Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687197

RESUMO

The catalytic oxidation of phenethoxybenzene as a lignin model compound with a ß-O-4 bond was conducted using the Keggin-type polyoxometalate nanocatalyst (TBA)5[PMo10V2O40]. The optimization of the process's operational conditions was carried out using response surface methodology. The statistically significant variables in the process were determined using a fractional factorial design. Based on this selection, a central circumscribed composite experimental design was used to maximize the phenethoxybenzene conversion, varying temperature, reaction time, and catalyst load. The optimal conditions that maximized the phenethoxybenzene conversion were 137 °C, 3.5 h, and 200 mg of catalyst. In addition, under the optimized conditions, the Kraft lignin catalytic depolymerization was carried out to validate the effectiveness of the process. The depolymerization degree was assessed by gel permeation chromatography from which a significant decrease in the molar mass distribution Mw from 7.34 kDa to 1.97 kDa and a reduction in the polydispersity index PDI from 6 to 3 were observed. Furthermore, the successful cleavage of the ß-O-4 bond in the Kraft lignin was verified by gas chromatography-mass spectrometry analysis of the reaction products. These results offer a sustainable alternative to efficiently converting lignin into valuable products.

2.
J Microbiol Biotechnol ; 30(4): 540-551, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893614

RESUMO

Sporotrichosis is a chronic and subacute mycosis causing epidemiological outbreaks involving sick cats and humans in southeastern Brazil. The systemic disease prevails in cats, and in humans, the symptoms are restricted to skin in immunocompetent individuals. Under these conditions, the prolonged treatment of animals and cases of recurrence justify the discovery of new treatments for sporotrichosis. This work addresses the antifungal activity of silver salts of Keggin-type heteropolyacid salts (Ag-HPA salts) such as Ag3[PW12O40], Ag6[SiW10V2O40], Ag4[SiW12O40] and Ag3[PMo12O40] and interactions with the antifungal drugs itraconazole (ITC), terbinafine (TBF) and amphotericin B (AMB) on the yeast and mycelia forms of Sporothrix spp. Sporothrix spp. yeast cells were susceptible to Ag-HPA salts at minimum inhibitory concentration (MIC) values ranging from 8 to 128 µg/mL. Interactions between Ag3[PW12O40] and Ag3[PMo12O40] with itraconazole and amphotericin B resulted in higher antifungal activity with a reduction in growth and melanization. Treated cells showed changes in cell membrane integrity, vacuolization, cytoplasm disorder, and membrane detachment. Promising antifungal activity for treating sporotrichosis was observed for the Ag-HPA salts Ag3[PMo12O40] and Ag3[PW12O40], which have a low cost, high yield and activity at low concentrations. However, further evaluation of in vivo tests is still required.


Assuntos
Antifúngicos/farmacologia , Prata/farmacologia , Sporothrix/efeitos dos fármacos , Compostos de Tungstênio/farmacologia , Antifúngicos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Pigmentação/efeitos dos fármacos , Sais/química , Sais/farmacologia , Prata/química , Sporothrix/crescimento & desenvolvimento , Sporothrix/metabolismo , Sporothrix/ultraestrutura , Compostos de Tungstênio/química
3.
Molecules ; 24(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583556

RESUMO

Two new aromatic organo-imido polyoxometalates with an electron donor triazole group ([n-Bu4N]2[Mo6O18NC6H4N3C2H2]) (1) and a highly conjugated fluorene ([n-Bu4N]2[Mo6O18NC13H9]) (2) have been obtained. The electrochemical and spectroscopic properties of several organo-imido systems were studied. These properties were analysed by the theoretical study of the redox potentials and by means of the excitation analysis, in order to understand the effect on the substitution of the organo-imido fragment and the effect of the interaction to a metal centre. Our results show a bathochromic shift related to the charge transfer processes induced by the increase of the conjugated character of the organic fragment. The cathodic shift obtained from the electrochemical studies reflects that the electronic communication and conjugation between the organic and inorganic fragments is the main reason of this phenomenon.


Assuntos
Estrutura Molecular , Eletricidade Estática , Compostos de Tungstênio/química , Técnicas de Química Sintética , Eletroquímica , Modelos Moleculares , Conformação Molecular , Compostos de Tungstênio/síntese química
4.
ACS Appl Mater Interfaces ; 10(37): 30963-30972, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30132323

RESUMO

Regulation of wound pH from alkaline to acidic is a simple and powerful approach to reduce wound microbial colonization and infection. Here, we present a nanocomposite material possessing intrinsic acidic surface pH as an innovative antimicrobial wound dressing. This material comprises an agarose matrix nanocomposite containing nanoparticles (NPs) of the cesium salt of phosphotungstic heteropolyacid (Cs2.5H0.5PW12O40). Self-supporting films were prepared by a casting method incorporating 5-20 wt % Cs2.5H0.5PW12O40 NPs into the matrix. Films are flexible with tensile strengths between 28.55 and 32.15 MPa and exhibit broad biocidal activity against neutralophilic pathogens, including Gram-positive bacteria, Gram-negative bacteria, yeast, and filamentous fungi. The nano-antimicrobial Cs2.5H0.5PW12O40 functions as an efficient and self-controlled proton delivery agent that lowers the surface pH of the nanocomposites to the range 7.0 > pH ≥ 3.0. Nanocomposite films containing 20 wt % Cs2.5H0.5PW12O40 NPs presented a surface pH of 3.0 and highest antimicrobial activity. Using quantitative reverse transcription polymerase chain reaction, we demonstrated that the antimicrobial mechanism of the nanocomposites is acid-induced because of the transcriptional induction of glutamate-dependent acid resistance genes in Escherichia coli. Additionally, nanocomposite films do not damage skin according to an in vivo rabbit skin model with no derived edema or erythema. The wound care safety of this material is due to low release of heavy metal heteropolyanions ([PW12O40]3-), no nanoparticle leaching, and proton controlled release resulting in nonirritating acid levels for human skin models.


Assuntos
Antibacterianos/química , Bandagens , Controle de Infecções/métodos , Nanocompostos/química , Sefarose/química , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Humanos , Coelhos , Pele/efeitos dos fármacos
5.
Front Chem ; 6: 231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971232

RESUMO

A synthetic procedure is presented to construct new magnetic polyoxometalates (POMs) containing one or two subunits of '[CoIIICo 3II (OH)3(H2O)6-m(PW9O34)]3-' (m = 3 or 5). The substitution of the water ligands present in these subunits by oxo or hydroxo ligands belonging to other POM fragments, gives rise to four, larger POM anions: [Co7(OH)6(H2O)6(PW9O34)2]9- (2), [Co7(OH)6(H2O)4(PW9O34)2] n9n- (2'), [Co11(OH)5(H2O)5(W6O24)(PW9O34)3]22- (3) and [{Co4(OH)3(H2O)(PW9O34)}2{K⊂(H2W12O41)2}{Co(H2O)4}2]17- (4). The crystal structures, magnetic characterization and stabilities in aqueous solutions of these POM derivatives are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA