Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063124

RESUMO

Epinephrine (EP) is a very important chemical transmitter in the transmission of nerve impulses in the central nervous system of mammals. Ascorbic acid (AA) is considered to be the most important extracellular fluid antioxidant and has important antioxidant properties in the cell. In this study, a series of transition metal-polyhistidine-carboxylated multi-wall carbon nanotube nanocomposites were synthesized, and their simultaneous catalytic effects on epinephrine and ascorbic acid were investigated. The results showed that nanocomposites based on iron ions had the highest catalytic activity. The prepared biosensor expressed high selectivity toward EP and AA with LOD values of 0.1 µΜ (AA) and 0.01 µΜ (EP), and sensitivity values of 4.18 µA mM-1 with a range of 0.001-5 mM (AA), 50.98 µA mM-1 with a range of 0.2-100 µM (EP), and 265.75 µA mM-1 with a range of 0.1-1.0 mM (EP). Moreover, it showed good stability, good repeatability and high selectivity in real sample detection. This work is a reference for the design of new electrochemical enzyme-free biosensors and the detection of biomarkers.


Assuntos
Ácido Ascórbico , Técnicas Biossensoriais , Epinefrina , Histidina , Nanotubos de Carbono , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Ácido Ascórbico/química , Epinefrina/análise , Histidina/química , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Limite de Detecção , Compostos Férricos/química , Ferro/química
2.
J Chromatogr A ; 1722: 464902, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636150

RESUMO

Although immobilized metal ion affinity chromatography (IMAC) is one of the most effective methods for purifying his-tagged proteins, it has limitations such as expensive commercial resins and non-specific binding of unwanted proteins to the nickel immobilized on the resin. In this study, biocompatible chitosan and porous chitosan membranes as alternative resins were synthesized for protein immobilization and purification, but finally porous chitosan membrane was selected due to its higher porosity and consequently higher nickel adsorption. Once the membrane was functionalized with nickel ions and its metal adsorption confirmed by EDS and ICP methods, it was used to immobilize and purify recombinant ß-NGF as a protein model with his-tag tail in batch-fashion. Protein binding and purification were also approved by FTIR and UV-Vis spectroscopy and SDS-PAGE technique. Our results indicated that the protein of interest could bind to the nickel-functionalized porous chitosan membrane with high efficiency at pH=7. Furthermore, for protein purification, the pH value of 6 and an imidazole concentration of 750 mM were suggested for the final elution buffer. In conclusion, nickel-functionalized porous chitosan membrane could be a suitable alternative to IMAC for low cost and specific protein immobilization and purification.


Assuntos
Quitosana , Cromatografia de Afinidade , Histidina , Membranas Artificiais , Níquel , Níquel/química , Quitosana/química , Cromatografia de Afinidade/métodos , Histidina/química , Porosidade , Adsorção , Proteínas Imobilizadas/química , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
3.
Protein Pept Lett ; 31(4): 305-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644721

RESUMO

BACKGROUND: Protease 3C (3Cpro) is the only protease encoded in the human hepatitis A virus genome and is considered as a potential target for antiviral drugs due to its critical role in the viral life cycle. Additionally, 3Cpro has been identified as a potent inducer of ferroptosis, a newly described type of cell death. Therefore, studying the molecular mechanism of 3Cpro functioning can provide new insights into viral-host interaction and the biological role of ferroptosis. However, such studies require a reliable technique for producing the functionally active recombinant enzyme. OBJECTIVE: Here, we expressed different modified forms of 3Cpro with a hexahistidine tag on the N- or C-terminus to investigate the applicability of immobilized metal Ion affinity chromatography (IMAC) for producing 3Cpro. METHODS: We expressed the proteins in Escherichia coli and purified them using IMAC, followed by gel permeation chromatography. The enzymatic activity of the produced proteins was assayed using a specific chromogenic substrate. RESULTS: Our findings showed that the introduction and position of the hexahistidine tag did not affect the activity of the enzyme. However, the yield of the target protein was highest for the variant with seven C-terminal residues replaced by a hexahistidine sequence. CONCLUSION: We demonstrated the applicability of our approach for producing recombinant, enzymatically active 3Cpro.


Assuntos
Proteases Virais 3C , Cromatografia de Afinidade , Escherichia coli , Histidina , Oligopeptídeos , Histidina/genética , Histidina/metabolismo , Histidina/química , Proteases Virais 3C/química , Proteases Virais 3C/metabolismo , Humanos , Oligopeptídeos/genética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/biossíntese , Vírus da Hepatite A Humana/genética , Vírus da Hepatite A Humana/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Expressão Gênica
4.
Adv Sci (Weinh) ; 11(25): e2402234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629782

RESUMO

Protein structure plays an essential role on their stability, functionality, and catalytic activity. In this work, the interplay between the ß-sheet structure and its catalytic implications to the design of enzyme-inspired materials is investigated. Here, inspiration is drawn from the active sites and ß-sheet rich structure of the highly efficient multicopper oxidase (MCO) to engineer a bio-inspired electrocatalyst for water oxidation utilizing the abundant metal, copper. Copper ions are coordinated to poly-histidine (polyCuHis), as they are in MCO active sites. The resultant polyCuHis material effectively promotes water oxidation with low overpotentials (0.15 V) in alkaline systems. This activity is due to the 3D structure of the poly-histidine backbone. By increasing the prevalence of ß-sheet structure and decreasing the random coil nature of the polyCuHis secondary structures, this study is able to modulates the electrocatalytic activity of this material is modulated, shifting it toward water oxidation. These results highlight the crucial role of the local environment at catalytic sites for efficient, energy-relevant transformations. Moreover, this work highlights the importance of conformational structure in the design of scaffolds for high-performance electrocatalysts.


Assuntos
Oxirredução , Água , Água/química , Catálise , Polímeros/química , Cobre/química , Estrutura Secundária de Proteína , Oxirredutases/química , Oxirredutases/metabolismo , Histidina
5.
J Control Release ; 367: 877-891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301930

RESUMO

To facilitate the introduction of proteins, such as antibodies, into cells, a variety of delivery peptides have been engineered. These peptides are typically highly cationic and somewhat hydrophobic, enabling cytosolic protein delivery at the cost of causing cell damage by rupturing membranes. This balance between delivery effectiveness and cytotoxicity presents obstacles for their real-world use. To tackle this problem, we designed a new endosome-disruptive cytosolic delivery peptide, E3MPH16, inspired by mastoparan X (MP). E3MPH16 was engineered to incorporate three Glu (E3) and 16 His (H16) residues at the N- and C-termini of MP, respectively. The negative charges of E3 substantially mitigate the cell-surface damage induced by MP. The H16 segment is known to enhance cell-surface adsorption and endocytic uptake of the associated molecules. With these modifications, E3MPH16 was successfully trapped within endosomes. The acidification of endosomes is expected to protonate the side chains of E3 and H16, enabling E3MPH16 to rupture endosomal membranes. As a result, nearly 100% of cells achieved cytosolic delivery of a model biomacromolecule, Alexa Fluor 488-labeled dextran (10 kDa), via endosomal escape by co-incubation with E3MPH16. The delivery process also suggested the involvement of macropinocytosis and caveolae-mediated endocytosis. With the assistance of E3MPH16, Cre recombinase and anti-Ras-IgG delivered into HEK293 cells and HT1080 cells enabled gene recombination and inhibited cell proliferation, respectively. The potential for in vivo application of this intracellular delivery method was further validated by topically injecting the green fluorescent protein fused with a nuclear localization signal (NLS-GFP) along with E3MPH16 into Colon-26 tumor xenografts in mice.


Assuntos
Endocitose , Peptídeos , Humanos , Animais , Camundongos , Células HEK293 , Peptídeos/química , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo
6.
Anal Biochem ; 680: 115315, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689096

RESUMO

The use of model peptides that can simulate the behaviour of a protein domain is a very successful analytical method to study the metal coordination sites in biological systems. Here we study zinc and copper binding ability of the sequence HTHEHSHDHSHAH, which serves as model for the metal interactions with YrpE, a putative metal-binding protein of the ZinT family identified in Bacillus subtilis. Compared to other ZinT proteins secreted by Gram-negative bacteria, the metal-coordination properties of YrpE N-terminal histidine-rich domain have not been yet characterized. Different independent analytical methods, aimed at providing information on the stability and structure of the formed species, have been employed, including potentiometric titrations, electrospray ionization mass spectrometry, UV-Vis spectrophotometry, circular dichroism and electron paramagnetic resonance spectroscopy. The obtained speciation models and equilibrium constants allowed to compare the metal-binding ability of the investigated polyhistidine sequence with that of other well-known histidine-rich peptides. Our thermodynamic results revealed that the YrpE domain HTHEHSHDHSHAH forms more stable metal complexes than other His-rich domains of similar ZinT proteins. Moreover, the studied peptide, containing the alternated (-XH-)n motif, proved to be even more effective than the His6-tag (widely used in immobilized metal ion affinity chromatography) in binding zinc ions.


Assuntos
Bacillus subtilis , Histidina , Peptídeos , Metais , Zinco
7.
Methods Mol Biol ; 2699: 193-223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647000

RESUMO

His-tagging is the most widespread and versatile strategy used to purify recombinant proteins for biochemical and structural studies. Recombinant DNA methods are first used to engineer the addition of a short tract of poly-histidine tag (His-tag) to the N-terminus or C-terminus of a target protein. The His-tag is then exploited to enable purification of the "tagged" protein by immobilized metal affinity chromatography (IMAC). In this chapter, we describe efficient procedures for the isolation of highly purified His-tagged target proteins from an Escherichia coli host using IMAC in a bind-wash-elute strategy that can be performed under both native and denaturing conditions.


Assuntos
DNA Recombinante , Neoplasias Cutâneas , Humanos , Cromatografia de Afinidade , Escherichia coli/genética
8.
J Virol Methods ; 319: 114771, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437780

RESUMO

Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).


Assuntos
Brassica napus , Tymovirus , Humanos , Níquel/química , Níquel/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia de Afinidade/métodos
9.
Toxins (Basel) ; 15(6)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37368691

RESUMO

The binary Clostridium (C.) botulinum C2 toxin consists of two non-linked proteins. The proteolytically activated binding/transport subunit C2IIa forms barrel-shaped homoheptamers, which bind to cell surface receptors, mediate endocytosis, and translocate the enzyme subunit C2I into the cytosol of target cells. Here, we investigate whether C2IIa can be harnessed as a transporter for proteins/enzymes fused to polycationic tags, as earlier demonstrated for the related anthrax toxin transport subunit PA63. To test C2IIa-mediated transport in cultured cells, reporter enzymes are generated by fusing different polycationic tags to the N- or C-terminus of other bacterial toxins' catalytic A subunits. C2IIa as well as PA63 deliver N-terminally polyhistidine-tagged proteins more efficiently compared to C-terminally tagged ones. However, in contrast to PA63, C2IIa does not efficiently deliver polylysine-tagged proteins into the cytosol of target cells. Moreover, untagged enzymes with a native cationic N-terminus are efficiently transported by both C2IIa and PA63. In conclusion, the C2IIa-transporter serves as a transport system for enzymes that harbor positively charged amino acids at their N-terminus. The charge distribution at the N-terminus of cargo proteins and their ability to unfold in the endosome and subsequently refold in the cytosol determine transport feasibility and efficiency.


Assuntos
Toxinas Botulínicas , Citosol/metabolismo , Toxinas Botulínicas/química , Endossomos/metabolismo , Endocitose
10.
Protein Sci ; 32(6): e4658, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184370

RESUMO

A sensor of blue-light using flavin adenine dinucleotide (BLUF) is a typical blue light photoreceptor domain that is found in many photosensor proteins in bacteria and some eukaryotic algae. SyPixD in Synechocystis is one of the well-studied BLUF proteins. In the dark state, it forms a decamer and, upon photoexcitation, a dissociation reaction takes place to yield dimers. Such change in the intermolecular interactions of the protomers is important for the biological function. The effect of the N- and C-terminal sequences on the stability of SyPixD oligomeric states and photoreactions of SyPixD were studied to understand how the oligomeric form is maintained with weak interaction. It was found that a few residues that frequently persist at the N-terminus after removing a tag for purification are sensitive to the stability of the decamer structure. Even two or three residues at the N-terminus considerably reduces decamer stability, whereas four or more residues completely prevent decamer formation. Unexpectedly, truncating C-terminal sequences, which locate far from any protomer interface and of which structure is undetermined in crystal structure, also destabilizes the decamer structure. This destabilization is also apparent from the dissociation reaction dynamics detected by the transient grating and transient absorption measurements. The dissociation reaction is faster and the yield increases when the C-terminus does not contain seven amino acid residues. Photoexcitation induces a conformational change in the C-terminus of the decamer but not the dimer.


Assuntos
Fotorreceptores Microbianos , Synechocystis , Proteínas de Bactérias/química , Luz , Synechocystis/química , Fotorreceptores Microbianos/química , Aminoácidos/metabolismo
11.
J Biochem ; 173(6): 471-486, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-36748395

RESUMO

CapF, a staphylococcal capsule-producing enzyme, binds Zn2+ ion and NADPH using its C-terminal domain (CTD) and N-terminal domain (NTD), respectively. To elucidate the roles of cofactors and domains, we have systematically investigated the related recombinant proteins, rCapF, rCTD, recombinant NTD (rNTD) and the Zn2+-free rCapF/rCTD, Apo-rCapF/Apo-rCTD. The results show that the secondary structure, tertiary structure, shape and surface hydrophobicity of Apo-rCapF and Apo-rCTD are different from those of rCapF and rCTD. The removal of Zn2+ made rCapF thermo-sensitive, whereas both rCTD and Apo-rCTD are thermo-resistant proteins. Further, Apo-rCapF and rCapF existed as the dimers, whereas rCTD and Apo-rCTD formed a mixture of dimers and tetramers in the aqueous solution. Zn2+ maintained the structure of NTD as well. The NADPH binding activity and Cys accessibility of rNTD, rCapF and Apo-rCapF were significantly different from each other. The binding of NADPH to the above three proteins freely occurred, liberated heat at 25°C and increased their diameters. In addition, the structure, stability, shape and oligomerization ability of rNTD, rCTD and rCapF little resembled each other. Collectively, the domains and cofactors of CapF contribute to preserving its conformation, stability, shape and dimerization ability.


Assuntos
Dimerização , NADP/metabolismo , Proteínas Recombinantes/metabolismo
12.
Macromol Biosci ; 23(4): e2200423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36728673

RESUMO

In this study, a novel polyhistidine-incorporated lipid nanoparticle (pHis/LNP) is developed for the delivery of therapeutic globotriaosylceramide (Gb3) synthase siRNAs using a microfluidic device with pHis as a biocompatible method of endosome escape. To inhibit the expression of Gb3 synthase, six siRNAs against Gb3 synthase are designed and an optimal siRNA sequence is selected. Selected Gb3 synthase siRNA is incorporated into pHis/LNP to prepare a spherical siRNA pHis/LNP with a size of 62.5 ± 1.9 nm and surface charge of -13.3 ± 4.2 mV. The pHis/LNP successfully protects siRNAs from degradation in 50% serum condition for 72 h. Prepared pHis/LNP exhibits superior stability for 20 days and excellent biocompatibility for A549 cells. After treatment with fluorescence-labeled LNPs, dotted fluorescent signals are co-localized with Lysotracker in cells with LNPs, whereas strong and diffused fluorescence intensity is observed in cells with pHis/LNPs probably due to successful endosomal escape. The extent of Gb3 synthase gene silencing by siRNA pHis/LNP is greatly improved (6.0-fold) compared to that by siRNA/LNP. Taken together, considering that the fabricated siRNA pHis/LNP exhibits excellent biocompatibility and superior gene silencing activity over conventional LNP, these particles can be utilized for the delivery of a wide range of therapeutic siRNAs.


Assuntos
Lipídeos , Nanopartículas , RNA Interferente Pequeno/genética
13.
Tumor ; (12): 436-447, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1030300

RESUMO

Objective:A DNA coordination polymer(Ca-pHis-Apt1 9S)was synthesized and its effect on the activity of bone marrow stem cells(BMSCs)was investigated. Methods:BMSCs were extracted from the epiphysis of the femoral shaft of mice by adherence screening method and identified by the expression of surface antigens through flow cytometry.Cell penetrating peptide pHis was covalently linked with the BMSCs aptamer Aptl9S,and a DNA coordination polymer(Ca-pHis-Aptl 9S),which was expected to improve the viability of BMSCs,was prepared through coordination assembly with calcium ions.BMSCs were treated with different concentrations of Ca-pHis-Apt1 9S,and the effects of Ca-pHis-Apt1 9S on the biological activities and the phenotype of BMSCs were evaluated by CCK-8 assay,live/dead cell staining assay and flow cytometry assay.The targeting ability of Ca-pHis-Apt1 9S toward BMSCs was observed using a fluorescence confocal microscope.Meanwhile,CCK-8 assay was used to study the main components of Ca-pHis-Aptl 9S that could promote the viability of BMSCs. Results:Spherical Ca-pHis-Apt1 9S with the particle size of 50-120 nm was successfully synthesized.The synthesized Ca-pHis-Apt1 9S could significantly promote the viability of BMSCs(P<0.05)without affecting the apoptosis or the expression of surface antigens(CD29,CD44 and CD34).Confocal microscopy analysis showed that the BMSCs aptamer Apt19S could further enhance the cellular uptake of Ca-pHis-Apt1 9S by BMSCs.The results of CCK-8 assay revealed that pHis in Ca-pHis-Apt1 9S was the main component that could promote the viability of BMSCs,and this promotional effect was dose-dependent(P<0.05). Conclusion:Ca-pHis-Aptl 9S can target BMSCs in vitro and significantly promote their biological activity without affecting their phenotype,providing a new method for the in vitro culture of BMSCs.

14.
Front Bioeng Biotechnol ; 10: 1011851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277408

RESUMO

Protein phosphorylation and glycosylation coordinately regulate numerous complex biological processes. However, the main methods to simultaneously enrich them are based on the coordination interactions or Lewis acid-base interactions, which suffer from low coverage of target molecules due to strong intermolecular interactions. Here, we constructed a poly-histidine modified silica (SiO2@Poly-His) microspheres-based method for the simultaneous enrichment, sequential elution and analysis of phosphopeptides and glycopeptides. The SiO2@Poly-His microspheres driven by hydrophilic interactions and multiple hydrogen bonding interactions exhibited high selectivity and coverage for simultaneous enrichment of phosphopeptides and glycopeptides from 1,000 molar folds of bovine serum albumin interference. Furthermore, "on-line deglycosylation" strategy allows sequential elution of phosphopeptides and glycopeptides, protecting phosphopeptides from hydrolysis during deglycosylation and improving the coverage of phosphopeptides. The application of our established method to HT29 cell lysates resulted in a total of 1,601 identified glycopeptides and 694 identified phosphopeptides, which were 1.2-fold and 1.5-fold higher than those obtained from the co-elution strategy, respectively. The SiO2@Poly-His based simultaneous enrichment and sequential separation strategy might have great potential in co-analysis of PTMs-proteomics of biological and clinic samples.

15.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35683654

RESUMO

Diblock copolymers of polyhistidine are known for their self-assembly into micelles and their pH-dependent disassembly due to the amphiphilic character of the copolymer and the unsaturated imidazole groups that undergo a hydrophobic-to-hydrophilic transition in an acidic pH. This property has been largely utilized for the design of drug delivery systems that target a tumor environment possessing a slightly lower extracellular pH (6.8-7.2). The main purpose of this study was to investigate the possibility of designed poly(ethylene glycol)-polyhistidine sequences synthesized using solid-phase peptide synthesis (SPPS), to self-assemble into micelles, to assess the ability of the corresponding micelles to be loaded with doxorubicin (DOX), and to investigate the drug release profile at pH values similar to a malignant extracellular environment. The designed and assembled free and DOX-loaded micelles were characterized from a physico-chemical point of view, their cytotoxicity was evaluated on a human breast cancer cell line (MDA-MB-231), while the cellular areas where micelles disassembled and released DOX were assessed using immunofluorescence. We concluded that the utilization of SPPS for the synthesis of the polyhistidine diblock copolymers yielded sequences that behaved similarly to the copolymeric sequences synthesized using ring-opening polymerization, while the advantages of SPPS may offer facile tuning of the histidine site or the attachment of a large variety of functional molecules.

16.
Gels ; 8(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200448

RESUMO

Protein immobilization using biopolymer scaffolds generally involves undesired protein loss of function due to denaturation, steric hindrance or improper orientation. Moreover, most methods for protein immobilization require expensive reagents and laborious procedures. This work presents the synthesis and proof of concept application of two alginate hydrogels that are able to bind proteins with polyhistidine tags by means of interaction with the crosslinking cations. Nickel (II) and cobalt (II) alginate hydrogels were prepared using a simple ionic gelation method. Hydrogels were characterized by optical microscopy and AFM, and evaluated for potential cytotoxicity. In addition, binding capacity was tested towards proteins with or without HisTAG. Hydrogels had moderate cytotoxicity and were able to exclusively bind polyhistidine-tagged proteins with a binding capacity of approximately 300 µg EGFP (enhanced green fluorescent protein) per 1 mL of hydrogel. A lyophilized hydrogel-protein complex dissolved upon the addition of PBS and allowed the protein release and regain of biological activity. In conclusion, the nickel (II) and cobalt (II) alginate biopolymers provided an excellent platform for the "carry and release" of polyhistidine-tagged proteins.

17.
Biochem Biophys Rep ; 27: 101101, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34430716

RESUMO

Calpains are Ca2+-dependent cysteine proteases; their aberrant activation is associated with several neurodegenerative diseases. The µ-calpain catalytic subunit, calpain-1, is located in the cytoplasm as well as in the mitochondria. Mitochondrial calpain-1 cleaves apoptosis-inducing factor (AIF), leading to apoptotic cell death. We have previously reported that short peptides of calpain-1 C2-like domain conjugated with cell penetrating peptide HIV-Tat (Tat-µCL) selectively inhibit mitochondrial calpain-1 and effectively prevent neurodegenerative diseases of the eye. In this study, we determined whether mitochondrial calpain-1 mediates oxytosis (oxidative glutamate toxicity) in hippocampal HT22 cells using Tat-µCL and newly generated polyhistidine-conjugated µCL peptide and compared their efficacies in preventing oxytosis. TUNEL assay and single strand DNA staining revealed that both µCL peptides inhibited glutamate-induced oxytosis. Additionally, both the peptides suppressed the mitochondrial AIF translocation into the nucleus. All polyhistidine-µCL peptides (containing 4-16 histidine residues) showed higher cell permeability than Tat-µCL. Notably, tetrahistidine (H4)-µCL exerted the highest cytoprotective activity. Thus, H4-µCL may be a potential peptide drug for calpain-1-mediated neurodegenerative diseases such as Alzheimer's disease.

18.
Methods Mol Biol ; 2355: 175-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386960

RESUMO

Quantum dots (QDs) offer bright and robust photoluminescence among several other advantages in comparison to fluorescent dyes. In order to leverage the advantageous properties of QDs for applications in bioanalysis and imaging, simple and reliable methods for bioconjugation are required. One such method for conjugating peptides to QDs is the use of polyhistidine tags, which spontaneously bind to the surface of QDs. We describe protocols for assembling polyhistidine-tagged peptides to QDs and for characterizing the resultant QD-peptide conjugates. The latter include both electrophoretic and FRET-based protocols for confirming successful peptide assembly, estimating the maximum peptide loading capacity, and measuring the assembly kinetics. Sensors for protease activity and intracellular delivery are briefly noted as prospective applications of QD-peptide conjugates.


Assuntos
Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Histidina
19.
Biochem Biophys Rep ; 26: 101015, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34036185

RESUMO

The chloride intracellular ion channel protein (CLIC) family are a unique set of ion channels that can exist as soluble and integral membrane proteins. New evidence has emerged that demonstrates CLICs' possess oxidoreductase enzymatic activity and may function as either membrane-spanning ion channels or as globular enzymes. To further characterize the enzymatic profile of members of the CLIC family and to expand our understanding of their functions, we expressed and purified recombinant CLIC1, CLIC3, and a non-functional CLIC1-Cys24A mutant using a Histidine tag, bacterial protein expression system. We demonstrate that the presence of the six-polyhistidine tag at the amino terminus of the proteins led to a decrease in their oxidoreductase enzymatic activity compared to their non-His-tagged counterparts, when assessed using 2-hydroxyethyl disulfide as a substrate. These results strongly suggest the six-polyhistidine tag alters CLIC's structure at the N-terminus, which also contains the enzyme active site. It also raises the need for caution in use of His-tagged proteins when assessing oxidoreductase protein enzymatic function.

20.
Protein J ; 40(3): 436-447, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856621

RESUMO

Lipases are versatile biocatalysts with many biotechnological applications and the necessity of screening, production and characterization of new lipases from diverse microbial strains to meet industrial needs is constantly emerging. In this study, the lipase gene (gklip) from a thermophilic bacterium, Geobacillus kaustophilus DSM 7263 T was cloned into the pET28a ( +) vector with N-terminal 6xHis-tag. The recombinant gklip gene was heterologously expressed in host E. coli BL21 (DE3) cells and purified by Ni-NTA affinity chromatography. Histidine tag was removed from the purified 6xHistag-Gklip enzyme with thrombin enzyme and the molecular mass was determined to be approximately 43 kDa by SDS-PAGE. Gklip showed optimal activity at pH 8.0 and 50 °C. The specific hydrolytic activities against substrates were significantly increased by the removal of the His-tag. Km and kcat values of Gklip against p-nitrophenyl palmitate (pNPP, 4-nitrophenyl palmitate) as the target substrate were found to be as 1.22 mM and 417.1 min-1, respectively. Removing His-tag changed the substrate preference of the enzyme leading to maximum lipolytic activity towards C10 and C12 lipids. Similarly, the activity against coconut oil that containing 62% medium-chain fatty acids was significantly higher than other oils. Furthermore, preservation of activity in the presence of inhibitors, organic solvents support the effect of lid structure of the enzyme.


Assuntos
Proteínas de Bactérias , Epitopos , Geobacillus/genética , Lipase , Proteínas Recombinantes de Fusão , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Epitopos/biossíntese , Epitopos/química , Epitopos/genética , Epitopos/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Geobacillus/enzimologia , Lipase/biossíntese , Lipase/química , Lipase/genética , Lipase/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA