Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
World J Gastrointest Endosc ; 16(1): 18-28, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313462

RESUMO

BACKGROUND: The incidence and mortality rate of colorectal cancer progressively increase with age and become particularly prominent after the age of 50 years. Therefore, the population that is ≥ 50 years in age requires long-term and regular colonoscopies. Uncomfortable bowel preparation is the main reason preventing patients from undergoing regular colonoscopies. The standard bowel preparation regimen of 4-L polyethylene glycol (PEG) is effective but poorly tolerated. AIM: To investigate an effective and comfortable bowel preparation regimen for hospitalized patients ≥ 50 years in age. METHODS: Patients were randomly assigned to group 1 (2-L PEG + 30-mL lactulose + a low-residue diet) or group 2 (4-L PEG). Adequate bowel preparation was defined as a Boston bowel preparation scale (BBPS) score of ≥ 6, with a score of ≥ 2 for each segment. Non-inferiority was prespecified with a margin of 10%. Additionally, the degree of comfort was assessed based on the comfort questionnaire. RESULTS: The proportion of patients with a BBPS score of ≥ 6 in group 1 was not significantly different from that in group 2, as demonstrated by intention-to-treat (91.2% vs 91.0%, P = 0.953) and per-protocol (91.8% vs 91.0%, P = 0.802) analyses. Furthermore, in patients ≥ 75 years in age, the proportion of BBPS scores of ≥ 6 in group 1 was not significantly different from that in group 2 (90.9% vs 97.0%, P = 0.716). Group 1 had higher comfort scores (8.85 ± 1.162 vs 7.59 ± 1.735, P < 0.001), longer sleep duration (6.86 ± 1.204 h vs 5.80 ± 1.730 h, P < 0.001), and fewer awakenings (1.42 ± 1.183 vs 2.04 ± 1.835, P = 0.026) than group 2. CONCLUSION: For hospitalized patients ≥ 50 years in age, the bowel preparation regimen comprising 2-L PEG + 30-mL lactulose + a low-residue diet produced a cleanse that was as effective as the 4-L PEG regimen and even provided better comfort.

2.
Yakugaku Zasshi ; 144(1): 61-69, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171797

RESUMO

Liposomes have been reported to be useful nanocarrier, however, there are number of challenges to resolve before they can be optimized for drug delivery. Liposomes are taken up by cell in the reticuloendothelial system (RES). Polyethyleneglycol (PEG) modification on the liposomal membrane forms a fixed aqueous layer and thus prevents uptake by the RES. The physicochemical properties of liposomes that are most commonly evaluated particle size and zeta potential are not sufficient indicator of the passive targeting effect by PEG modification. In contrast, the fixed aqueous layer thickness (FALT) around liposomal surface was clear to be regulated to be the utilized action in the body. It was showed that the FALT value of PEG-modified liposomes containing doxorubicin increased with the increase in the molecular weight of PEG. Furthermore, PEG modification with a combination of high- and low- molecular weight PEGs on liposomal membranes showed in optimal results with respect to FALT and a higher antitumor effect. In addition, we designed and synthesized a novel PEG-lipid, different double arms PEG (DDA-PEG), which consisted of two PEG chains of 500 and 2000 in one molecule to develop more useful PEG-modified liposomes. DDA-PEG was found to have superior antitumor activity and was associated with the prevention of tumor metastasis. Furthermore, we sought to (-)-epigallocatechin-3-O-gallate (EGCG) functions as a target ligand of the 67-kDa laminin receptor (67LR), which is expressed on high-grade tumor cells. EGCG-PEG-modified liposome appear to have superior antitumor activity against high 67LR-expressing tumor cells, as the liposomes had dual effects.


Assuntos
Lipossomos , Polietilenoglicóis , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Doxorrubicina/química , Tamanho da Partícula
3.
Polymers (Basel) ; 15(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242901

RESUMO

Thermally conductive phase-change materials (PCMs) were produced using the crosslinked Poly (Styrene-block-Ethylene Glycol Di Methyl Methacrylate) (PS-PEG DM) copolymer by employing boron nitride (BN)/lead oxide (PbO) nanoparticles. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) methods were used to research the phase transition temperatures, the phase-change enthalpies (melting enthalpy (ΔHm), and crystallization enthalpies (ΔHc)). The thermal conductivities (λ) of the PS-PEG/BN/PbO PCM nanocomposites were investigated. The λ value of PS-PEG/BN/PbO PCM nanocomposite containing BN 13 wt%, PbO 60.90 wt%, and PS-PEG 26.10 wt% was determined to be 18.874 W/(mK). The crystallization fraction (Fc) values of PS-PEG (1000), PS-PEG (1500), and PS-PEG (10,000) copolymers were 0.032, 0.034, and 0.063, respectively. XRD results of the PCM nanocomposites showed that the sharp diffraction peaks at 17.00 and 25.28 °C of the PS-PEG copolymer belonged to the PEG part. Since the PS-PEG/PbO and the PS-PEG/PbO/BN nanocomposites show remarkable thermal conductivity performance, they can be used as conductive polymer nanocomposites for effective heat dissipation in heat exchangers, power electronics, electric motors, generators, communication, and lighting equipment. At the same time, according to our results, PCM nanocomposites can be considered as heat storage materials in energy storage systems.

4.
Sci Total Environ ; 882: 163563, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084914

RESUMO

Water-soluble polymers (WSPs) like polyethylene oxide (PEO) have annual production volumes ranging from thousands to millions of tonnes and are used in a wide variety of applications that enable a release into the aquatic environment. Despite these facts, a lack of quantitative trace-analytical methods for WSPs prevents the comprehensive study of their environmental occurrence. Here, size exclusion chromatography was hyphenated with electrospray ionization high-resolution mass spectrometry. An all-ion fragmentation approach for the formation of diagnostic fragments independent of molecular weight, charge state, and ion species was used to quantify PEO and its derivatives in wastewater treatment plants (WWTPs) and surface water samples. Despite its inherent biodegradability, PEO concentrations found in the samples analysed ranged from 1 µg/L) and reached up to 20 µg/L (effluent) and 400 µg/L (influent) for WWTPs. A substantial shift in molecular weight ranges was observed between influent and effluent, pointing towards a molecular weight fraction between 1.3 and 4 kDa being dominant in the effluent. Due to an assumed size exclusion during sample enrichment, information on the MW-distribution of PEO is limited to MW < 55 kDa. The high concentrations widely detected for a readily biodegradable WSP such as PEO, raise strong concerns about the occurrence and fate of recalcitrant WSPs in the aquatic environment. The method presented herein may provide the tools necessary to assess the burden of these high production volume chemicals and the risk they may pose.

5.
Heliyon ; 9(3): e14392, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36942217

RESUMO

The objectives of this study were to develop a sustained-release device for carteolol hydrochloride (CH) and investigate any potential difference in the intraocular distribution of this agent between the transscleral administration of the device and treatment with eyedrops. The device was formulated with photocurable resin, poly (ethyleneglycol) dimethacrylate, to fit within the curve of the rabbit eyeball. In vitro study showed that CH was released in a sustained-release manner for 2 weeks. The concentration of CH in the retina, choroid/retinal pigment epithelium, sclera, iris, and aqueous humor was determined by high-performance liquid chromatography. Transscleral administration was able to deliver CH to the posterior segment (i.e., retina and choroid/retinal pigment epithelium) rather than the anterior segment (i.e., aqueous humor), while eyedrops delivered CH only to the anterior segment. Transscleral administration could deliver CH to aqueous humor at half the concentration versus treatment with eyedrops and reduced intraocular pressure (IOP) at 1 day after implantation; however, the IOP-lowering effect was not sustained thereafter. In conclusion, transscleral drug delivery may be a useful method for the reduction of IOP. Notably, the aqueous concentration must be equal to that delivered by the eyedrops, and this approach might be preferable for drug delivery to the posterior segment of the eye.

6.
Polymers (Basel) ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679328

RESUMO

Pancreatic cancer (PC) is one of the most aggressive solid malignancies with poor treatment response and low survival rates. Herbal medicines such as betulinic acid (BA) have shown potential in treating various solid tumours, but with limitations that can be circumvented by polymer-drug conjugation. Polyethylene glycol-BA (PEG-BA) polymer-drug conjugate has previously shown selective anticancer activity against PC cells. Here, we elucidate the mechanism of cell death and the cell death pathway, anti-inflammatory and antioxidant activities of PEG-BA. PEG-BA induced apoptotic cell death by arresting MIA-PaCa-2 cells in the Sub-G1 phase of the cell cycle compared with BA and untreated cells (39.50 ± 5.32% > 19.63 ± 4.49% > 4.57 ± 0.82%). NFκB/p65 protein expression was moderately increased by PEG-BA (2.70 vs. 3.09 ± 0.42 ng/mL; p = 0.1521). However, significant (p < 0.05) overexpression of the proapoptotic genes TNF (23.72 ± 1.03) and CASPASE 3 (12,059.98 ± 1.74) compared with untreated cells was notable. The antioxidant potential of PEG-BA was greater (IC50 = 15.59 ± 0.64 µM) compared with ascorbic acid (25.58 ± 0.44 µM) and BA-only (>100 µM) and further confirmed with the improved reduction of hydroperoxide levels compared with BA-only (518.80 ± 25.53 µM vs. 542.43 ± 9.70 µM). In conclusion, PEG-BA activated both the intrinsic and extrinsic pathways of apoptosis and improved antioxidant activities in PC cells, suggesting enhanced anticancer activity upon conjugation.

7.
Rev Gastroenterol Mex (Engl Ed) ; 88(2): 107-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34961695

RESUMO

INTRODUCTION AND AIMS: There are few studies that compare polyethylene glycol (PEG) 3350 and magnesium hydroxide (MH), as long-term treatment of functional constipation (FC) in children, and they do not include infants as young as 6 months of age. Our aim was to determine the efficacy, safety, and acceptability of PEG vs MH in FC, in the long term, in pediatric patients. METHODS: An open-label, parallel, controlled clinical trial was conducted on patients from 6 months to 18 years of age, diagnosed with FC, that were randomly assigned to receive PEG 3350 or MH for 12 months. Success was defined as: ≥ 3 bowel movements/week, with no fecal incontinence, fecal impaction, abdominal pain, or the need for another laxative. We compared adverse events and acceptability, measured as rejected doses of the laxative during the study, in each group and subgroup. RESULTS: Eighty-three patients with FC were included. There were no differences in success between groups (40/41 PEG vs 40/42 MH, p = 0.616). There were no differences in acceptability between groups, but a statistically significant higher number of patients rejected MH in the subgroups > 4 to 12 years and > 12 to 18 years of age (P = .037 and P = .020, respectively). There were no differences regarding adverse events between the two groups and no severe clinical or biochemical adverse events were registered. CONCLUSIONS: The two laxatives were equally effective and safe for treating FC in children from 0.5 to 18 years of age. Acceptance was better for PEG 3350 than for MH in patients above 4 years of age. MH can be considered first-line treatment for FC in children under 4 years of age.


Assuntos
Laxantes , Hidróxido de Magnésio , Humanos , Criança , Pré-Escolar , Laxantes/uso terapêutico , Hidróxido de Magnésio/uso terapêutico , Resultado do Tratamento , Polietilenoglicóis/efeitos adversos , Constipação Intestinal/tratamento farmacológico , Eletrólitos/uso terapêutico
8.
Int J Pharm ; 631: 122477, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36509226

RESUMO

Implantable drug-eluting devices that provide therapeutic cover over an extended period of time following a single administration have potential to improve the treatment of chronic conditions. These devices eliminate the requirement for regular and frequent drug administration, thus reducing the pill burden experienced by patients. Furthermore, the use of modern technologies, such as 3D printing, during implant development and manufacture renders this approach well-suited for the production of highly tuneable devices that can deliver treatment regimens which are personalised for the individual. The objective of this work was to formulate subcutaneous implants loaded with a model hydrophobic compound, olanzapine (OLZ) using robocasting - a 3D-printing technique. The formulated cylindrical implants were prepared from blends composed of OLZ mixed with either poly(caprolactone) (PCL) or a combination of PCL and poly(ethylene)glycol (PEG). Implants were characterised using scanning electron microscopy (SEM), thermal analysis, infrared spectroscopy, and X-ray diffraction and the crystallinity of OLZ in the formulated devices was confirmed. In vitro release studies demonstrated that all the formulations were capable of maintaining sustained drug release over a period of 200 days, with the maximum percentage drug release observed to be c.a. 60 % in the same period.


Assuntos
Poliésteres , Polímeros , Humanos , Polímeros/química , Poliésteres/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Impressão Tridimensional
9.
EFSA J ; 20(10): e07433, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36320457

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of glyceryl polyethyleneglycol ricinoleate (PEG castor oil) as technological feed additive for all animal species. PEG castor oil is safe at a maximum concentration in complete feed of 90 mg/kg for chickens for fattening and other minor growing poultry; 134 mg/kg for laying hens and other laying/breeding birds kept for egg production/reproduction; 121 mg/kg for turkeys for fattening; 162 mg/kg for piglets and other minor growing Suidae; 194 mg/kg for pigs for fattening; 236 mg/kg for sows other minor reproductive Suidae; 231 mg/kg for dairy cows and other dairy ruminants (other than sheep/goats); 142 mg/kg in rabbits and 377 mg/kg in veal calves; 356 mg/kg for cattle for fattening and other growing ruminants, sheep, goat, horses and cats; 427 mg/kg for dogs; 407 mg/kg for salmonids and other fin fish; and 1,584 mg/kg for ornamental fish. For other growing species and non-food producing animals, the additive is considered safe at 90 mg/kg complete feed. The use of PEG castor oil as feed additive for all animal species would be of no concern for the consumer. The FEEDAP Panel considered inhalation exposure of the user to the additive unlikely. PEG castor oil is not considered a skin sensitiser. The panel was not in the position to conclude on the potential of the additive to be a skin or eye irritant. The additive is a readily biodegradable substance and is not expected to pose a risk for the environment. The lack of sufficient data does not allow the FEEDAP Panel to conclude on the efficacy of PEG castor oil as an emulsifier in feedingstuffs.

10.
Front Cell Dev Biol ; 10: 988699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425532

RESUMO

The tumor microenvironment plays an important role in cancer development and the use of 3D in vitro systems that decouple different elements of this microenvironment is critical for the study of cancer progression. In neuroblastoma (NB), vitronectin (VN), an extracellular matrix protein, has been linked to poor prognosis and appears as a promising therapeutic target. Here, we developed hydrogels that incorporate VN into 3D polyethylene glycol (PEG) hydrogel networks to recapitulate the native NB microenvironment. The stiffness of the VN/PEG hydrogels was modulated to be comparable to the in vivo values reported for NB tissue samples. We used SK-N-BE (2) NB cells to demonstrate that PEGylated VN promotes cell adhesion as the native protein does. Furthermore, the PEGylation of VN allows its crosslinking into the hydrogel network, providing VN retention within the hydrogels that support viable cells in 3D. Confocal imaging and ELISA assays indicate that cells secrete VN also in the hydrogels and continue to reorganize their 3D environment. Overall, the 3D VN-based PEG hydrogels recapitulate the complexity of the native tumor extracellular matrix, showing that VN-cell interaction plays a key role in NB aggressiveness, and that VN could potentially be targeted in preclinical drug studies performed on the presented hydrogels.

11.
Front Chem ; 10: 958561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936077

RESUMO

MicroRNAs (miRNAs) play a pivotal role in regulating a number of physiologic and pathologic processes including bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation, making them a candidate used to promote osteogenesis. However, due to intrinsic structure and characteristics, "naked" miRNAs are unstable in serum and could not pass across the cellular membrane. Nano delivery systems seem to be a solution to these issues. Recently, graphene oxide (GO)-based nanomaterials are considered to be promising for gene delivery due to their unique physiochemical characteristics such as high surface area, biocompatibility, and easy modification. In this work, a GO-based nanocomplex functionalized by polyethyleneglycol (PEG) and polyethylenimine (PEI) was prepared for loading and delivering miR-29b, which participates in multiple steps of bone formation. The nanocomplex revealed good biocompatibility, miRNA loading capacity, and transfection efficiency. The miR-29b/GO-PEG-PEI nanocomplex was capsulated into chitosan (CS) hydrogel for osteogenesis. In vitro and in vivo evaluation indicated that miR-29b/GO-PEG-PEI@CS composite hydrogel was able to promote BMSC osteogenic differentiation and bone regeneration. All these results indicate that PEG/PEI functionalized GO could serve as a promising candidate for miRNA cellular delivery, and the miR-29b/GO-PEG-PEI@CS hydrogel has the potential for repairing bone defects in vivo.

12.
Biomed Pharmacother ; 152: 113293, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714513

RESUMO

BACKGROUND: Traditionally, vasopressors and crystalloids have been used to stabilize brain dead donors; however, the use of crystalloid is fraught with complications. This study aimed to investigate the effectiveness of a newly developed impermeant solution, polyethylene glycol-20k IV solution (PEG-20k) for resuscitation and support of brain dead organ donors. METHODS: Brain death was induced in adult beagle dogs and a set volume of PEG-20k or crystalloid solution was given thereafter. The animals were then resuscitated over 16 h with vasopressors and crystalloid as necessary to maintain mean arterial pressure of 80-100 mmHg. The kidneys were procured and cold-stored for 24 h, after which they were analyzed using the isolated perfused kidney model. RESULTS: The study group required significantly less crystalloid volume and vasopressors while having less urine output and requiring less potassium supplementation than the control group. Though the two groups' mean arterial pressure and lactate levels were comparable, the study group's kidneys showed less preservation injury after short-term reperfusion indexed by decreased lactate dehydrogenase release and higher creatinine clearance than the control group. CONCLUSIONS: The use of polyethylene glycol-20k IV solution for resuscitating brain dead donors decreases cell swelling and improves intravascular volume, thereby improving end organ oxygen delivery before procurement and so preventing ischemia-reperfusion injury after transplantation.


Assuntos
Morte Encefálica , Polietilenoglicóis , Animais , Soluções Cristaloides , Modelos Animais de Doenças , Cães , Humanos , Polietilenoglicóis/farmacologia , Doadores de Tecidos
13.
Prog Biomater ; 11(2): 219-227, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35532846

RESUMO

Nanohydrogels (NHs) with the benefits of both nanomaterials and hydrogels unlock novel opportunities and applications in biomedicine. Nowadays, cationic NHs have attracted attention in the delivery of genetic materials into cells. Herein, by using reversible addition-fragmentation chain transfer method, an NH-based poly(hydroxyethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) and cross-linked by poly(ethylene glycol)diacrylate with pH responsiveness character was developed. Several techniques including nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and gel permeation chromatography confirmed the success in the synthesis. The pH responsiveness of the developed NH was shown by transmission electron microscopy and dynamic light scattering technique. The average sizes of NHs in the normal (7.4) and acidic pH (5.5) were 180 and 390 nm, respectively. The ability of the developed NH to condense genetic materials was checked using gel retardation assay with different ratios of NH and pCMV6-IRES-AcGFP, as a plasmid encoding green fluorescence protein. Results of gel retardation assay showed a decreasing trend in plasmid electrophoretic mobility with the increase in the NH concentration. The NH/plasmid complexes were stopped completely at the ratio of 5 and the plasmid band vanished at the ratio of 10. The quantitative and qualitative results of the cell transfection experiment using different ratios of NH/plasmid showed the ability of NH to carry plasmid molecules into the cancerous cells. The best transfection efficiency was observed by nanohydrogel/plasmid weight ratio of 10, while other ratios including 2, 5 and 20 showed 0.8, 10 and 12% of transfection efficiency, respectively. All the assessed factors showed that NH has the potential to be considered as an efficient gene delivery vehicle.

14.
Mater Today Bio ; 14: 100223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243298

RESUMO

Inflammatory arthritis is a major cause of disability in the elderly. This condition causes joint pain, loss of function, and deterioration of quality of life, mainly due to osteoarthritis (OA) and rheumatoid arthritis (RA). Currently, available treatment options for inflammatory arthritis include anti-inflammatory medications administered via oral, topical, or intra-articular routes, surgery, and physical rehabilitation. Novel alternative approaches to managing inflammatory arthritis, so far, remain the grand challenge owing to catastrophic financial burden and insignificant therapeutic benefit. In the view of non-targeted systemic cytotoxicity and limited bioavailability of drug therapies, a major concern is to establish stimuli-responsive drug delivery systems using nanomaterials with on-off switching potential for biomedical applications. This review summarizes the advanced applications of triggerable nanomaterials dependent on various internal stimuli (including reduction-oxidation (redox), pH, and enzymes) and external stimuli (including temperature, ultrasound (US), magnetic, photo, voltage, and mechanical friction). The review also explores the progress and challenges with the use of stimuli-responsive nanomaterials to manage inflammatory arthritis based on pathological changes, including cartilage degeneration, synovitis, and subchondral bone destruction. Exposure to appropriate stimuli induced by such histopathological alterations can trigger the release of therapeutic medications, imperative in the joint-targeted treatment of inflammatory arthritis.

15.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159642

RESUMO

In this work, gamma-ray shielding features of crosslinked polystyrene-b-polyethyleneglycol block copolymers (PS-b-PEG) blended with nanostructured selenium dioxide (SeO2) and boron nitride (BN) particles were studied. This research details several radiation shielding factors i.e., mass attenuation coefficient (µm), linear attenuation coefficient (µL), radiation protection efficiency (RPE), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). The irradiation properties of our nanocomposites were investigated with rays from the 152Eu source (in the energy intervals from 121.780 keV to 1408.010 keV) in a high-purity germanium (HPGe) detector system, and analyzed with GammaVision software. Moreover, all radiation shielding factors were determined by theoretical calculus and compared with the experimental results. In addition, the morphological and thermal characterization of all nanocomposites was surveyed with various techniques i.e., nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Acceptable compatibility was revealed and observed in all nanocomposites between the experimental and theoretical results. The PS-b-PEG copolymer and nanostructured SeO2 and BN particles exerted a significant effect in enhancing the resistance of the nanocomposites, and the samples with high additive rates exhibited better resistance than the other nanocomposites. From the achieved outcomes, it can be deduced that our polymer-based nanocomposites can be utilized as a good choice in the gamma-irradiation-shielding discipline.

16.
Adv Drug Deliv Rev ; 180: 114079, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902516

RESUMO

Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.


Assuntos
Portadores de Fármacos , Nanomedicina , Polietilenoglicóis/química , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Sistemas de Liberação de Medicamentos , Humanos
17.
Polymers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641065

RESUMO

This work aimed to research the efficiency of gamma irradiation and shielding characteristics on the lead oxide (PbO) doped the crosslinked polystyrene-b-polyethyleneglycol (PS-b-PEG) block copolymers and polystyrene-b-polyethyleneglycol-boron nitride (PS-b-PEG-BN) nanocomposites materials. The crosslinked PS-b-PEG block copolymers and PS-b-PEG-BN nanocomposites mixed with different percentage rates of PbO were used to research gamma-ray shielding characteristics. The synthesis of the copolymer was done by emulsion polymerization methods. The characterization and morphological analyses of irradiated samples were explored handling with the Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), Thermogravimetric Analysis (TGA), and Scanning Electron Microscope (SEM) methods. The gamma-rays that were emitted from the E 152u source were observed with a High Purity Germanium (HPGe) detector system and examined with a GammaVision computer program. Our samples, including the different percentage rates of the PS-b-PEG (1000, 1500, 10,000), BN, and PbO, were irradiated in various gamma-ray photon energy regions (from 121.78 keV to 1408.01 keV). Then, Linear-Mass Attenuation Coefficients (LACs-MACs), Half-Tenth Value Layer (HVL), Mean Free Path (MFP), and Radiation Protection Efficiency (RPE) values of the samples were calculated. Via crosschecking the acquired data from samples with and without PbO and BN, it was observed that, if the different percentage rates by weight nano-powder of PbO and BN are added in the polymer mixture, it can be used as a convenient shielding material against gamma rays.

18.
Acta Pharm Sin B ; 11(8): 2306-2325, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34522589

RESUMO

Blood-brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.

19.
Saudi J Gastroenterol ; 27(4): 234-239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34380867

RESUMO

Background: The aim of this study was to compare the efficacy and tolerability of polyethylene glycol (PEG) in single- or split-dose regimens for colonoscopy bowel preparation. Methods: This is a prospective, randomized, endoscopist blinded, single-center study, that included adult patients who underwent colonoscopy during the period from December 2017 to October 2018. Two groups were enrolled in the same period: One group used 4 L of PEG (Nulytely) in a single-dose preparation, administered a day before the procedure, and the other group received a split-dose regimen of 2 L PEG (Nulytely), given a day before the procedure and 2 L on the day of the procedure in the early morning. The Boston Bowel Preparation Scale (BBPS) was used for bowel preparation adequacy; scales 0 and 1 were considered inadequate, and scales 2 and 3 were considered adequate preparation. Results: Two hundred and forty patients were enrolled, 120 (50%) using the split-dose regimen and 120 (50%) using the single-dose regimen, for bowel preparation. Males constituted 51.6% of the study cohort. In the single-dose group, 62.5% achieved adequate bowel preparation compared to 89.2% in the split-dose group (p< 0.001). In addition, polyp detection in the split-dose group was 23.3% in comparison to 10.8% in the single-dose group (P = 0.016). We also found hypertension and diabetes as significant predictors of bowel preparation inadequacy, while sex and age were not related to bowel preparation adequacy. Conclusions: Split-dose bowel preparation for colonoscopy with PEG (Nulytely) is better than routine single-dose, in terms of adequate bowel preparation and polyp detection.


Assuntos
Catárticos , Polietilenoglicóis , Adulto , Colonoscopia , Humanos , Masculino , Estudos Prospectivos
20.
Acta Pharm Sin B ; 11(7): 1767-1788, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386320

RESUMO

Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...