Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.582
Filtrar
1.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095190

RESUMO

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Assuntos
Grafite , Oxirredução , Platina , Dióxido de Enxofre , Titânio , Titânio/química , Grafite/química , Dióxido de Enxofre/química , Platina/química , Catálise , Monóxido de Carbono/química , Água/química , Poluentes Atmosféricos/química , Modelos Químicos
2.
Cancer Invest ; : 1-8, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283148

RESUMO

Primary pulmonary salivary gland tumors (PSGT) constitute a rare subtype of non-small cell lung cancer (NSCLC). Currently, no established treatment guidelines exist for advanced PSGT. The efficacy of platinum-based chemotherapy for PSGT within the context of NSCLC remains uncertain. Therefore, we retrospectively collected 37 PSGT patients who underwent first-line platinum-based chemotherapy from 2010 to 2023. Survival analysis, employing the Kaplan-Meier method, and group comparisons via the log rank test were conducted. Our results show that first-line platinum-based chemotherapy demonstrates favorable efficacy and manageable safety in advanced PSGT, with the combination of Paclitaxel + Platinum emerging as a preferred option.

3.
Angew Chem Int Ed Engl ; : e202414578, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283725

RESUMO

The improvement of Pt-based catalysts for propane dehydrogenation (PDH) has progressed by recent investigations that have identified Zn as a promising promoter for Pt subnanometer catalysts. It is desirable to gain insights into the structure, stability, and activity of such active sites and the factors that influence them, such as Zn:Pt ratio, Pt coordination and nuclearity. Here, we employ density functional theory and microkinetic simulations to investigate the stability of PtxZny (x=1-3, y=0-3) active sites grafted on silanols of Silicalite-1 and the PDH activity of Pt. We find that the coordination of a Pt atom to a nest of grafted Zn(II) atoms increases the stability of the Pt1Zny sites, whose activity is similar for y=0-2 and drops dramatically for y>2. We further demonstrate, via linear scaling relations and microkinetic simulations, that the turnover frequency obeys a volcano law as a function of propylene binding strength. The Pt2Zn1 and Pt3Zn1 sites are stable and exhibit activity similar to Pt1Zn2, but only Pt1Zn2 manifests reaction kinetics consistent with experimental data, strongly suggesting the active site composition in the synthesized catalyst samples. The methodology presented here suggests a general strategy for deducing active site information such as composition through simple kinetic experiments.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39291640

RESUMO

Proton exchange membrane fuel cells have strict requirements for the CO concentration in H2-rich fuel gas. Here, from the perspective of industrial practicability, a highly dispersed Pt catalyst (2-4 nm) supported on activated carbon (AC), which was modified by electronic promoters (K+) and structural promoters (isopropanol), is studied in detail. Compared with traditional metal oxide supports, the K-Pt/AC catalysts, which benefit from the tuned charge distribution, achieve a significant reduction of CO (from 1% to <0.1 ppb) under H2-rich conditions and show potential for used in large-scale industrial hydrogen purification. Experimental results and theoretical calculations reveal that the K atom, with its lower electronegativity, contributes to the shift of surface Pt2+ to a lower binding energy due to the presence of oxygen species on the AC surface. This facilitates oxygen activation and accelerates desorption of the CO2 product, thereby accelerating the reaction process and enabling the deep removal of CO in a hydrogen-rich atmosphere.

5.
Turk J Chem ; 48(4): 582-596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296792

RESUMO

Breast cancer is one of the most common types of cancer worldwide and has the most lethality ratio for females among all cancers. Although current cancer therapeutics have made considerable advancements, there is still room for improvement in terms of efficacy. Many anticancer drugs have a risk of causing serious adverse effects due to their nonspecific cytotoxic effects on both tumor and healthy cells. New therapeutics might have a greater ability to kill cancer cells, reduce the volume of tumors, and improve overall therapy response rates. Herein, we report the efficient synthesis and characterization of three amphi vic-dioximes and their six novel mono-, which are extremely rare in platinum chemistry, and bisplatinum(II) complexes for breast cancer treatment. Antitumoral activities of Pt(II) complexes have been investigated on CCD-1079Sk healthy fibroblast cell line, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cytotoxicity, cell cycle, and apoptotic assays were performed. All new Pt(II) complexes exhibited selective antiproliferative effects on breast cancer cells by showing less cytotoxicity to healthy cells than known anticancer drugs cisplatin and bicalutamide. In vitro studies show that these new Pt complexes have high anticancer and antiproliferative effects and may be new alternatives to existing anticancer drugs.

6.
Int J Nanomedicine ; 19: 9503-9547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296940

RESUMO

Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanomedicina , Nanoestruturas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Interações Medicamentosas
7.
ACS Nano ; 18(37): 25542-25551, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39235302

RESUMO

Colloidal platinum nanoparticles (Pt NPs) possess a myriad of technologically relevant applications. A potentially sustainable route to synthesize Pt NPs is via polyol reduction in ionic liquid (IL) solvents; however, the development of this synthetic method is limited by the fact that reaction kinetics have not been investigated. In-line analysis in a flow reactor is an appealing approach to obtain such kinetic data; unfortunately, the optical featurelessness of Pt NPs in the visible spectrum complicates the direct analysis of flow chemistry products via ultraviolet-visible (UV-vis) spectrophotometry. Here, we report a machine learning (ML)-based approach to analyze in-line UV-vis spectrophotometric data to determine Pt NP product concentrations. Using a benchtop flow reactor with ML-interpreted in-line analysis, we were able to investigate NP yield as a function of residence time for two IL solvents: 1-butyl-1-methylpyrrolidinium triflate (BMPYRR-OTf) and 1-butyl-2-methylpyridinium triflate (BMPY-OTf). While these solvents are structurally similar, the polyol reduction shows radically different yields of Pt NPs depending on which solvent is used. The approach presented here will help develop an understanding of how the subtle differences in the molecular structures of these solvents lead to distinct reaction behavior. The accuracy of the ML prediction was validated by particle size analysis and the error was found to be as low as 4%. This approach is generalizable and has the potential to provide information on various reaction outcomes stemming from solvent effects, for example, differential yields, orders of reaction, rate coefficients, NP sizes, etc.

8.
Environ Res ; 262(Pt 2): 119933, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278586

RESUMO

Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.

9.
ACS Nano ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39293063

RESUMO

Determining the local coordination of the active site is a prerequisite for the reliable modeling of single-atom catalysts (SACs). Obtaining such information is difficult on powder-based systems and much emphasis is placed on density functional theory computations based on idealized low-index surfaces of the support. In this work, we investigate how Pt atoms bind to the (11̅02) facet of α-Fe2O3; a common support material in SACs. Using a combination of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and an extensive computational evolutionary search, we find that Pt atoms significantly reconfigure the support lattice to facilitate a pseudolinear coordination to surface oxygen atoms. Despite breaking three surface Fe-O bonds, this geometry is favored by 0.84 eV over the best configuration involving an unperturbed support. We suggest that the linear O-Pt-O configuration is common in reactive Pt-based SAC systems because it balances thermal stability with the ability to adsorb reactants from the gas phase. Moreover, we conclude that extensive structural searches are necessary to determine realistic active site geometries in single-atom catalysis.

10.
Angew Chem Int Ed Engl ; : e202414786, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39295286

RESUMO

The selenides of platinum-group metals (PGMs) are emerging as promising catalysts for diverse electrochemical reactions. To date, most studies have focused on single metal or bimetallic systems, whereas the preparation of a high-entropy (HE) selenide consisting of five or more PGM elements holds the promise to further enhance catalytic performance by introducing abundant active sites with various local coordination environments and electronic structures. Herein, we report for the first time the synthesis of PGM-based HE-Selenide (HE-Se) nanoparticles with a unique amorphous structure. The atomic metal-Se coordination and the presence of short-range order were thoroughly revealed. It is further shown that the amorphous HE-Se can be facilely transformed into a single-phase crystalline HE-Se with a cubic structure by thermal annealing. Catalytically, the amorphous HE-Se showed better acidic hydrogen evolution activity over monometallic PGM-based selenides and the crystalline counterpart, demonstrating the advantages of high-entropy configuration and amorphous structure. Our findings may pave the way toward the synthesis and property exploration of amorphous PGM-based selenides with tunable compositions.

11.
Acad Radiol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39289095

RESUMO

RATIONALE AND OBJECTIVES: This study aimed to develop a deep learning (DL) prognostic model to evaluate the significance of intra- and peritumoral radiomics in predicting outcomes for high-grade serous ovarian cancer (HGSOC) patients receiving platinum-based chemotherapy. MATERIALS AND METHODS: A DL model was trained and validated on retrospectively collected unenhanced computed tomography (CT) scans from 474 patients at two institutions, which were divided into a training set (N = 362), an internal test set (N = 86), and an external test set (N = 26). The model incorporated tumor segmentation and peritumoral region analysis, using various input configurations: original tumor regions of interest (ROIs), ROI subregions, and ROIs expanded by 1 and 3 pixels. Model performance was assessed via hazard ratios (HRs) and receiver operating characteristic (ROC) curves. Patients were stratified into high- and low-risk groups on the basis of the training set's optimal cutoff value. RESULTS: Among the input configurations, the model using an ROI with a 1-pixel peritumoral expansion achieved the highest predictive accuracy. The DL model exhibited robust performance for predicting progression-free survival, with HRs of 3.41 (95% CI: 2.85, 4.08; P < 0.001) in training set, 1.14 (95% CI: 1.03, 1.26; P = 0.012) in internal test set, and 1.32 (95% CI: 1.07, 1.63; P = 0.011) in external test set. KM survival analysis revealed significant differences between the high-risk and low-risk groups (P < 0.05). CONCLUSION: The DL model effectively predicts survival outcomes in HGSOC patients receiving platinum-based chemotherapy, offering valuable insights for prognostic assessment and personalized treatment planning.

12.
Chembiochem ; : e202400519, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301577

RESUMO

We report the synthesis and characterization of two novel cisplatin- alkylating agents conjugates. Combining a platinum based cytostatic agent with a sterically demanding alkylating agent could potentially induce further DNA damage, block cell repair mechanisms and keep the substrate active against resistant tumor cell lines. The 3-chloropiperidines utilized as ligands in this work are cyclic representatives of the N-mustard family and were not able to coordinate platinum on their own. The introduction of a second coordination site, in form of a pyridine moiety, led to the isolation of the desired conjugates. They were characterized with HRMS, CHN-analyses and XRD. We concluded this work by examining the cytotoxicity of the ligands and the obtained complexes with MTT assays in human cancer cell lines. While the ligands showed hardly any activity, the novel conjugates both displayed a high antiproliferative and cytotoxic potency in a panel of three cell lines. Moreover, both complexes were able to largely circumvent the acquired cisplatin resistance of A2780cisR ovarian cancer cells, both in the MTT assay and a flow-cytometric apoptosis assay.

13.
Front Oncol ; 14: 1405361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220639

RESUMO

Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few significant results have been obtained in the last two decades to improve patient survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors (PARPi) have been successfully introduced in the clinical management of OC, but not all patients will benefit, and drug resistance almost inevitably occurs. The identification of patients who are likely to respond to PARPi-based therapies relies on homologous recombination deficiency (HRD) tests, as this condition is associated with response to these treatments. This review summarizes the genomic and functional HRD assays currently used in clinical practice and those under evaluation, the clinical implications of HRD testing in OC, and their current pitfalls and limitations. Special emphasis will be placed on the functional HRD assays under development and the use of machine learning and artificial intelligence technologies as novel strategies to overcome the current limitations of HRD tests for a better-personalized treatment to improve patient outcomes.

14.
Chemistry ; : e202403264, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252655

RESUMO

Platinum(II) metalla-N-heterocyclic carbene complexes featuring pyridyl heterocyclic moiety demonstrate remarkable catalytic efficiency in alkyne hydrosilylation under green light irradiation. The photocatalytic properties of complexes are rationalised by the photo-induced charge transfer occurring in extended condensed system identified with the help of various experimental (UV/vis and emission spectroscopy, cyclic voltammetry) and theoretical methods (DFT/TD-DFT, IFCT analysis).

15.
Angew Chem Int Ed Engl ; : e202414625, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254212

RESUMO

A high-efficiency PtZnCd nanozyme was screened with density functional theory (DFT) and unique d-orbital coupling features for sensitive enrichment and real-time analysis of CO-releasing molecule-3 (CORM-3). Multi-catalytic sites in the nanozyme showed a high reactivity of up to 72.89 min-1 for peroxidase-like enzymes (POD) reaction, which was 2.2, 4.07, and 14.67 times higher than that of PtZn (32.67 min-1), PtCd (17.89 min-1), and Pt (4.97 min-1), respectively. Normalization of the catalytic sites showed that the catalytic capacity of the active site in PtZnCd was 2.962 U µmol-1, which was four times higher than that of pure Pt site (0.733 U µmol-1). DFT calculations showed that improved d-orbital coupling between different metals reduces the position of the center of the shifted whole d-band relative to the Fermi energy level, thereby increasing the contribution of the sites to the electron transfer from the active center, accompanied with enhanced substrate adsorption and intermediate conversion in the catalytic process. The potential adsorption principle and color development mechanism of CORM-3 on PtZnCd were determined, and the practical application in drug metabolism was validated in vitro, in zebrafish and mice as a model, demonstrating that transition metal doping effectively engineers high-performance nanozymes and optimizes artificial enzymes.

16.
Chempluschem ; : e202400368, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228206

RESUMO

This study focuses on the sustainable production of bio-jet fuel through the catalytic hydrodeoxygenation (HDO) of isoeugenol (IE). Properties of two spraying synthesis methods (in situ and ex situ metal doping) with different platinum (Pt) loading percentages. The catalyst was characterised using various techniques such as XAS, X-ray photoelectron spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis. The HRTEM and FESEM results show the successful preparation of a spherical nanoparticle doped over activated carbon, and Pt was dispersed on the outer shell of the particles. The catalytic HDO of IE showed a high yield and conversion as follows: IE conversion of 100%, liquid-phase mass balance of 95.92%, dihydroeugenol conversion of 99.32%, propylcyclohexane yield of 88.94% and HYD yield of 76.19%. Moreover, the catalyst exhibited high reusability with low metal leaching and high coke resistance for 10 cycles. The catalyst was evaluated in a continuous flow reactor for 100 h at different reaction temperatures, and interestingly, the catalyst showed low deactivation with a high half-time.

17.
J Natl Cancer Inst ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222012

RESUMO

PURPOSE: Standard neoadjuvant chemotherapy (NACT) for locally advanced esophageal/gastroesophageal junction squamous cancer (LAEGSC), 5-fluorouracil (5FU)+platinum, is toxic and logistically challenging; alternative regimens are needed. PATIENTS AND METHODS: Phase III randomized open-label non-inferiority trial at Tata Memorial Center, India, in resectable LAEGSC. Patients were randomized 1:1 to three cycles of 3-weekly platinum (cisplatin 75 mg/m2 or carboplatin AUC 6) with paclitaxel 175 mg/m2 (day 1) or 5FU 1000 mg/m2 continuous infusion (days 1-4), followed by surgery. RESULTS: Between August 2014 and June 2022, we enrolled 420 patients; 210 to each arm. Significantly more patients on paclitaxel + platinum (194 (92.3%)] received all 3 chemotherapy cycles than on 5FU+platinum (170 [85.9%]), P = .009. 5FU + platinum caused more grade ≥ 3 toxicities (124 [69.7%]) than paclitaxel + platinum (97 [51.9%]), P = .001. Surgery was performed in 131 (62.4%) patients on 5FU + platinum vs 139 (66.2%) on paclitaxel + platinum, P = .415. Paclitaxel + platinum resulted in higher pathologic primary tumor clearance (33 [25.8%]) vs 17 [15%]; P = .04), and pathologic complete responses in 21.9% compared to 12.4% from 5FU + platinum, P = .053. Median OS was 27.5 months (95% CI, 18.6-43.5) from paclitaxel + platinum, which was non-inferior to 27.1 months (95% CI, 18.8-40.7) from 5FU + platinum; HR, 0.89 (95% CI, 0.72-1.09); P = .346. CONCLUSION: Neoadjuvant paclitaxel + platinum chemotherapy is safer, and results in similar R0 resections, higher pathologic tumor clearance and non-inferior survival, compared to 5FU + platinum. Paclitaxel + platinum should replace 5FU + platinum as NACT for resectable LAEGSC. CLINICAL TRIALS REGISTRY INDIA NUMBER: CTRI/2014/04/004516.

18.
Angew Chem Int Ed Engl ; : e202409784, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225426

RESUMO

Subnanometer metal clusters show advantages over conventional metal nanoparticles in numerous catalytic reactions owing to their high percentage of exposed surface sites, abundance of under-coordinated metal sites and unique electronic structures. However, the applications of subnanometer metal clusters in high-temperature catalytic reactions (>600 °C) are still hindered, because of their low stability under harsh reaction conditions. In this work, we have developed a zeolite-confined bimetallic PtIn catalyst with exceptionally high stability against sintering. A combination of experimental and theoretical studies shows that the isolated framework In(III) species serve as the anchoring sites for Pt species, precluding the migration and sintering of Pt species in the oxidative atmosphere at ≥650 °C. The catalyst comprising subnanometer PtIn clusters exhibits long-term stability of >1000 h during a cyclic reaction-regeneration test for ethane dehydrogenation reaction.

19.
Chemistry ; : e202402833, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259477

RESUMO

The overarching goal of this study is to effect the elimination of platinum from adducts with cis -CΞC-Pt-CΞC- linkages, thereby generating novel conjugated polyynes. Thus, the bis(hexatriynyl) complex trans-(p-tol3P)2Pt((CΞC)3H)2 is treated with 1,3-diphosphines R2C(C-H2PPh2)2 to generate (R2C(CH2PPh2)2)2Pt((CΞC)3H)2 (14; R = c, n-Bu; e, p-tolCH2). These con-dense with the diiodide complexes R2C(CH2PPh2)2PtI2 (9a,c) in the presence of CuI (cat.) and excess HNEt2 to give the title macrocycles [(R2C(CH2PPh2)2)Pt(CΞC)3]4 (16c,e) as adducts of the byproduct [H2NEt2]+ I- (30-66%). DOSY NMR experiments establish that this association is maintained in solution, but NaOAc removes the ammonium salt. The bis(triethylsilylpolyynyl) complexes (n-Bu2C(CH2PPh2)2)Pt((CΞC)nSiEt3)2 (n = 2, 3) are synthesized analogously to 14c. They react with I2 at rt to give mainly the diiodide complex 9c and the coupling product Et3Si(CΞCCΞC)nSiEt3. The possibility of competing reactions giving ICΞC species is investigated. Analogous reactions of the Pt4C24 macrocycle 16c also give 9c, but no sp 13C NMR signals or mass spectrometric Cxz+ ions (x = 24-100) could be detected. It is proposed that some cyclo[24]car-bon is generated, but then rapidly converts to other forms of elemental carbon. No cyclotetracosane (C24H48) is detected when this sequence is carried out in the presence of PtO2 and H2.

20.
Gynecol Oncol Rep ; 55: 101482, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39252764

RESUMO

Objective: Platinum-free interval (PFI) is the period from the end of platinum-based chemotherapy to the date of recurrence. If the PFI is > 6 months, a platinum-based chemotherapy rechallenge is considered; however, its efficacy after poly adenosine 5'-diphosphate-ribose polymerase (PARP) inhibitor maintenance therapy is unknown. This study aimed to examine the efficacy of a platinum-based chemotherapy rechallenge after PARP inhibitor therapy. Methods: We retrospectively evaluated patients with ovarian cancer with a PFI≥6 months with PARP inhibitor maintenance therapy, receiving platinum-based chemotherapy. Duration of PARP inhibitor therapy, best response to subsequent platinum chemotherapy rechallenge, and clinical characteristics were collected from medical records. Tumor response was assessed according to RECIST 1.1. Correlations were calculated using Spearman's correlation coefficients. Results: Among the 10 included patients, seven (70 %) received PARP inhibitors after primary chemotherapy, and three (30 %) received chemotherapy for platinum-sensitive relapse. One and five patients harbored a germline BRCA1 and BRCA wild-type mutations, respectively, and two had homologous recombination proficiency. The median PFI was 303.5 (182-602) days, and PARP inhibitor therapy duration was 249 (147-570) days. Platinum chemotherapy rechallenge efficacy was complete and partial response and stable disease in one (10 %), six (60 %), and three (30 %) patients, respectively. The longer the duration of PARP inhibitor treatment, better the response to platinum agents (Spearman correlation coefficient 0.284, p = 0.0288). Conclusion: Platinum-based chemotherapy rechallenge is reasonable for patients with platinum-sensitive disease, using the traditional PFI cutoff of 6 months, even when the PFI is obtained with a maintenance PARP inhibitor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA