform were given in addition to an 80% methanolic extract at 100, 200, and 400 mg/kg doses. A Conventional test such as parasitemia, survival time, body weight, temperature, and packed cell capacity were employed to ascertain factors such as the suppressive, curative, and preventive tests. RESULTS: Every test substance dramatically reduced the number of parasites in every experiment. Crude extract (with the highest percentage suppression of 67.78%) performs better antimalarial effect than the methanol fraction, which is the most efficient solvent fraction with a percentage suppression of 55.74%. With a suppression value of 64.83% parasitemia level, the therapeutic effects of 80% methanolic crude extract were greater than its curative and preventative effects in a four-day suppressive test. The survival period (17 days) was longer with the hydroalcoholic crude extract dose of 400 mg/kg than with other doses of the materials under investigation. CONCLUSIONS: The results of this investigation validate the antimalarial characteristics of A. malacophylla leaf extract. The crude extract prevented weight loss, a decline in temperature, and a reduction in PCV. The results demonstrate that the plant has a promising antimalarial effect against P. berghei, hence supporting the traditional use of the plant. Therefore, it could serve as a foundation for the development of new antimalarial drugs.


Assuntos
Albizzia , Malária , Extratos Vegetais , Plasmodium berghei , Albizzia/química , Folhas de Planta/química , Metanol/química , Solventes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Malária/tratamento farmacológico , Malária/prevenção & controle , Modelos Animais de Doenças , Animais , Camundongos , Masculino , Temperatura Corporal/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
15.
ADMET DMPK ; 12(2): 343-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720925

RESUMO

Background and Purpose: Plasmodium falciparum and P. vivax are responsible for most malaria cases in humans in the African Region and the Americas; these parasites have developed resistance to classic antimalarial drugs. On the other hand, previous investigations of the alkyl-linked bis tetrahydro-(2H)-1,3,5-thiadiazine-2-thione (bis-THTT) derivatives compounds show satisfactory results against protozoan parasites such as Trypanosoma cruzi, Trypanosoma vaginalis, Trypanosoma brucei rhodesiense and Leishmania donovani. Therefore, it is possible to see some effect of bis-THTT derivatives on other protozoan parasites, such as Plasmodium. Experimental Approach: This study aimed to perform an in vivo biological evaluation of bis-THTT (JH1 to JH6) derivatives compounds as possible anti-malaria drugs in BALB/c mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL strains. In this work, we evaluated the compounds as potential antimalarial drugs in BALB/c mice infected with Plasmodium strains. Key Results: For each compound, we assess the percentages of parasitemia by smears from tail blood and the humoral response by indirect ELISA test using each compound as an antigen. We also evaluated the B lymphocyte response and the cytotoxicity of the bis-THTT derivatives compounds with MTT cell proliferation assays. Conclusions: Our results show that the bis-THTT derivatives JH2 and JH4 presented effective parasitemia control in mice infected with P. berghei; JH5 and JH6 compounds have similar infection control results as chloroquine in mice infected P. yoelii strain. The evaluation of bis-THTT derivatives compounds in a model of BALB/c mice infected with P. berghei and P. yoelii allowed us to conclude that some of them have an antimalarial effect; however, none of the tested compounds exceeded the efficiency of chloroquine.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38725654

RESUMO

Plasmodium infection is a health challenge. Although, antiplasmodial drugs kill the parasites, information on the effects of infection and drugs on the expression of some genes is limited. Malaria was induced in two different studies using NK65 (chloroquine-susceptible, study 1), and ANKA (chloroquine-resistant, study 2) strains of Plasmodium berghei in 30 male Swiss mice (n = 5) in each study. Mice orally received 10 mL/kg distilled water, (infected control), Mefloquine (MF) (10 mg/kg), MF and Curcumin (CM) (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (un-infected) were used as the control. After treatment, total Ribonucleic acid (RNA) was isolated from liver and erythrocytes while Deoxyribonucleic acid (DNA)-free RNA were converted to cDNA. Polymerase Chain Reaction (PCR) amplification was performed and relative expressions of FIKK12, AQP3, P38 MAPK, NADH oxidoreductase, and cytochrome oxidase expressions were determined. Markers of glycolysis, toxicity and antioxidants were determined using ELISA assays. While the expression of FIKK12 was blunted by MF in the susceptible study, co-treatment with curcumin (25 mg/kg) yielded the same results in the chloroquine-resistant study. Similar results were obtained on AQP3 in both studies. Curcumin decreased P38 MAPK in both studies. Plasmodium infection decreased NADH oxidoreductase and cytochrome oxidase but mefloquine-curcumin restored the expression of these genes. While glycolysis and toxicity were inhibited, antioxidant systems improved in the treated groups. Curcumin is needed for effective therapeutic efficacy and prevention of toxicity. Plasmodium infection and treatment modulate the expressions of some genes in the host. Curcumin combination with mefloquine modulates the expression of some genes in the host.

17.
Biochem Pharmacol ; 225: 116243, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38697310

RESUMO

The spread of malarial parasites resistant to first-line treatments such as artemisinin combination therapies is a global health concern. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) hexan-1-one) originally found in the cellular slime mould Dictyostelium discoideum. We previously showed that some derivatives of DIF-1, particularly DIF-1(+2) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) octan-1-one), exert potent antimalarial activities. In this study, we synthesised DIF-1(+3) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) nonan-1-one). We then evaluated the effects of DIF-1(+3) in vitro on Plasmodium falciparum and in vivo over 7 days (50-100 mg/kg/day) in a mouse model of Plasmodium berghei. DIF-1(+3) exhibited a half-maximal inhibitory concentration of approximately 20-30 % of DIF-1(+2) in three laboratory strains with a selectivity index > 263, including in strains resistant to chloroquine and artemisinin. Parasite growth and multiplication were almost completely suppressed by treatment with 100 mg/kg DIF-1(+3). The survival time of infected mice was significantly increased (P = 0.006) with no apparent adverse effects. In summary, addition of an acyl group to DIF-1(+2) to prepare DIF-1(+3) substantially enhanced antimalarial activity, even in drug-resistant malaria, indicating the potential of applying DIF-1(+3) for malaria treatment.


Assuntos
Antimaláricos , Hexanonas , Plasmodium falciparum , Antimaláricos/farmacologia , Animais , Camundongos , Hexanonas/farmacologia , Hexanonas/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium berghei/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Dictyostelium/efeitos dos fármacos , Acilação , Feminino , Hidrocarbonetos Clorados
18.
Phytomedicine ; 129: 155644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761524

RESUMO

BACKGROUND: A global death toll of 608,000 in 2022 and emerging parasite resistance to artemisinin, the mainstay of antimalarial chemotherapy derived from the Chinese herb Artemisia annua, urge the development of novel antimalarials. A clinical trial has found high antimalarial potency for aqueous extracts of A. annua as well as its African counterpart Artemisia afra, which contains only trace amounts of artemisinin. The artemisinin-independent antimalarial activity of A. afra points to the existence of other antimalarials present in the plant. However, the publication was retracted due to ethical and methodological concerns in the trial, so the only evidence for antimalarial activity of A. afra is built on in vitro studies reporting efficacy only in the microgram per milliliter range. HYPOTHESIS: Our study aims to shed more light on the controversy around the antimalarial activity of A. afra by assessing its efficacy in mice. In particular, we are testing the hypothesis that A. afra contains a pro-drug that is inactive in vitro but active in vivo after metabolization by the mammalian host. METHODS: Plasmodium berghei-infected mice were treated once or thrice (on three consecutive days) with various doses of A. afra, A. annua, or pure artemisinin. RESULTS: Aqueous powder suspensions of A. annua but not A. afra showed antimalarial activity in mice. CONCLUSION: Our experiments conducted in mice do not support the pro-drug hypothesis.


Assuntos
Antimaláricos , Artemisia , Artemisininas , Malária , Extratos Vegetais , Plasmodium berghei , Pós , Antimaláricos/farmacologia , Animais , Artemisia/química , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Artemisininas/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Artemisia annua/química , Suspensões , Masculino
19.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639491

RESUMO

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

20.
Int J Parasitol Drugs Drug Resist ; 25: 100539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621317

RESUMO

Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.


Assuntos
Malária Cerebral , Camundongos Endogâmicos C57BL , Plasmodium berghei , Animais , Malária Cerebral/tratamento farmacológico , Camundongos , Plasmodium berghei/efeitos dos fármacos , Administração Oral , Inflamação/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/patologia , Encéfalo/parasitologia , Encéfalo/efeitos dos fármacos , Feminino , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Neuropatologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA