Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36006196

RESUMO

To begin to understand the impact of food chain dynamics on ciguatera risk, we used published data to model the transfer of ciguatoxins across four trophic levels of a marine food chain in Platypus Bay, Australia. The data to support this first attempt to conceptualize the scale of each trophic transfer step was limited, resulting in broad estimates. The hypothetical scenario we explored generated a low-toxicity 10 kg Spanish mackerel (Scomberomorus commerson) with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1, also known as CTX1B) from 19.5-78.1 µg of P-CTX-1 equivalents (eq.) that enter the marine food chain from a population of 12-49 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 × 10-12 g/cell of the P-CTX-1 precursor, P-CTX-4B. This number of Gambierdiscus could be epiphytic on 22-88 kg of the benthic macroalgae (Cladophora) that carpets the bottom of much of Platypus Bay, with the toxin transferred to an estimated 40,000-160,000 alpheid shrimps in the second trophic level. This large number of shrimps appears unrealistic, but toxic shrimps would likely be consumed by a school of small, blotched javelin fish (Pomadasys maculatus) at the third trophic level, reducing the number of shrimps consumed by each fish. The Spanish mackerel would accumulate a flesh concentration of 0.1 µg/kg P-CTX-1 eq. by preying upon the school of blotched javelin and consuming 3.6-14.4 µg of P-CTX-1 eq. However, published data indicate this burden of toxin could be accumulated by a 10 kg Spanish mackerel from as few as one to three blotched javelin fish, suggesting that much greater amounts of toxin than modelled here must at certain times be produced and transferred through Platypus Bay food chains. This modelling highlights the need for better quantitative estimates of ciguatoxin production, biotransformation, and depuration through marine food chains to improve our understanding and management of ciguatera risk.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Perciformes , Animais , Ciguatera/epidemiologia , Ciguatoxinas/metabolismo , Ciguatoxinas/toxicidade , Dinoflagellida/metabolismo , Peixes/metabolismo , Cadeia Alimentar , Perciformes/metabolismo
2.
Toxins (Basel) ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437386

RESUMO

We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.


Assuntos
Ciguatoxinas , Peixes , Cadeia Alimentar , Modelos Biológicos , Animais , Austrália , Baías , Ciguatoxinas/metabolismo , Peixes/crescimento & desenvolvimento , Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA