Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Restor Dent Endod ; 49(3): e27, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39247642

RESUMO

Objectives: This study aimed to develop whitening mouth rinses formulated with industrial mushrooms and compare them with over-the-counter whitening mouth rinses. Materials and Methods: Formulations with black shimeji mushrooms, mushroom substrates, and mushroom stalks were developed. Bovine enamel/dentin samples were divided into 7 groups (n = 10): Colgate Luminous White, Listerine Whitening Extreme (LWE), Listerine Cool Mint (LC), mushroom extract rinse (MEC), mushroom substrate rinse (MSB), mushroom stalk rinse (MTC), and artificial saliva. Samples were stained with black tea for 6 days, and then were immersed in 100 mL of each mouth rinse twice daily for 14 days. Color parameters (CIELAB [ΔE*], CIEDE2000 [ΔE00], whiteness index for dentistry [ΔWID]) and microhardness (Knoop hardness number [KHN]) were analyzed at T1 (initial), T2 (24 hours), and T3 (7 days). Mouth rinse pH was measured, and enamel was examined using a scanning electron microscope. Data were analyzed using generalized linear models, and KHN with the generalized linear mixed model for repeated measures (p ≤ 0.05). Results: ΔE* was higher in LW and MSB groups. No significant differences were found for ΔE00 (p = 0.0982) and ΔWID (p = 0.2536). Experimental mouth rinses did not promote enamel whitening based on ΔE00 and ΔWID. LWE and LC reduced KHN and had a more acidic pH, while MEC had higher KHN at T2. MEC, MSB, and MTC had alkaline pH, not altering the tooth surface. Conclusions: Black shimeji mushrooms are promising for mouth rinse development due to their alkaline pH and non-altering effect on surface microhardness.

2.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273696

RESUMO

Oyster mushroom spherical virus (OMSV) is a mycovirus that inhibits mycelial growth, induces malformation symptoms, and decreases the yield of fruiting bodies in Pleurotus ostreatus. However, the pathogenic mechanism of OMSV infection in P. ostreatus is poorly understood. In this study, RNA sequencing (RNA-seq) was conducted, identifying 354 differentially expressed genes (DEGs) in the mycelium of P. ostreatus during OMSV infection. Verifying the RNA-seq data through quantitative real-time polymerase chain reaction on 15 DEGs confirmed the consistency of gene expression trends. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses highlighted the pivotal role of primary metabolic pathways in OMSV infection. Additionally, significant changes were noted in the gene expression levels of carbohydrate-active enzymes (CAZymes), which are crucial for providing the carbohydrates needed for fungal growth, development, and reproduction by degrading renewable lignocellulose. The activities of carboxymethyl cellulase, laccase, and amylase decreased, whereas chitinase activity increased, suggesting a potential mechanism by which OMSV influenced mycelial growth through modulating CAZyme activities. Therefore, this study provided insights into the pathogenic mechanisms triggered by OMSV in P. ostreatus.


Assuntos
Micovírus , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Micélio , Pleurotus , Pleurotus/genética , Micovírus/genética , Micélio/crescimento & desenvolvimento , Micélio/genética , Transcriptoma , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ontologia Genética
3.
3 Biotech ; 14(3): 73, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39262831

RESUMO

This study is the first report on purification, characterization, and application of laccase derived from the white-rot fungus, Pleurotus ostreatus HK35 (Hungary strain), in Congo Red decolorization. The purification process involved ammonium sulfate precipitation, dialysis, anion exchange chromatography, and ultrafiltration, yielding a specific laccase activity of 15.26 U/mg and a 30.21% recovery rate. The purified enzyme, with a molecular weight of approximately 34 kilodaltons, displayed optimal activity at a temperature of 60 °C and pH 4.0 when using 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) as a substrate. The enzyme maintained over 82.02 ± 1.01% of its activity at temperatures up to 50 °C after 180 min but displayed less than 5% of its activity at 60 and 70 °C. Notably, the enzyme's activity was significantly enhanced by Pb(NO3)2, whereas ß-mercaptoethanol completely inhibited the activity. Utilizing the Box-Behnken design, we optimized Congo Red decolorization efficiency to 91.05 ± 0.82% at 100 mg/L Congo Red, 1.5 mM mediator concentration, and 1.6 U/mL laccase activity. Analysis of Variance (ANOVA) suggested the model was significant, and all variables significantly influenced decolorization efficiency. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03926-7.

4.
Curr Issues Mol Biol ; 46(9): 9493-9502, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39329915

RESUMO

Pleurotus ostreutus is one of the world's most commonly consumed mushrooms. The cultivation of mushrooms using wood resources usually results in environmental issues such as deforestation. Juncao grasses, namely (JJ) Cenchrus fungigraminus, (AR) Saccharum arundinaceum, and (MS) Miscanthus floridulus, supplemented with 20% wheat brain, 1% ground coffee, 1% gysum, and 1% lime, were used as the culture mediums in this research, which offers a composting system with a simple formulation that is cheap and feasible for small farms to use in cultivating oyster mushrooms. The present study assessed the different juncao grasses as substrates for growing Pleurotus ostreatus given their enzyme activities, growth, and yields. The results demonstrated that the yields of pleurotus ostreatus grown on JJ, AR, and MS substrates were significantly different at the level of 0.05 and were recorded as follows: 159.2 g/bag, 132 g/bag, and 65.1 g/bag on average, respectively. The biological efficiency of Pleurotus ostreatus cultivated in three different substrates was 75.2%, 63.4%, and 28.7%, respectively. Lignin peroxidase (LiP) was the most active enzyme in each culture material among the other enzyme activities expressed differently between the substrate and growing stages. At the same time, other enzyme activities were differently expressed between the substrate and different developmental stages. Nutrient analysis revealed significant variations, with differences in polysaccharides, proteins, and amino acids among substrates, as well as the presence of heavy metals such as arsenic, lead, mercury, and cadmium in all samples within safe limits. The obtained results indicated that Saccharum arundinaceum is a good substrate in place of Cenchrus fungigraminus, and that using Miscanthus floridulus is not productive. Moreover, the juncao grasses offer a sustainable approach that reduces reliance on wood-based substrates and enhances environmental sustainability.

5.
Nutrients ; 16(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203946

RESUMO

For centuries, mushrooms have been used as a component of skincare formulations. Environmental stresses and a modern lifestyle expose the skin to accelerated aging. To slow down this process, natural anti-aging skincare ingredients are being sought. In this review, 52 scientific publications about the effects of chemical compounds extracted from the fruiting bodies of macrofungi on skin cells were selected. The effects of extracts from nine species that are tested for anti-aging effects have been described. According to available literature data, macrofungi contain many polysaccharides, phenolic compounds, polysaccharide peptides, free amino acids, sterols, proteins, glycosides, triterpenes, alkaloids, which can have an anti-aging effect on the skin by acting as antioxidants, photoprotective, skin whitening, moisturizing, anti-inflammatory and stabilizing collagen, elastin and hyaluronic acid levels in the skin.


Assuntos
Antioxidantes , Envelhecimento da Pele , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Antioxidantes/farmacologia , Agaricales/química , Cosméticos , Pele/efeitos dos fármacos , Pele/metabolismo , Animais , Polissacarídeos/farmacologia , Fenóis/farmacologia , Fenóis/análise , Ácido Hialurônico
6.
Int J Food Microbiol ; 425: 110872, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39163813

RESUMO

This study aimed to determine the compatibility of pre-fermented sugar beet pulp to support the growth of Pleurotus ostreatus mycelium in submerged fermentation. The goal was to create a meat alternative based on mycelial-fermented pulp. It was further explored whether pre-fermentation with lactic acid bacteria (LAB) on the pulp increased meat-like properties, such as aroma, springiness, and hardness, in the final product. Three strains were selected from a high throughput screening of 105 plant-derived LAB based on their acidification and metabolite production in the pulp. Two homofermentative strains (Lactococcus lactis) and one heterofermentative strain (Levilactobacillus brevis) were selected based on their low ethanol production, high lactic acid production, and overall acidification of the pulp. Mycelium of P. ostreatus was grown in submerged fermentations on the pre-fermented pulp, and the biomass was removed by centrifugation. The fungal strain consumed all available sugars and acids and released arabinose to the media. Volatiles were detected using GC-MS, and a large increase in concentrations of hexanal, 1-octen-3-ol, and 2-octenal was measured. Concentration of 1-octen-3-ol was lower in the pre-fermented samples vs. the non-pre-fermented. LC-MS amino acid analysis showed the presence of all essential amino acids on day 0 and 7 of fermentation. The highest concentration of amino acids was for glutamic acid/glutamine and aspartic acid/asparagine. A decrease in all amino acids after 7 days of fungal fermentation was measured for all fermentations. The decrease was more significant for pre-fermented samples. This was also confirmed through a total protein determination, except for samples pre-fermented with Lactococcus lactis strain NFICC142 which increased in total protein content after fungal fermentation. The protein digestibility increased after fungal fermentation, and the highest increase was seen for non-pre-fermented samples. The springiness of the fermented product indicated similarities to meat alternatives, while the hardness was much lower than other meat alternatives. The results indicate that dried sugar beet pulp can be used for submerged cultivation of P. ostreatus, but that pre-fermentation does not improve the physical or nutritional properties of the end product significantly, except for an increased protein content for NFICC142 pre-fermented media. This is the first known attempt to use LAB and P. ostreatus in mixed fermentation to produce fungal mycelium, as well as the first attempt at using SBP in a liquid fermentation for mycelial production of P. ostreatus.


Assuntos
Beta vulgaris , Fermentação , Micélio , Pleurotus , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Beta vulgaris/microbiologia , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Meios de Cultura/química , Microbiologia de Alimentos , Substitutos da Carne
7.
Int J Biol Macromol ; 278(Pt 1): 134318, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111500

RESUMO

Edible fungi, healthier for humans and sustainable for the planet, attract unprecedented attention. In the study, the genetically modified Pleurotus ostreatus overexpression phosphoglucomutase (PGM) was constructed. P. ostreatus overexpression PGM (Po::PGM) had 4.96-folds higher expression level of PGM. Po::PGM grew thicker mycelium and more mycelium branches. Additional Ca2+ can inhibit mycelium growth, and cyclic adenosine monophosphate completely inhibited their growth of Po::PGM. Secondly, Overexpression of PGM made P. ostreatus become more sensitive to cell wall disruptors, and caused 12.75 % reduction of ß-1, 3-glucan and 40.53 % increase of chitin in cell wall. In submerged fermentation, the mycelia biomass yield and endopolysaccharide (IPS) production of Po::PGM in basic PDB can reach 11.18 g/l and 2.55 g/l, increasing by 20.86 % and 28.79 %, respectively. Whereas exopolysaccharide (EPS) reduced by 3.28 %. After replacing potato and glucose in PDB by wheat bran, mycelia biomass and EPS production of Po::PGM were all improved. The additional lactose in wheat bran did not only furtherly enhance mycelia biomass yield of Po::PGM to 27.78 g/l by 199.03 %, but IPS production also increased by 277.99 % to 6.07 g/l. The results provided us key ideas and important research directions that at least manipulating the PGM gene could obtain high-efficient use of agricultural wastes producing more fungus-based foods.


Assuntos
Biomassa , Micélio , Pleurotus , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/genética , Micélio/metabolismo , Agricultura/métodos , Polissacarídeos/biossíntese , Polissacarídeos/metabolismo , Fermentação , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Resíduos , Parede Celular/metabolismo , Parede Celular/genética
8.
Foods ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39123511

RESUMO

Limited research suggests mushroom consumption may improve indexes of brain health. Mushrooms contain bioactive compounds and antioxidants capable of crossing the blood-brain barrier and impacting vital neurological processes. We conducted a randomized controlled feeding trial assessing the effects of adopting a healthy U.S. Mediterranean-style dietary pattern (MED) with or without mushrooms on indexes of brain health and well-being. Sixty adults (aged 46 ± 12 y; BMI 28.3 ± 2.84 kg/m2; mean ± SD) without severe depression consumed a fully controlled MED diet with 84 g/d of mushrooms (4 d/week white button and 3 d/week oyster) or without (control with breadcrumbs) for 8 weeks. At baseline and post-intervention, surveys were used to evaluate anxiety, depression, mood, and well-being, and behavioral tests were used to evaluate cognition. Consumption of the MED diet, with or without mushrooms, increased (improved) self-reported vigor/activity (Time p = 0.026) and both behavioral measures of immediate memory (Time p < 0.05). Mixed effects were observed for other domains of neuropsychological function, and there were no changes in other measured indexes of brain health with the consumption of either MED diet. Adopting a healthy MED-style dietary pattern, with or without consuming white button and oyster mushrooms, may improve vigor/activity and immediate memory among middle-aged and older adults.

9.
Foods ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123563

RESUMO

The impact of fava bean processing methods (soaking, autoclaving, fermentation) on a legume-based bars' quality, protein characteristics, and digestibility was shown. The antioxidant and the angiotensin-converting enzyme-inhibitory capacity before and after in vitro digestion were investigated to reveal the potential advantages of fava bean usage for snacks. All bars have demonstrated high protein content, varying from 22.1 to 25.1 g/100 g DB. Based on the fermented fava beans of Pleurotus ostreatus, the samples were characterized by a higher concentration of essential amino acids by 8.6% and a reduction of tannins by 18.5% compared with bars based on soaked fava beans. Sensory evaluation improved the color, texture, and overall acceptability of the bars with fermented legumes. Various types of bean processing did not significantly affect the protein digestibility of the bars. The fermentation method positively affected the angiotensin-converting enzyme-inhibitory properties of bars and increased by 16.5% (before digestion) and 15% (after digestion) compared with other samples. After digestion, samples were characterized by a high level of Fe bioaccessibility (100, 83, and 79% for the bars based on soaked, autoclaved, and fermented fava beans, respectively) and increased total phenolic content. These findings highlight the potential health benefits of fava bean usage for snack products.

10.
Food Sci Biotechnol ; 33(10): 2343-2356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145131

RESUMO

In this study raw and steamed Pleurotus ostreatus were dried and ground and fractionated by sieving into four granulometric classes (< 200 µm, 200-250 µm, 250-355 µm and > 355 µm) and unsieved powders. The combined steam cooking and sieving improved the content of total polyphenols (+ 59.45%), flavonoids (+ 76.47%), condensed tannins (+ 68.75%) and trace elements (+ 45.51% Fe, + 63.63% Cu, + 62.42% Mn, + 121.11% Zn, and + 53.52% Se) as well as in-vitro and in-vivo antioxidant activities in the finest fraction < 200 µm compared to the raw powder. It was found that the intake at a dose of 250 mg/kg body weight of the finest fractions of raw and steamed powders by the stressed rats had more of a hepatoprotective effect marked by a reduction in the level of transaminases ALAT and ASAT. This work opens a new approach for valuing edible mushrooms in the development of new food products with high antioxidant value.

11.
Sci Total Environ ; 948: 174554, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39004366

RESUMO

This study investigates P. ostreatus and A. bisporus biodegradation capacity of low density polyethylene (LDPE) oxidised to simulate environmental weathering. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the degradation of LDPE treated with fungal cultures. Molecular implications of LDPE degradation by P. ostreatus and A. bisporus were evaluated by Reverse transcription followed by quantitative PCR (qRT-PCR) of lac, mnp and lip genes expression. After 90 days of incubation, FT-IR analysis showed, for both fungal treatments, an increasing in the intensity of peaks related to the asymmetric C-C-O stretching (1160 to 1000 cm-1) and the -OH stretching (3700 to 3200 cm-1) due to the formation of alcohols and carboxylic acid, indicating depolymerisation of LDPE. This was confirmed by the SEM analysis, where a widespread alteration of the surface morphology was observed for treated LDPE fragments. Results revealed that the exposure of P. ostreatus to oxidised LDPE treatment led to a significant increase in the expression of the lac6, lac7, lac9, lac10 and mnp2 genes, while A. bisporus showed an over-expression in lac2 and lac12 genes. The obtained results offer new perspectives for a biotechnological use of P. ostreatus and A. bisporus for plastic bioremediation.


Assuntos
Biodegradação Ambiental , Lignina , Lignina/metabolismo , Polietileno/metabolismo , Plásticos/metabolismo
12.
Int J Biol Macromol ; 276(Pt 2): 133971, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032890

RESUMO

Exploration of Pleurotus ostreatus as a biological agent in the degradation of persistent plastics like polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, revealing a promising avenue toward mitigating the environmental impacts of plastic pollution. Leveraging the intrinsic enzymatic capabilities of this fungus, mainly its production of laccase, presents a sustainable and eco-friendly approach to breaking down complex polymer chains into less harmful constituents. This review focused on enhancements in the strain's efficiency through genetic engineering, optimized culture conditions, and enzyme immobilization to underscore the potential for scalability and practical application of this bioremediation process. The utilization of laccase from P. ostreatus in plastic waste management demonstrates a vital step forward in pursuing sustainable environmental solutions. By using the potential of fungal bioremediation, researchers can move closer to a future in which the adverse effects of plastic pollution are significantly mitigated, benefiting the health of our planet and future generations.


Assuntos
Biodegradação Ambiental , Lacase , Microplásticos , Pleurotus , Lacase/metabolismo , Lacase/química , Pleurotus/enzimologia , Microplásticos/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química
13.
World J Microbiol Biotechnol ; 40(9): 277, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037585

RESUMO

Food insecurity and malnutrition are serious problems in many developing countries, including Ethiopia. This situation warrants an urgent need for the diversification of food sources with enhanced productivity. This study was aimed at contributing to the food security in Ethiopia through cultivation of Pleurotus ostreatus mushrooms using sustainable and locally available agro-industrial byproduct-based substrates in parallel with pollution control. Ten substrates were prepared using sugarcane bagasse, filter cake, trash, cotton seed hull and animal waste, namely cow dung and horse and chicken manure. The effect of each substrate (treatment) on the yields, biological efficiency, nutritional composition, and mineral contents of Pleurotus ostreatus mushroom species was evaluated at the Ethiopian Forest Products Innovation Center, Addis Ababa, Ethiopia. The results obtained indicate that a significantly higher (p < 0.05) yield and biological efficiency were recorded from the mushroom cultivated on S2 substrate containing a mixture of 80% sugarcane bagasse, 12% cow dung, and 8% cotton seed hull. Moreover, substrate containing sugarcane bagasse mixed with cotton seed hull, cow dung, and chicken manure significantly (p < 0.05) increased the yields and biological efficiency of the mushroom. The content of protein, crude fat, fiber, and carbohydrates of the mushroom cultivated from all the utilized substrates were in the range of 17.30-21.5, 1.77-2.52, 31.03-34.38, and 28.02-39.74%, respectively. The critical macro-elements are abundant in the mushroom in the order of potassium, magnesium, calcium, and sodium. The mushrooms cultivated on all the substrates were rich in essential micro-elements in the order of iron and zinc. It was found that substrate preparation and formulation significantly (p < 0.05) improved the yields, biological efficiency, nutritive values, and mineral contents of the mushroom. The use of these by-products as substrates is sustainable and environmentally friendly and allows the production of mushroom with high nutritional value on a sustainable basis in order to enhance food security in the country.


Assuntos
Valor Nutritivo , Pleurotus , Saccharum , Etiópia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Saccharum/metabolismo , Saccharum/química , Animais , Celulose/metabolismo , Esterco/análise , Agricultura/métodos , Bovinos , Galinhas , Minerais/análise
14.
Int J Biol Macromol ; 277(Pt 1): 133782, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084977

RESUMO

To improve the functions of Pleurotus ostreatus polysaccharide (POP), POP-EGCG conjugates were prepared using free radical graft polymerization reactions and were characterized using UV-vis, FT-IR, SEM, XRD, DSC, TG, particle size and potential, three-phase contact angle, and rheological tests; The antioxidant and antibacterial ability in vitro were detected. Moreover, effects of POP-EGCG on the quality of refrigerated minced pork were investigated. The results showed the optimal preparation conditions of POP-EGCG were 1 % POP, 1.3 % EGCG, 0.25 % Vc, 16 % concentration of H2O2, and reaction 17 h. The POP-EGCG showed the characteristic peak of EGCG and was a mesh honeycomb with rough and porous surface; It had higher crystallinity, increased particle size, but decreased thermal stability, solubility, and viscosity, and significantly enhanced antioxidant and antibacterial ability. The POP-EGCG effectively improved the sensory quality and inhibited lipid oxidation of chilled minced pork, and extended the shelf life of minced pork up to 9 days at 4 °C. Specifically, the TVB-N and TBARS of minced pork in the POP-EGCG group were respectively 14.93 mg/100 g and 0.9 mg MDA/kg, which were lower than the spoilage thresholds in the national standard. This study provides a theoretical basis for further development of natural antioxidants and antimicrobial agents.


Assuntos
Antioxidantes , Conservação de Alimentos , Pleurotus , Pleurotus/química , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Conservação de Alimentos/métodos , Suínos , Radicais Livres/química , Antibacterianos/farmacologia , Antibacterianos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Carne de Porco
15.
PeerJ ; 12: e17467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827301

RESUMO

Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (µ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.


Assuntos
Corantes , Glicerol , Pleurotus , Glicerol/metabolismo , Glicerol/farmacologia , Pleurotus/genética , Pleurotus/enzimologia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Corantes/metabolismo , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peroxidases/genética , Peroxidases/metabolismo , Glucose/metabolismo
16.
J Am Nutr Assoc ; : 1-8, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935369

RESUMO

OBJECTIVE: Our aim in this study is, does 29-day regular consumption of Pleurotus ostreatus water extract by volunteer individuals who meet the study criteria have an effect on blood and cytokine values? METHOD: In accordance with the purpose of the study, volunteers were asked to consume 100 ml of the extract every morning for 29 days. Three tubes of blood samples were taken from the volunteers on the 15th and 29th days of the study. Biochemical and hematological analysis of the blood samples were performed and immunomodulatory effects through cytokines were examined. The values obtained from 3 tubes of blood obtained from volunteers before the use of mushroom extract were used as control. The chemical composition and ß-glucan content of 100 ml of mushroom water extract were also analyzed. RESULT: IL-4, IL-6, IL-10 and IL-13 could not be detected because the values were below the lowest standard value. TNF-α, IFN-γ and IL-1ß 15th and 29th day values decreased compared to the 1st day (control) values (p < 0.05). However, there was no significant difference observed between the 15th and 29th day. No abnormalities were observed in biochemical and hematological values. Also, the ß-glucan content of extract was found 38.12 mg/100 ml. CONCLUSION: The frequency range of kidney and liver function test results confirmed that P. osreatus is a reliable food source. Considering the cytokine values these results indicate that P. ostreatus water extract has an anti-inflammatory effect. As no significant difference was observed in 29 days of use, it is thought that 15 days of daily consumption of the extract may be sufficient for the anti-inflammatory effect to occur. However, a large number of qualified clinical trials are needed to support the issue.

17.
Microorganisms ; 12(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930624

RESUMO

Edible fungi are a valuable resource in the search for sustainable solutions to environmental pollution. Their ability to degrade organic pollutants, extract heavy metals, and restore ecological balance has a huge potential for bioremediation. They are also sustainable food resources. Edible fungi (basidiomycetes or fungi from other divisions) represent an underutilized resource in the field of bioremediation. By maximizing their unique capabilities, it is possible to develop innovative approaches for addressing environmental contamination. The aim of the present study was to find selective chemical agents suppressing the growth of microfungi and bacteria, but not suppressing white-rot fungi, in order to perform large-scale cultivation of white-rot fungi in natural unsterile substrates and use it for different purposes. One application could be the preparation of a matrix composed of wooden sleeper (contaminated with PAHs) and soil for further hazardous waste bioremediation using white-rot fungi. In vitro microbiological methods were applied, such as, firstly, compatibility tests between bacteria and white-rot fungi or microfungi, allowing us to evaluate the interaction between different organisms, and secondly, the addition of chemicals on the surface of a Petri dish with a test strain of microorganisms of white-rot fungi, allowing us to determine the impact of chemicals on the growth of organisms. This study shows that white-rot fungi are not compatible to grow with several rhizobacteria or bacteria isolated from soil and bioremediated waste. Therefore, the impact of several inorganic materials, such as lime (hydrated form), charcoal, dolomite powder, ash, gypsum, phosphogypsum, hydrogen peroxide, potassium permanganate, and sodium hydroxide, was evaluated on the growth of microfungi (sixteen strains), white-rot fungi (three strains), and bacteria (nine strains) in vitro. Charcoal, dolomite powder, gypsum, and phosphogypsum did not suppress the growth either of microfungi or of bacteria in the tested substrate, and even acted as promoters of their growth. The effects of the other agents tested were strain dependent. Potassium permanganate could be used for bacteria and Candida spp. growth suppression, but not for other microfungi. Lime showed promising results by suppressing the growth of microfungi and bacteria, but it also suppressed the growth of white-rot fungi. Hydrogen peroxide showed strong suppression of microfungi, and even had a bactericidal effect on some bacteria, but did not have an impact on white-rot fungi. The study highlights the practical utility of using hydrogen peroxide up to 3% as an effective biota-suppressing chemical agent prior to inoculating white-rot fungi in the large-scale bioremediation of polluted substrates, or in the large-scale cultivation for mushroom production as a foodstuff.

18.
Food Chem ; 455: 139867, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823127

RESUMO

Reducing the content of quickly absorbed carbohydrates and saturated fats in snack formulations while increasing the consumption of high-quality proteins are effective strategies to prevent obesity in childhood. Thus, the nutritional value, digestibility, and functionality of fava beans (Vicia faba L.) fermented with Pleurotus ostreatus were examined as potential ingredients for food design. Solid-state fermentation enhanced the protein content by 16% with a rise in essential (25%) and non-essential (15%) amino acids while decreasing total carbohydrate content and tannin levels. Moreover, fermentation modified the amino acid profile released during digestion, increasing amino acids such as valine, isoleucine, and threonine, which are vital for health and development in childhood. Furthermore, the bioaccessible fraction of the fermented bean showed a 60% of ACE inhibition and improved magnesium bioaccessibility. Consequently, fava beans fermented with Pleurotus ostreatus emerged as a new ingredient in the development of new protein-rich snacks tailored for children and adolescents.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Digestão , Fermentação , Vicia faba , Humanos , Aminoácidos/metabolismo , Aminoácidos/análise , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Modelos Biológicos , Valor Nutritivo , Pleurotus/metabolismo , Pleurotus/química , Pleurotus/crescimento & desenvolvimento , Vicia faba/química , Vicia faba/metabolismo , Vicia faba/microbiologia
19.
Int J Biol Macromol ; 275(Pt 1): 133503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944091

RESUMO

Pleurotus ostreatus is one of the most cultivated edible fungi worldwide, but its lignocellulose utilization efficiency is relatively low (<50 %), which eventually affects the biological efficiency of P. ostreatus. Improving cellulase production and activity will contribute to enhancing the lignocellulose-degrading capacity of P. ostreatus. AMP-activated/Snf1 protein kinase plays important roles in regulating carbon and energy metabolism. The Snf1 homolog (PoSnf1) in P. ostreatus was obtained and analyzed using bioinformatics. The cellulose response of PoSnf1, the effect of the phosphorylation level of PoSnf1 on the expression of cellulose degradation-related genes, the putative proteins that interact with the phosphorylated PoSnf1 (P-PoSnf1), the cellobiose transport function of two sugar transporters (STP1 and STP2), and the interactions between PoSnf1 and STP1/STP2 were studied in this research. We found that cellulose treatment improved the phosphorylation level of PoSnf1, which further affected cellulase activity and the expression of most cellulose degradation-related genes. A total of 1, 024 proteins putatively interacting with P-PoSnf1 were identified, and they were enriched mainly in the substances transport and metabolism. Most of the putative cellulose degradation-related protein-coding genes could respond to cellulose. Among the P-PoSnf1-interacting proteins, the functions of two sugar transporters (STP1 and STP2) were further studied, and the results showed that both could transport cellobiose and were indirectly regulated by P-PoSnf1, and that STP2 could directly interact with PoSnf1. The results of this study indicated that PoSnf1 plays an important role in regulating the expression of cellulose degradation genes possibly by affecting cellobiose transport.


Assuntos
Celobiose , Celulose , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Pleurotus , Celulose/metabolismo , Celobiose/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Fosforilação , Transporte Biológico , Ligação Proteica , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética
20.
Sci Rep ; 14(1): 13446, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862766

RESUMO

Present study concerns the transformation of the agro-industrial by-products olive mill stone waste (OMSW) and walnut shell (WS) to a protein-enriched animal feedstuff utilizing the solid state fermentation (SSF) technique. For this purpose, various mixtures of these by-products were exploited as substrates of the SSF process which was initiated by the P. ostreatus fungus. The respective results indicated that the substrate consisted of 80% WS and 20% OMSW afforded the product with the highest increase in protein content, which accounted the 7.57% of its mass (69.35% increase). In addition, a 26.13% reduction of lignin content was observed, while the most profound effect was observed for their 1,3-1,6 ß-glucans profile, which was increased by 3-folds reaching the 6.94% of substrate's mass. These results are indicative of the OMSW and WS mixtures potential to act as efficient substrate for the development of novel proteinaceous animal feed supplements using the SSF procedure. Study herein contributes to the reintegration of the agro-industrial by-products aiming to confront the problem of proteinaceous animal feed scarcity and reduce in parallel the environmental footprint of the agro-industrial processes within the context of circular economy.


Assuntos
Ração Animal , Fermentação , Resíduos Industriais , Juglans , Olea , Pleurotus , Pleurotus/metabolismo , Juglans/metabolismo , Juglans/química , Olea/metabolismo , Olea/química , Ração Animal/análise , Resíduos Industriais/análise , Lignina/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA