Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125644

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.


Assuntos
Biomarcadores , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas de Neurofilamentos/metabolismo , Peptídeos/metabolismo , Progressão da Doença , Estresse Oxidativo
2.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067163

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxina-7/genética , Ataxina-7/metabolismo , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Neurônios/metabolismo , Neuroglia/metabolismo , Sirolimo
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446028

RESUMO

Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Histonas/genética , Histonas/metabolismo , Acetilação , Modelos Animais de Doenças , Epigênese Genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
Neurotoxicology ; 97: 120-132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37302585

RESUMO

Copper (Cu) and Zinc (Zn) are required in small concentrations for metabolic functions, but are also toxic. There is a great concern about soil pollution by heavy metals, which may exposure the population to these toxicants, either by inhalation of dust or exposure to toxicants through ingestion of food derived from contaminated soils. In addition, the toxicity of metals in combination is questionable, as soil quality guidelines only assess them separately. It is well known that metal accumulation is often found in the pathologically affected regions of many neurodegenerative diseases, including Huntington's disease (HD). HD is caused by an autosomal dominantly inherited CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. This results in the formation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD results in loss of neuronal cells, motor changes, and dementia. Rutin is a flavonoid found in various food sources, and previous studies indicate it has protective effects in HD models and acts as a metal chelator. However, further studies are needed to unravel its effects on metal dyshomeostasis and to discern the underlying mechanisms. In the present study, we investigated the toxic effects of long-term exposure to copper, zinc, and their mixture, and the relationship with the progression of neurotoxicity and neurodegeneration in a C. elegans-based HD model. Furthermore, we investigated the effects of rutin post metal exposure. Overall, we demonstrate that chronic exposure to the metals and their mixture altered body parameters, locomotion, and developmental delay, in addition to increasing polyQ protein aggregates in muscles and neurons causing neurodegeneration. We also propose that rutin has protective effects acting through mechanisms involving antioxidant and chelating properties. Altogether, our data provides new indications about the higher toxicity of metals in combination, the chelating potential of rutin in the C. elegans model of HD and possible strategies for future treatments of neurodegenerative diseases caused by the aggregation of proteins related to metals.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Humanos , Doença de Huntington/induzido quimicamente , Doença de Huntington/prevenção & controle , Doença de Huntington/genética , Caenorhabditis elegans , Cobre/toxicidade , Zinco , Rutina/farmacologia , Modelos Animais de Doenças
5.
Nutr Neurosci ; 25(11): 2288-2301, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34311678

RESUMO

Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disease. It occurs due to a mutated huntingtin gene that contains an abnormal expansion of cytosine-adenine-guanine repeats, leading to a variable-length N-terminal polyglutamine (polyQ) chain. The mutation confers toxic functions to mutant huntingtin protein, causing neurodegeneration. Rutin is a flavonoid found in various plants, such as buckwheat, some teas, and apples. Our previous studies have indicated that rutin has protective effects in HD models, but more studies are needed to unravel its effects on protein homeostasis, and to discern the underlying mechanisms. In the present study, we investigated the effects of rutin in a Caenorhabditis elegans model of HD, focusing on ASH neurons and antioxidant defense. We tested behavioral changes (touch response, movement, and octanol response), measured neuronal polyQ aggregates, and assessed degeneration using a dye-filling assay. In addition, we analyzed expression levels of heat-shock protein-16.2 and superoxide dismutase-3. Overall, our data demonstrate that chronic rutin treatment maintains the function of ASH neurons, and decreases the degeneration of their sensory terminations. We propose that rutin does so in a mechanism that involves antioxidant activity by controlling the expression of antioxidant enzymes and other chaperones regulating proteostasis. Our findings provide new evidence of rutin's potential neuroprotective role in the C. elegans model and should inform treatment strategies for neurodegenerative diseases and other diseases caused by age-related protein aggregation.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Caenorhabditis elegans/metabolismo , Fármacos Neuroprotetores/farmacologia , Rutina/farmacologia , Antioxidantes/farmacologia , Neurônios/metabolismo
6.
Data Brief ; 36: 107109, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036130

RESUMO

This dataset contains a collection of molecular dynamics (MD) simulations of polyglutamine (polyQ) and glutamine-rich (Q-rich) peptides in the multi-microsecond timescale. Primary data from coarse-grained simulations performed using the SIRAH force field has been processed to provide fully atomistic coordinates. The dataset encloses MD trajectories of polyQs of 4 (Q4), 11 (Q11), and 36 (Q36) amino acids long. In the case of Q11, simulations in presence of Q5 and QEQQQ peptides, which modulate aggregation, are also included. The dataset also comprises MD trajectories of the gliadin related p31-43 peptide, and Insulin's C-peptide at pH=7 and pH=3.2, which constitute examples of Q-rich and Q-poor aggregating peptides. The dataset grants molecular insights on the role of glutamines in spontaneous and unbiased ab-initio aggregation of a series of peptides using a homogeneous set of simulations [1]. The trajectory files are provided in Protein Data Bank (PDB) format containing the Cartesian coordinates of all heavy atoms in the aggregating peptides. Further analyses of the trajectories can be performed directly using any molecular visualization/analysis software suites.

7.
J Pediatr Endocrinol Metab ; 34(7): 843-849, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33838085

RESUMO

OBJECTIVES: Cryptorchidism is the most common genitourinary birth defect in live newborn males and is considered as an important risk factor for testicular germ cell tumors and infertility. The Androgen Receptor gene is important in this pathology due to its participation, mainly, in the inguinoscrotal phase of testicular descent. We determine the length of the CAG tract in the Androgen Receptor (AR) gene in Mexican patients with nonsyndromic cryptorchidism. METHODS: One hundred and 15 males were included; of these, 62 had nonsyndromic cryptorchidism and 53 were healthy volunteers. DNA was extracted from a peripheral blood samples, subsequently, the CAG tract in exon 1 of AR gene was amplified by PCR and sequenced. RESULTS: Mexican patients with nonsyndromic cryptorchidism presented 25.03 ± 2.58 repeats of CAG tract in the AR gene compared to 22.72 ± 3.17 repeats of CAG tract in Mexican healthy individuals (p≤0.0001; t value of 4.3). Furthermore, the deletion of codon 57 that corresponds to the deletion of a leucine residue at position 57 (Del L57) in the AR gene was found for the first time in a nonsyndromic cryptorchidism patient. This molecular alteration has been related previously to testicular germ cell tumor (TGCT). CONCLUSIONS: The CAG tract in the AR gene is longer in patients with nonsyndromic cryptorchidism than in healthy individuals, supporting the association between this polymorphism of the AR gene and nonsyndromic cryptorchidism in the Mexican population.


Assuntos
Criptorquidismo/genética , Receptores Androgênicos/genética , Repetições de Trinucleotídeos , Humanos , Masculino
8.
Front Neurol ; 11: 571843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281707

RESUMO

Background: Huntington's disease (HD) is a progressive disorder characterized by motor, cognitive and psychiatric features. Cerebellar ataxia is classically considered as uncommon in HD clinical spectrum. Objective: To determine the prevalence of cerebellar ataxia in patients with HD, both in the early and in the late stages of HD. Methods: Seventy-two individuals considered eligible were assessed by two trained doctors, applying the Scale for Assessment and Rating of Ataxia (SARA) and Brief Ataxia Rating Scale (BARS) for ataxia, the Unified Huntington's Disease Rating Scale (UHDRS) and also, Barthel Index (BI), in order to evaluate functional capacity. Results: Fifty-one patients (70.8%) presented with clinical ataxia at the time of examination (mean time of disease was 9.1 years). Six (8.33%) patients presented with cerebellar ataxia as first symptom. When stratified according to time of disease, a decline in the presence of chorea (p = 0.032) and an increase in cognitive deficit (p = 0.023) were observed in the patients as the disease progressed. The presence of ataxia was associated with longer duration of illness and severity of illness (UHDRS) (p < 0.0001), and shorter Barthel (less functionality) (p = 0.001). Conclusions: Cerebellar involvement may play an important role in natural history of brain degeneration in HD. The presence of cerebellar ataxia in HD is relevant and it may occur even in early stages, and should be included as part of the motor features of the disease.

9.
Neuromolecular Med ; 22(1): 133-138, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31587151

RESUMO

Spinocerebellar ataxia type 3, or Machado-Joseph disease (SCA3/MJD), is caused by an expansion of CAG repeats, which is inversely correlated to age at onset (AO) of symptoms. However, on average, just 55.2% of variation in AO can be explained by expansion length. Additional modulators, such as polymorphic CAG tract in ATXN2 gene, can raise to 63.0% of the variation in AO. A sequence variation (rs3512) in FAN1 gene has previously been shown to be associated with late AO in Huntington's disease and polyglutaminopathies associated to ataxia. In the present study, genotype frequency of rs3512 was demonstrated in a cohort of SCA3/MJD patients from South Brazil, and these data were correlated to AO. The disease started 2.44 years earlier in subjects with the G/G genotype when compared to those subjects carrying the same CAGexp length at the ATXN3 gene and other genotypes (C/G and C/C) at rs3512. Placing together data on rs3512 genotype with data on CAG tract in ATXN2, AO of patients with G/G genotype was 2.58 years earlier, and a delay of 4.25 years was observed in patients that carry a short ATXN2 allele. Data presented here add further insights on the contribution of other factors in AO of SCA3/MJD beyond the causal mutation. Thus, well-known modifiers can help to unveil new ones and, as a whole, to better elucidate the mechanisms behind disease onset.


Assuntos
Idade de Início , Ataxina-2/genética , Ataxina-3/genética , Reparo do DNA , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Doença de Machado-Joseph/genética , Enzimas Multifuncionais/genética , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Doença de Machado-Joseph/epidemiologia , Masculino , Pessoa de Meia-Idade , Estruturas R-Loop , Expansão das Repetições de Trinucleotídeos , Adulto Jovem
10.
Mol Neurobiol ; 56(9): 6106-6120, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30721448

RESUMO

Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by a CAG repeat expansion in the ATXN7 gene coding region. Disease onset and progression are highly variable between patients, thus identification of specific/sensitive biomarkers that can improve the monitoring of disease progression is an immediate need. Because altered expression of circulating microRNAs (miRNAs) has been shown in various neurological diseases, they could be useful biomarkers for SCA7. In this study, we showed, to our knowledge for the first time, the expression profile of circulating miRNAs in SCA7. Using the TaqMan profiling low density array (TLDA), we found 71 differentially expressed miRNAs in the plasma of SCA7 patients, compared with healthy controls. The reliability of TLDA data was validated independently by quantitative real-time polymerase chain reaction in an independent cohort of patients and controls. We identified four validated miRNAs that possesses the diagnostic value to discriminate between healthy controls and patients (hsa-let-7a-5p, hsa-let7e-5p, hsa-miR-18a-5p, and hsa-miR-30b-5p). The target genes of these four miRNAs were significantly enriched in cellular processes that are relevant to central nervous system function, including Fas-mediated cell-death, heparansulfate biosynthesis, and soluble-N-ethylmaleimide-sensitive factor activating protein receptor pathways. Finally, we identify a signature of four miRNAs associated with disease severity that discriminate between early onset and adult onset, highlighting their potential utility to surveillance disease progression. In summary, circulating miRNAs might provide accessible biomarkers for disease stage and progression and help to identify novel cellular processes involved in SCA7.


Assuntos
MicroRNA Circulante/genética , Perfilação da Expressão Gênica , Ataxias Espinocerebelares/genética , Adulto , MicroRNA Circulante/sangue , MicroRNA Circulante/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/sangue , Ataxias Espinocerebelares/diagnóstico
11.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110961

RESUMO

The average life expectancy for humans has increased over the last years. However, the quality of the later stages of life is low and is considered a public health issue of global importance. Late adulthood and the transition into the later stage of life occasionally leads to neurodegenerative diseases that selectively affect different types of neurons and brain regions, producing motor dysfunctions, cognitive impairment, and psychiatric disorders that are progressive, irreversible, without remission periods, and incurable. Huntington's disease (HD) is a common neurodegenerative disorder. In the 25 years since the mutation of the huntingtin (HTT) gene was identified as the molecule responsible for this neural disorder, a variety of animal models, including the fruit fly, have been used to study the disease. Here, we review recent research that used Drosophila as an experimental tool for improving knowledge about the molecular and cellular mechanisms underpinning HD.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Doença de Huntington/patologia
12.
Drug Dev Ind Pharm ; 43(6): 871-888, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28142290

RESUMO

Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.


Assuntos
Nanopartículas , Doenças Neurodegenerativas/tratamento farmacológico , Peptídeos , Animais , Barreira Hematoencefálica , Humanos
13.
Front Neurol ; 3: 164, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23181052

RESUMO

BACKGROUND: Age at onset (AO) in Machado-Joseph disease (MJD) is closely associated with the length of the CAG repeat at the mutant ATXN3 allele, but there are other intervening factors. Experimental evidence indicates that the normal ATXN3 allele and the C-terminal heat shock protein 70 (Hsp70)-interacting protein (CHIP) may be genetic modifiers of AO in MJD. METHODS: To investigate this hypothesis, we determined the length of normal and expanded CAG repeats at the ATXN3 gene in 210 unrelated patients with MJD. In addition, we genotyped five single nucleotide polymorphisms (SNPs) within the CHIP gene. We first compared the frequencies of the different genotypes in two subgroups of patients who were highly discordant for AO after correction for the length of the expanded CAG allele. The possible modifier effect of each gene was then evaluated in a stepwise multiple linear regression model. RESULTS: AO was associated with the length of the expanded CAG allele (r(2) = 0.596, p < 0.001). Frequencies of the normal CAG repeats at the ATXN3 gene and of CHIP polymorphisms did not differ significantly between groups with highly discordant ages at onset. However, addition of the normal allele improved the model fit for prediction of AO (r(2) = 0.604, p = 0.014). Indeed, we found that the normal CAG allele at ATXN3 had a positive independent effect on AO. CONCLUSION: The normal CAG repeat at the ATXN3 gene has a small but significant influence on AO of MJD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA