Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 267: 104436, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39357428

RESUMO

Polypropylene microplastics (PPMPs) are one of the major emerging contaminants in the ecosystem due to their frequent usage and improper disposal practices. These PPMPs enter ecosystems via wastewater effluent plants and cause severe environmental health issues. In addition, quantifying PPMPs smaller than 50 µm in wastewater plant extraction is very difficult. Thus, the current study was designed to mitigate the PPMPs using zinc oxide nanoparticles (ZnONPs) as a photocatalyst under sunlight. The photocatalytic reaction was examined using spectroscopic techniques and microscopic imaging. The findings indicated that the weight loss percentage of PPMPs increased, and a decrease in UV-Vis DRS peak intensities was observed. The spectroscopic results elucidated the formation of free radicals, which affect the PPMPs and lead to the formation of carbonyl, allylic, and unsaturated groups. Further, EDS reports clarified that there is increased oxygen content due to the photooxidation process and the disintegration of the polymer chain owing to decreased carbon levels. Overall, ZnO photocatalyst absorbs photons from the visible spectrum of sunlight and forms free radicals, which affect the PPMPs to initiate polymer deterioration. Also, the current study revealed the mechanistic pathway of PPMP degradation under the photocatalytic reaction as proposed in the results obtained above.

2.
Sci Total Environ ; 952: 175904, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226956

RESUMO

The chemical components in the natural aquatic environment have the potential to be involved in phototransformation of microplastics (MPs). Little information is available regarding the mediation effects of artificially introduced chemicals on MP phototransformation, especially those used in aquaculture water that are vulnerable to human interference. Herein, this study investigated the phototransformation process and mechanism of polypropylene microplastic (PP MPs) in presence of trichloroisocyanuric acid (TCCA) disinfectant with unique properties unlike the conventional inorganic chlorine disinfectants. The results showed that the presence of TCCA inhibited the surface photooxidation of PP MPs. Analysis of PP MP surface and reaction filtrate indicated that the inhibitory effects were likely derived from TCCA derivatives and the weakening in promoting effect of polypropylene microplastic-derived dissolved organic matter (PP-DOM) as photolytic byproducts, with the more important role of free chlorine in initial period and that of other chlorine species (i.e., the adsorbed chloride ions (Cl-), newly formed carbon-chlorine (CCl) bonds, chlorinated cyanurates, and chlorinated products) in middle and later period. The study highlights for the first time the important role of chlorine species derived from TCCA in phototransformation process of co-existed PP MPs and proposes a previously unrecognized phototransformation pathway, which will provide a new understanding and knowledge for the environmental behavior of MPs in aquaculture environment.

3.
J Hazard Mater ; 479: 135651, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39208630

RESUMO

Freeze-thaw (FT) aging can change the physicochemical characteristics of microplastics (MPs). The toxic impacts of FT-aged-MPs to soil invertebrates are poorly understood. Here the toxic mechanisms of FT-aged-MPs were investigated in earthworms after 28 d exposure. Results showed that FT 50 µm PE-MPs significantly increased reactive oxygen species (ROS) by 5.78-9.04 % compared to pristine 50 µm PE-MPs (41.80-45.05 ng/mgprot), whereas FT 500 µm PE-MPs reduced ROS by 7.52-7.87 % compared to pristine 500 µm PE-MPs (51.44-54.46 ng/mgprot). FT-PP-MPs significantly increased ROS and malondialdehyde (MDA) content in earthworms by 14.82-44.06 % and 46.75-110.21 %, respectively, compared to pristine PP-MPs (40.56-44.66 ng/mgprot, 0.41-2.53 nmol/mgprot). FT-aged PE- and PP-MPs caused more severe tissue damage to earthworms. FT-aged PE-MPs increased the alpha diversity of the gut flora of earthworms compared to pristine MPs. Earthworm guts exposed to FT-aged-MPs were enriched with differential microbial genera of contaminant degradation capacity. FT-PE-MPs affected membrane translocation by up-regulating lipids and lipid-like molecules, whereas FT-PP-MPs changed xenobiotic biodegradation and metabolism by down-regulating organoheterocyclic compounds compared to the pristine PE- and PP-MPs. This study concludes that FT-aged MPs cause greater toxicity to earthworms compared to pristine MPs.


Assuntos
Malondialdeído , Microplásticos , Oligoquetos , Espécies Reativas de Oxigênio , Poluentes do Solo , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Animais , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Malondialdeído/metabolismo , Congelamento , Biodegradação Ambiental , Microbiologia do Solo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação
4.
J Contam Hydrol ; 266: 104415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173506

RESUMO

In recent years, everyone has recognized microplastics as an emerging contaminant in aquatic ecosystems. Polypropylene is one of the dominant pollutants. The purpose of this study was to examine the effects of exposing zebrafish (Danio rerio) to water with various concentrations of polypropylene microplastics (11.86 ± 44.62 µm), including control (0 mg/L), group 1 (1 mg/L), group 2 (10 mg/L), and group 3 (100 mg/L) for up to 28 days (chronic exposure). The bioaccumulation of microplastics in the tract was noted after 28 days. From the experimental groups, blood and detoxifying organs of the liver and brain were collected. Using liver tissues evaluated the toxic effects by crucial biomarkers such as reactive oxygen species, anti-oxidant parameters, oxidative effects in protein & lipids, total protein content and free amino acid level. The study revealed that the bioaccumulation of microplastics in the organisms is a reflection of the oxidative stress and liver tissue damage experienced by the group exposed to microplastics. Also, apoptosis of blood cells was observed in the treated group as well as increased the neurotransmitter enzyme acetylcholine esterase activity based on exposure concentration-dependent manner. The overall results indicated bioaccumulation of microplastics in the gut, which led to increased ROS levels. This consequently affected antioxidant biomarkers, ultimately causing oxidation of biomolecules and liver tissue injury, as evidenced by histological analysis. This study concludes that chronic ingestion of microplastics causes considerable effects on population fitness in the aquatic environment, as well as other ecological complications, and is also critical to understand the magnitude of these contaminants' influence on ichthyofauna.


Assuntos
Fígado , Microplásticos , Estresse Oxidativo , Polipropilenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Polipropilenos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Biomarcadores/metabolismo
5.
Chemosphere ; 364: 143153, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197682

RESUMO

Polypropylene microplastics (PP-MPs), an emerging pollutant, adversely affect the ability of aquatic plants to restore water bodies, thereby compromising the functionality and integrity of wetland ecosystems. This study examines the effects of microplastic stress on the nitrogen and phosphorus removal capacities of Acorus calamus and Iris tectorum, as well as on functional microorganisms within the aquatic system. The findings indicate that under PP-MP stress, the nitrogen and phosphorus absorption capabilities of both plants were diminished. Additionally, there was a significant reduction in the metabolic enzyme activities related to nitrogen and phosphorus in the plants, alongside a notable decrease in leaf nitrogen content. PP-MPs hinder the nutrient uptake of plants, affecting their growth and indirectly reducing their ability to utilize nitrogen and phosphorus. Specifically, in the 10 mg L-1 treatment group, A. calamus and I. tectorum showed reductions in leaf nitrogen content by 23.1% and 31.0%, respectively, and by 14.8% and 27.7% in the 200 mg L-1 treatment group. Furthermore, I. tectorum had higher leaf nitrogen levels than A. calamus. Using fluorescent tagging, the distribution of PP-MPs was traced in the roots, stems, and leaves of the plants, revealing significant growth impairment in both species. This included a considerable decline in photosynthetic pigment synthesis, enhanced oxidative stress responses, and increased lipid peroxidation in cell membranes. PP-MP exposure also significantly reduced the abundance of functional microorganisms involved in denitrification and phosphorus removal at the genus level in aquatic systems. Ecological function predictions revealed a notable decrease in nitrogen cycling functions such as nitrogen respiration and nitrite denitrification among water microorganisms in both treatment groups, with a higher ecological risk potential in the A. calamus treatment group. This study provides new insights into the potential stress mechanisms of PP-MPs on aquatic plants involved in water body remediation and their impacts on wetland ecosystems.


Assuntos
Acorus , Gênero Iris , Microplásticos , Nitrogênio , Fósforo , Polipropilenos , Poluentes Químicos da Água , Áreas Alagadas , Fósforo/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Acorus/metabolismo , Gênero Iris/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Biodegradação Ambiental , Folhas de Planta/metabolismo
6.
Sci Total Environ ; 947: 174541, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977091

RESUMO

Polypropylene microplastics (PP-MPs) are emerging pollutant commonly detected in various environmental matrices and organisms, while their adverse effects and mechanisms are not well known. Here, zebrafish embryos were exposed to environmentally relevant concentrations of PP-MPs (0.08-50 mg/L) from 2 h post-fertilization (hpf) until 120 hpf. The results showed that the body weight was increased at 2 mg/L, heart rate was reduced at 0.08 and 10 mg/L, and behaviors were impaired at 0.4, 10 or 50 mg/L. Subsequently, transcriptomic analysis in the 0.4 and 50 mg/L PP-MPs treatment groups indicated potential inhibition on the glycolysis/gluconeogenesis and oxidative phosphorylation pathways. These findings were validated through alterations in multiple biomarkers related to glucose metabolism. Moreover, abnormal mitochondrial ultrastructures were observed in the intestine and liver in 0.4 and 50 mg/L PP-MPs treatment groups, accompanied by significant decreases in the activities of four mitochondrial electron transport chain complexes and ATP contents. Oxidative stress was also induced, as indicated by significantly increased ROS levels and significant reduced activities of CAT and SOD and GSH contents. All the results suggested that environmentally relevant concentrations of PP-MPs could induce disrupted mitochondrial energy metabolism in zebrafish, which may be associated with the observed behavioral impairments. This study will provide novel insights into PP-MPs-induced adverse effects and highlight need for further research.


Assuntos
Metabolismo Energético , Microplásticos , Mitocôndrias , Polipropilenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Microplásticos/toxicidade , Polipropilenos/toxicidade , Larva/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos
7.
Mar Pollut Bull ; 204: 116521, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805976

RESUMO

The omnipresence of microplastics (MPs) around the world has attracted extensive attention in the past decade with more focuses on the interactions of standard MPs without additives in regular shapes and individual pollutant, whereas the actual MPs containing various additives in irregular shapes and complex pollutants are often co-occurrence in the environments. In this paper, the adsorption performance of disposable polypropylene (PP) cups-based MPs subjected to ultraviolet irradiation was investigated in unitary and binary water matrices. The surface characteristics were analyzed and the experimental data of adsorption were fitted by various kinetic and isotherm models, and the results indicated that more cracks and oxygen-containing functional groups with decreased hydrophobicity were produced with aging, and electrostatic attraction and hydrogen bonding dominated methylene blue (MB) and tetracycline (TC) capture in the individual system. Moreover, pseudo-second order kinetic model better described the adsorption processes. In the binary system, the co-existence of TC promoted MB uptake, while the presence of MB inhibited TC capture. In addition, TC adsorption was enhanced by Ca2+, maybe due to its complexation effect, while the presence of mono- and divalent inorganic salts inhibited MB capture. This research provides useful insights for the fate of PP-MPs and organic pollutants in the complex environments.


Assuntos
Azul de Metileno , Microplásticos , Polipropilenos , Tetraciclina , Poluentes Químicos da Água , Azul de Metileno/química , Adsorção , Tetraciclina/química , Poluentes Químicos da Água/química , Polipropilenos/química , Microplásticos/química , Cinética
8.
J Hazard Mater ; 470: 134249, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603909

RESUMO

In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.


Assuntos
Microplásticos , Polietileno , Polipropilenos , Microbiologia do Solo , Poluentes do Solo , Urease , Polietileno/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Urease/metabolismo , Congelamento , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Solo/química
9.
J Toxicol Environ Health A ; 87(9): 371-380, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440899

RESUMO

Exposure to microplastics may be associated with damage of immune system. Polypropylene microplastics (PP-MPs) with a wide range of beneficial applications have not been extensively studied with respect to the immune system. The aim of this investigation is to examine the influence of two different sizes of PP-MPs (5.2 and 23.9 µm diameter) on immune system components in ICR mice. PP-MPs were administered orally to female and male mice at 0 (corn oil vehicle), 500, 1000, or 2000 mg/kg/d for single and daily for 4-week repeated toxicity test, respectively. No significant differences were observed in number of thymic CD4+, CD8+, CD4+CD8+ T lymphocytes, splenic helper T cells, cytotoxic T cells, and B cells. The ratio of interferon-γ to interleukin-4 in culture supernatants from activated splenocytes ex vivo (48 hr) was lower in females which were repeatedly administered with PP-MPs compared to vehicle irrespective of PP-MPs size and dose. In contrast, the opposite trend was observed in males. Production of tumor necrosis factor-α was upregulated in females that were repeatedly exposed to PP-MPs. The serum IgG2a/IgG1 ratio was lowered in female receiving large-size PP-MPs. Data suggest that immune disturbances resulting in predominant type-2 helper T cell reactivity may occur in mice, especially in females, when repeatedly exposed to PP-MPs. Further investigations with longer exposure periods are necessary to determine the immunotoxicities attributed to PP-MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos ICR , Plásticos , Polipropilenos/toxicidade , Baço
10.
Sci Total Environ ; 920: 170894, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367736

RESUMO

Polypropylene microplastics (PP-MPs) are emerging environmental contaminants that have the potential to cause adverse effects on aquatic organisms. Reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) is a valuable tool for assessing the gene expression profiles under PP-MPs stress. To obtain an accurate gene expression profile of tissue inflammation and apoptosis that reflects the molecular mechanisms underlying the impact of PP-MPs on Chinese sturgeon, identifying reliable reference genes is crucial for RT-qPCR analysis. In this study, we constructed an experiment model of Chinese sturgeon exposed to PP-MPs, assessed the pathological injury, metabolic profile responses and oxidative stress in liver, evaluated the reliability of 8 reliable reference genes by 4 commonly used algorithms including GeNorm, NormFinder, BeatKeeper, Delta Ct, and then analyzed the performance of inflammatory response genes in liver, spleen and kidney with the best reference gene. HE staining revealed that the cytoplasm full small vacuoles and nucleus diameter increased were occurred in the liver cell of PP-MPs in treatment groups. Additionally, oxidative and biochemical parameters were significantly changes in the liver of treatment groups. For the reference genes in PP-MPs exposure experiments, this study screening the optimal reference genes including: EF1α and GAPDH for liver and spleen, and GAPDH and RPS18 for kidney. Besides, 2 inflammatory response genes (NLRP3, TNF-α) were chosen to assess the optimal reference genes using the least stable reference gene (TUB) as a control, verified the practicality of the select reference genes in different tissues. We also found that the low concentration of PP-MPs could induce the liver tissue damage and inflammatory response in Chinese sturgeon. Our study initially evaluated the impact of short-time exposure with PP-MPs in Chinese sturgeon and provided 3 sets of validated optimal reference genes in Chinese sturgeon exposure to PP-MPs.


Assuntos
Microplásticos , Plásticos , Animais , Polipropilenos/toxicidade , Reprodutibilidade dos Testes , Peixes , Reação em Cadeia da Polimerase em Tempo Real
11.
Environ Sci Pollut Res Int ; 31(9): 13207-13217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240975

RESUMO

The increasing use of polypropylene (PP) in consumer products leads to the microplastic (PP MPs) contamination of the aquatic ecosystems. Comprehensive toxicological studies of weathered/aged and new PP MPs with Artemia salina are a need of the hour. Our study explores the toxicological differences between naturally weathered (aged) and prepared new PP MPs on Artemia salina. Both the weathered and new PP MPs were prepared using controlled grinding and sieving at ≤ 125 µm. Artemia salina was treated with different concentrations (0.25, 0.5, and 1 mg/mL) of PP MP particles for up to 48 h. The uptake of weathered PP MP particles by Artemia salina was higher than the new PP MPs. The accumulation of PP MP particles was found in the intestine. There was increased oxidative stress recorded in the animal treated with the weathered PP MPs than the new PP MPs. Artemia salina treated with weathered PP MPs showed higher ROS generation and increased, activity of oxidative enzymes like LPO, SOD, and CAT. Collectively, our findings underscore the detrimental effects of weathered and prepared new PP MPs on Artemia salina, which is an ecologically significant species of zooplankton. There is an urgent need and effective measures required to address plastic disposal strategies in an environmentally safe manner.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Polipropilenos/toxicidade , Plásticos/toxicidade , Artemia , Ecossistema , Poluentes Químicos da Água/toxicidade
12.
J Environ Manage ; 353: 120176, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295634

RESUMO

Conjugation with the increment of consumption of polypropylene (PP) masks and antidepressants during pandemic, PP microplastics (MPs) and Venlafaxine (VEN) widely co-existed in surface waters. However, their environmental fate and the combined toxicity were unclear. Hence, we investigated the adsorption behaviors, and associated mechanisms of PP MPs for VEN. The impact factors including pH, salinity, and MPs aging were estimated. The results indicated PP MPs could adsorb amount of VEN within 24 h. The pseudo second-order kinetic model (R2 = 0.97) and Dubinin-Radushkevich model (R2 = 0.89) fitted well with the adsorption capacity of PP MPs for VEN, implying that chemical adsorption accompanied by electrostatic interaction might be the predominant mode for the interactions between PP MPs and VEN. Meanwhile, the adsorption capacity of PP MPs declined from pH of 2.5-4.5 and then increased from 4.5 to 9.5. The increased salinity (5-35 ppt) significantly suppressed the adsorption capacity. Aging by sunlight and UV triggered the formation of new functional group (carbonyl) on MPs, and then enhanced the adsorption capacity for VEN. Gaussian Model analysis further evidenced the electrostatic adsorption occurring in PP MPs and VEN. The combined exposure to PP MPs and VEN showed significantly antagonistic toxicity on Daphnia magna. The adsorption of VEN by PP MPs mitigated the lethal effects and behavioral function impairment posed by VEN on animals, implying the potential protective effects on zooplankton by PP MPs. This study for the first time provides perspective for assessing the environmental fate of MPs and antidepressants in aquatic system.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Cloridrato de Venlafaxina , Adsorção , Microplásticos , Polipropilenos , Antidepressivos , Poluentes Químicos da Água/toxicidade
13.
Environ Pollut ; 342: 123054, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043770

RESUMO

Microplastics (MPs) pollution is a hot issue of global concern. Polypropylene microplastics (PP-MPs) age quickly in the marine environment and break down into smaller particles because of their relatively low temperature resistance, poor ultraviolet resistance, and poor antioxidant capacity, making them one of the major pollutants in the ocean. We assessed whether long-term exposure to micron-sized PP-MPs influences fish susceptibility to viral diseases. We found that exposure to PP-MPs (1-6 µm and 10-30 µm) at concentrations of 500 and 5000 µg/L resulted in uptake into spleen and kidney tissues of Lateolabrax maculatus. Increased activation of melanomacrophage centers was visible in histopathological sections of spleen from fish exposed to PP-MPs, and greater deterioration was observed in the spleen of fish infected by largemouth bass ulcerative syndrome virus after PP-MPs exposure. Additionally, exposure to PP-MPs led to significant cytotoxicity and a negative impact on the antiviral ability of cells. PP-MPs exposure had inhibitory or toxic effects on the immune system in spotted sea bass, which accelerated virus replication in vivo and decreased the expression of the innate immune- and acquired immune related genes in spleen and kidney tissues, thus increasing fish susceptibility to viral diseases. These results indicate that the long-term presence of micron-sized PP-MPs might impact fish resistance to disease, thereby posing a far-reaching problem for marine organisms.


Assuntos
Bass , Viroses , Animais , Bass/fisiologia , Microplásticos , Plásticos , Polipropilenos
14.
Environ Pollut ; 337: 122543, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716693

RESUMO

The toxicity of microplastics (MPs) to aquatic organisms has been extensively studied recently. However, few studies have investigated the effects of MPs in sediments on aquatic ecosystem functioning. In the present study, we conducted an in situ experiment to explore the concentration-dependent effects (0.025%, 0.25%, 2.5%) and size-dependent effects (150-300 µm and 500-1000 µm) of polypropylene microplastics (PP MPs) on Vallisneria natans litter decomposition dynamics, in particular, the process associated with macroinvertebrates, microorganisms, as well as microalgae and/or cyanobacteria. The results showed that exposure to high concentrations and large sizes of PP MPs can accelerate leaf litter biomass loss and nutrition release. Moreover, microbial respiration, microalgal and/or cyanobacteria chlorophyll-a were also significantly affected by PP MPs. However, PP MPs have no effect on the abundance of associated macroinvertebrate during the experiment, despite the collection of five macroinvertebrate taxa from two functional feeding groups (i.e., collectors and scrapers). Therefore, our experiment demonstrated that PP MPs may enhance leaf litter decomposition through effected microbial metabolic activity, microalgal and/or cyanobacteria biomass in the sedimentary lake. Overall, our findings highlight that PP MPs have the potential to interfere with the basic ecological functions such as plant litter decomposition in aquatic environments.


Assuntos
Microalgas , Poluentes Químicos da Água , Ecossistema , Microplásticos , Plásticos , Lagos , China , Poluentes Químicos da Água/toxicidade
15.
Environ Pollut ; 336: 122406, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597731

RESUMO

Studies have shown that exposure to either microplastics (MPs) or di-(2-ethylhexyl) phthalic acid (DEHP) alone can cause neurotoxicity in animals, but it remains uncertain whether and to what extent co-exposure to these two substances, which often occur together in reality, can also induce neurotoxicity. This study aimed to investigate the neurotoxicity and molecular mechanisms of combined exposure to DEHP and polypropylene microplastics (synthetic PP-MPs were used), the microplastics most commonly encountered by young children, in immature mice. The results showed that exposure to PP-MPs and/or DEHP did cause neurotoxic effects in immature mice, including induction of neurocognitive and memory deficits, damage to the CA3 region of the hippocampus, increased oxidative stress, and decreased AChE activity in the brain. The severity of the neurotoxicity increased with increasing concentrations of PP-MPs, combined exposure to PP-MPs and DEHP exhibited additive or synergistic effects. Transcriptomic analyses revealed that the PP-MPs and/or DEHP exposure altered the expression profiles of gene clusters involved in the stress response, and in protein processing in endoplasmic reticulum. Quantitative analyses further indicated that PP-MPs and/or DEHP exposure inhibited the activity of the heat shock response mediated by heat shock transcription factor 1, while chronically activated the unfolded protein response, consequently inducing neurotoxicity through neuronal apoptosis and neuroinflammation in the immature mice. As a pioneer study to highlight the neurotoxicity induced by combined exposure to PP-MPs and DEHP in immature mice, this research provides new insights into mitigating the health risks of PP-MPs and DEHP exposure in young children.

16.
Environ Res ; 233: 116366, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302740

RESUMO

Microplastics are emerging contaminants owing to their occurrence and distribution in everywhere the ecosystem and leading to major environmental problems. Management methods are more suitable for larger-sized plastics. Here, the current study elucidates that, TiO2 photocatalyst under sunlight irradiation actively mitigates polypropylene microplastics (pH 3, 50 h) in an aqueous medium. End of post-photocatalytic experiments, the weight loss percentage of microplastics was 50.5 ± 0.5%. Fourier transforms infrared (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR) spectroscopy results revealed the formation of peroxide and hydroperoxide ions, carbonyl, keto and ester groups at the end of the post-degradation process. Ultraviolet-Visible Diffuse Reflectance spectroscopic (UV - DRS) results showed variation in the optical absorbance of polypropylene microplastics peak values at 219 and 253 nm. Increased the weight percentage of oxygen level due to the oxidation of functional groups and decreased the weight percentage of carbon content in electron dispersive spectroscopy (EDS), probably owing to breakdown of long-chain polypropylene microplastics. In addition, scanning electron microscopy (SEM) microscopic analysis showed the surface having holes, cavities, and cracks on irritated polypropylene microplastics. The overall study and their mechanistic pathway strongly confirmed the formation of reactive oxygen species (ROS) with help of the movement of electrons by photocatalyst under solar irradiation which aids the degradation of polypropylene microplastics.


Assuntos
Microplásticos , Nanopartículas , Plásticos , Polipropilenos , Ecossistema , Catálise
17.
Environ Pollut ; 326: 121512, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36967010

RESUMO

Microplastic residues pose one of the most serious environmental problems in areas where plastic mulch is used extensively. Microplastic pollution has potentially serious consequences for ecosystems and human health. Several studies have analyzed microplastics in greenhouses or laboratory climate-controlled chambers; however, field studies evaluating the effects of different microplastics on different crops in extensive farming are limited. Therefore, we selected three major crops, Zea mays (ZM, monocotyledon), Glycine max (GM, dicotyledon, aboveground-bearing), and Arachis hypogaea (AH, dicotyledon, belowground-bearing) and investigated the effect of adding polyester microplastics (PES-MPs) and polypropylene microplastics (PP-MPs). Our results demonstrate that PP-MPs and PES-MPs decreased the soil bulk density of ZM, GM, and AH. Regarding soil pH, PES-MPs increased the soil pH of AH and ZM, whereas PP-MPs decreased the soil pH of ZM, GM, and AH compared to controls. Intriguingly, different coordinated trait responses to PP-MPs and PES-MPs were observed in all crops. In general, commonly measured parameters of AH, such as plant height, culm diameter, total biomass, root biomass, PSII maximum photochemical quantum yield (Fv/Fm), hundred-gain weight, and soluble sugar tended to decrease under PP-MPs exposure; however, some indicators of ZM and GM increased under PP-MPs exposure. PES-MPs had no obviously adverse influence on the three crops, except for the biomass of GM, and even significantly increased the chlorophyll content of AH, specific leaf area, and soluble sugar of GM. Compared with PES-MPs, PP-MPs have serious negative effects on crop growth and quality, especially AH. The findings of the present study provides evidence for evaluating the impact of soil microplastic pollution on crop yield and quality in farmland and lay a foundation for future investigations on the exploration of MP toxicity mechanisms and adaptability of different crops to microplastics.


Assuntos
Microplásticos , Solo , Humanos , Fazendas , Plásticos/toxicidade , Ecossistema , Produtos Agrícolas , Qualidade dos Alimentos , Poliésteres
18.
Toxics ; 11(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36977047

RESUMO

In recent years, polypropylene microplastic has persisted in freshwater ecosystems and biota, forming ever-growing threats. This research aimed to prepare polypropylene microplastics and evaluate their toxicity to the filter feeder Oreochromis mossambicus. In this research, fish were given a dietary supplement of polypropylene microplastics at 100, 500, and 1000 mg/kg for acute (96 h) and sub-acute (14 days) durations to assess toxic effects on liver tissues. FTIR results revealed the presence of polypropylene microplastic in their digestion matter. The ingestion of microplastics in O. mossambicus led to fluctuations in homeostasis, an upsurge in reactive oxygen species (ROS) levels, an alteration in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and glutathione peroxidase (GPx); a promotion in the oxidation of lipid molecules; and a denaturation in the neurotransmitter enzyme acetylcholinesterase (AChE). Our data indicated that sustained exposure to microplastics (14 days) produced a more severe threat than acute exposure (96 h). In addition, higher apoptosis, DNA damage (genotoxicity), and histological changes were found in the liver tissues of the sub-acute (14 days) microplastics-treated groups. This research indicated that the constant ingestion of polypropylene microplastics is detrimental to freshwater environments and leads to ecological threats.

19.
Environ Pollut ; 325: 121427, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907240

RESUMO

In the past few years, microplastics are one of the ubiquitous threatening pollutants in aquatic habitats. These persistent microplastics interact with other pollutants, especially nanoparticles were adherent on the surface, which causes potential hazards in the biota. In this study, the toxic effects of individual and combined (28 days) exposure with zinc oxide nanoparticles and polypropylene microplastics were assessed in freshwater snail Pomeacea paludosa. After the experiment, the toxic effect was evaluated by the estimation of vital biomarkers activities including antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), oxidative stress in carbonyl protein (CP), lipid peroxidation (LPO), and digestive enzymes (esterase and alkaline phosphatase). Chronic exposure to pollutants in snails causes increased reactive oxygen species level (ROS) and generates free radicals in their body which leads to impairment and alterations of biochemical markers. Where alteration in acetylcholine esterase (AChE) activity and decreased digestive enzymes (esterase and alkaline phosphatase) activities were observed in both individual and combined exposed groups. Further, histology results revealed the reduction of haemocyte cells, the disintegration of blood vessels, digestive cells, calcium cells, and DNA damage was also detected in the treated animals. Overall, when compared to individual exposures, combined exposure of pollutants (zinc oxide nanoparticles and polypropylene microplastics) causes more serious harms including decline and increased antioxidant enzyme parameters, damage the protein and lipids by oxidative stress, increased neurotransmitter activity, decrease digestive enzyme activities in the freshwater snail. The outcome of this study concluded that polypropylene microplastics along with nanoparticles cause severe ecological threats and physio-chemical effects on the freshwater ecosystem.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Antioxidantes/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Polipropilenos , Fosfatase Alcalina/metabolismo , Ecossistema , Estresse Oxidativo , Caramujos/metabolismo , Água Doce , Poluentes Químicos da Água/metabolismo
20.
Toxics ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36851002

RESUMO

Extensive environmental pollution by microplastics has increased the risk of human exposure to plastics. However, the biosafety of polypropylene microplastics (PP-MPs), especially of PP particles < 10 µm, in mammals has not been studied. Thus, here, we explored the mechanism of action and effect of exposure to small and large PP-MPs, via oral ingestion, on the mouse intestinal tract. Male C57BL/6 mice were administered PP suspensions (8 and 70 µm; 0.1, 1.0, and 10 mg/mL) for 28 days. PP-MP treatment resulted in inflammatory pathological damage, ultrastructural changes in intestinal epithelial cells, imbalance of the redox system, and inflammatory reactions in the colon. Additionally, we observed damage to the tight junctions of the colon and decreased intestinal mucus secretion and ion transporter expression. Further, the apoptotic rate of colonic cells significantly increased after PP-MP treatment. The expression of pro-inflammatory and pro-apoptosis proteins significantly increased in colon tissue, while the expression of anti-inflammatory and anti-apoptosis proteins significantly decreased. In summary, this study demonstrates that PP-MPs induce colonic apoptosis and intestinal barrier damage through oxidative stress and activation of the TLR4/NF-κB inflammatory signal pathway in mice, which provides new insights into the toxicity of MPs in mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA