Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
Environ Health Insights ; 18: 11786302241260487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132207

RESUMO

Globally, environmental pollution continues to be a significant public health problem, and according to the World Health Organisation, pollution-induced deaths account for 23% of deaths yearly, which could be prevented if people lived in healthier environments. Despite implementing multilateral agreements and international treaties such as the Bamako, Basel, Rotterdam, Minamata, and Stockholm conventions, the United Nations Sustainable Development Goals, and national laws, toxic pollutants remain a serious environmental and public health problem in low-income countries. In the specific context of Kwekwe City, an industrial and mining area in Zimbabwe, where environmental and pollution-induced health problems associated with industries have been widely reported, this study was conducted in close collaboration with the local community. The study aimed to assess community members' perceptions regarding health risks associated with potentially toxic elements and cyanide pollution in Kwekwe City. An explorative cross-sectional study was conducted with key stakeholders and industrial settlements' residents. Face-to-face interviews with key informants and focus group discussions with residents and workers were used to gather data. A thematic approach was utilised in data analysis. Study participants, who played a crucial role in the research process, perceived that industrial pollution principally linked to cyanide, mercury and chromium posed significant environmental and health risks. This participatory approach in risk perception assessment is critical in providing insight into the scope of the problem and formulating intervention strategies. However, given that qualitative study results lack generalisability and replicability, quantitative studies need to be undertaken to determine environmental levels of toxic chemical pollutants as a complementary and validative measure.

2.
Molecules ; 29(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125114

RESUMO

In this study, magnetic copper ferrite (CuFe2O4) nanoparticles were synthesized via the Pechini sol-gel method and evaluated for the removal of Cd(II) ions from aqueous solutions. PF600 and PF800 refer to the samples that were synthesized at 600 °C and 800 °C, respectively. Comprehensive characterization using FTIR, XRD, FE-SEM, HR-TEM, and EDX confirmed the successful formation of CuFe2O4 spinel structures, with crystallite sizes of 22.64 nm (PF600) and 30.13 nm (PF800). FE-SEM analysis revealed particle diameters of 154.98 nm (PF600) and 230.05 nm (PF800), exhibiting spherical and irregular shapes. HR-TEM analysis further confirmed the presence of aggregated nanoparticles with average diameters of 52.26 nm (PF600) and 98.32 nm (PF800). The PF600 and PF800 nanoparticles exhibited exceptional adsorption capacities of 377.36 mg/g and 322.58 mg/g, respectively, significantly outperforming many materials reported in the literature. Adsorption followed the Langmuir isotherm model and pseudo-second-order kinetics, indicating monolayer adsorption and strong physisorption. The process was spontaneous, exothermic, and predominantly physical. Reusability tests demonstrated high adsorption efficiency across multiple cycles when desorbed with a 0.5 M ethylenediaminetetraacetic acid (EDTA) solution, emphasizing the practical applicability of these nanoparticles. The inherent magnetic properties of CuFe2O4 facilitated easy separation from the aqueous medium using a magnet, enabling efficient and cost-effective recovery of the adsorbent. These findings highlight the potential of CuFe2O4 nanoparticles, particularly PF600, for the effective and sustainable removal of Cd(II) ions from water.

3.
Mar Pollut Bull ; 206: 116786, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094283

RESUMO

The fractionation and distribution of two potentially toxic elements (Co and Ni) were investigated in surface sediments to explore the pollution in Xiamen Bay, a special zone experiencing rapid economic growth and enormous environmental pressure. Relatively high concentrations were observed in nearshore areas with frequent human activities. The dominant fractions for Co and Ni were found to be residual, followed by exchangeable phase. Spatial differences in mobility and bioavailability inferred from chemical fractionations were more pronounced for Ni. Multiple evaluation methods including geo-accumulation index, risk assessment code, modified potential ecological risk index, etc., consistently indicated that pollution levels and ecological risks in the entire bay were generally classified as medium-low. However, non-carcinogenic risks of Co for children and carcinogenic risks of Ni for adults exceeded safety thresholds. Terrestrial weathering processes and industrial activities primarily contributed to the presence of these elements, while their distributions were mainly influenced by organic matter.

4.
Chemosphere ; 363: 142985, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089339

RESUMO

The adsorption layer system has shown great potential as a cost-effective and practical strategy for the recycling and management of excavated rocks containing potentially toxic elements (PTEs). Although this system has been employed in various civil engineering projects throughout Japan, its long-term performance to immobilize PTEs has rarely been investigated. This study aims to evaluate the effectiveness of the adsorption layer system applied in an actual road embankment approximately 11 years after construction. The embankment system is comprised of a layer of excavated arsenic (As)-bearing mudstone built on top of a bottom adsorption layer mixed with an iron (Fe)-based adsorbent. Collection of undisturbed sample was carried out by implementing borehole drilling surveys on the embankment. Batch leaching experiments using deionized water and hydrochloric acid were conducted to evaluate the water-soluble and acid-leachable concentrations of As, Fe, and other coexisting ions. The leaching of As from the mudstone layer was likely induced by As desorption from Fe-oxides/oxyhydroxides naturally present under alkaline conditions, including the oxidation of framboidal pyrite, which was identified as a potential source of As. This was supported by electron probe microanalyzer (EPMA) observations showing the presence of trace amounts of As in framboidal pyrite crystals. Arsenic leached from the mudstone layer was then immobilized by Fe oxyhydroxides found in the adsorption layer. Based on geochemical modeling and X-ray photoelectron spectroscopy (XPS) results, leached As predominantly existed as the negatively charged HAsO42- oxyanion, which is readily sequestered by Fe oxyhydroxides. Moreover, the effectiveness of the adsorption layer was assessed and its lifetime was estimated, and the results revealed it still possessed enough capacity to adsorb As released from mudstone in the foreseeable future. This prediction utilized the maximum potential amount of As that could leach from the excavated rock layer with time.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39143385

RESUMO

Potentially toxic elements (PTEs), especially arsenic in drinking water, pose significant global health risks, including cancer. This study evaluates the groundwater quality in Giresun province on the Black Sea coast of Türkiye by analyzing twelve groundwater resources. The mean concentrations of macronutrients (mg/L) were: Ca (10.53 ± 6.63), Na (6.81 ± 3.47), Mg (3.39 ± 2.27), and K (2.05 ± 1.10). The mean levels of PTEs (µg/L) were: Al (40.02 ± 15.45), Fe (17.65 ± 14.35), Zn (5.63 ± 2.59), V (4.74 ± 5.85), Cu (1.57 ± 0.81), Mn (1.02 ± 0.76), As (0.93 ± 0.73), Cr (0.75 ± 0.57), Ni (0.41 ± 0.18), Pb (0.36 ± 0.23), and Cd (0.10 ± 0.05). All PTE levels complied with WHO drinking water safety guidelines, and overall water quality was excellent. The heavy metal evaluation index (HEI < 10) and heavy metal pollution index (HPI < 45) indicate low pollution levels across all stations. Irrigation water quality was largely adequate, as shown by the magnesium hazard (MH), sodium adsorption ratio (SAR), Na%, and Kelly's ratio (KR). The total hazard index (THI) values consistently remained below 1, indicating no non-carcinogenic health risks. However, at station 10 (city center), the cancer risk (CR) for adults due to arsenic was slightly above the threshold (1.44E-04). Using principal component analysis (PCA), positive matrix factorization (PMF), and geographic information system (GIS) mapping, the study determined that most PTEs originated from natural geological formations or a combination of natural and human sources, with minimal impact from human activities. These findings highlight the safety and reliability of the groundwater sources studied, emphasizing their potential as a long-term, safe water supply for nearby populations.

6.
Heliyon ; 10(15): e34994, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144995

RESUMO

Freshwater ecosystems are at significant risk of contamination by potentially toxic elements (PTEs) due to their high inherent toxicity, their persistence in the environment and their tendency to bioaccumulate in sediments and living organisms. We investigated aquatic macrophyte communities and the concentrations of As, Cu, Cd, Cr, Pb, Zn, Ni and Fe in water and sediment samples to identify a pollution pattern along the Sava River and to investigate the potential impact of these PTEs on the diversity and structure of macrophyte communities. The study, which covered 945 km of the Sava River, showed a downstream increase in sediment concentrations of the analyzed elements. Both species richness and alpha diversity of macrophyte communities also generally increase downstream. Ordinary and partial Mantel tests indicate that macrophyte communities are significantly correlated with sediment chemistry, but only weakly correlated with water chemistry. In the lowland regions (downstream), beta diversity decreases successively, which can be attributed to an increasing similarity of environmental conditions at downstream sites. Species richness is relatively low at sites with low concentrations of Cr, Cd, Fe, and Cu in the sediment. However, species richness increases to a certain extent with increasing element concentrations; as element concentrations increase further, species richness decreases, probably as a result of increased toxicity. Some species that are generally more tolerant to high concentrations of PTEs are: Ceratophyllum demersum, Iris pseudacorus, Najas marina, Butomus umbellatus, Vallisneria spiralis, Potamogeton gramineus and Bolboschoenus maritimus maritimus. Potamogeton perfoliatus and the moss species Cinclidotus fontinaloides and Fontinalis antipyretica have narrow ecological amplitudes in relation to the concentrations of PTEs in the sediment.

7.
Heliyon ; 10(13): e33798, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071575

RESUMO

Invasive plant species (IPS) have many characteristics that are necessary for successful phytoremediation and the accumulation of large amounts of potentially toxic elements (PTEs). The most common IPS from the source of the Sava River are Reynoutria japonica, Solidago canadensis and Impatiens glandulifera. Considering that the riparian soils of the Sava River are classified as moderately polluted, this study investigated their enrichment with PTEs (As, B, Cd, Cr, Cu, Ni, Pb, Zn) and the potential for accumulation of these elements in roots and leaves of the most common IPS. The soil and plant samples were prepared using the wet digestion method in CEM Mars 6 microwave oven. The content of PTEs in soil and plant samples was determined by ICP-OES. The results showed a moderate to very high enrichment of Cu in the soils. Impatiens glandulifera has the highest uptake capacity in leaves and phytoextraction ability of B, Cd, Cu and Zn. Reynoutria japonica has some potential for phytoextraction of Pb, Zn and especially B, while Solidago canadensis has potential for phytoextraction of B and Zn, while excluding Cr and Cu. The analyzes have shown that the studied species are not suitable for bioindication of PTEs in the riparian soils of the Sava River. Considering the enrichment of soils with Cu, Impatiens glandulifera is the most suitable species for phytoremediation of these elements among the studied species.

8.
Int J Phytoremediation ; : 1-18, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080872

RESUMO

This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.


Gold mining in Ghana has caused significant environmental damage and political unrest. Research on environmentally friendly solutions to land degradation is crucial for restoring degraded lands, preserving ecosystem integrity, restoring livelihoods, and protecting public health in gold mining hotspots. However, previous studies have often overemphasized the use of trees in improving soil quality. Other past studies have merely collected plant species for heavy metal analysis without concrete pots or field experiments. Ryegrass has only been limited to arsenic remediation, and its phytoremediation ability for other toxic elements like Co, Hg, Mo, Ni, Pb, Sb, and Se has not been investigated. This work reports for the first time the phytostabilisation ability of ryegrass for potentially toxic elements in a Ghanaian context. Consequently, recommendations are made for reclaiming gold-mine-affected sites while at the same time providing evidence for widening the choice of plant species available for restoring mine-derelict lands. Ultimately, the study fills the gap in phytoremediation research within the global scientific community and Ghana in particular.

9.
Toxics ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39058119

RESUMO

The study aimed to determine the content of 17 elements (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Se, Sr, and Zn) in samples of sheep milk, cheese, and whey (36 samples in total) collected from a farm in an environmentally burdened area due to the long-term mining and industrial activity in Slovakia as well as to determine the possible risk of consumption via health risk assessment calculations. Consumption of 120 g of milk, 500 g of milk, 20 g of cheese, and 100 g of cheese were used in calculations for children and adults, respectively. According to the results, concentrations of four elements are controversial. Lead concentrations in all types of samples exceeded the maximum permissible lead limit in milk set by European Union legislation. The content of Se and As is problematic for children's consumption, and the target hazard quotient for As and Al is higher than one (considered potentially not safe) in all scenarios. According to the target system approach, lead concentrations in milk and cheese could adversely influence the nervous system and kidneys of adults' and children's developmental and reproductive systems. Considering the worst-case scenario, consuming sheep milk and cheese from the monitored areas could represent a risk and be potentially harmful to human health, mainly for children. However, further monitoring of the levels of elements and concentrations in environmentally burdened areas and more robust data on consumption are needed.

10.
Environ Geochem Health ; 46(9): 312, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001963

RESUMO

The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Solo/química , Fazendas , Medição de Risco
11.
J Hazard Mater ; 476: 135110, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970976

RESUMO

Potentially toxic elements (PTEs) in seawater and sediments may be amplified along the aquatic food chain, posing a health threat to humans. This study comprehensively analyzed the concentrations, distribution, potential sources, and health risk of 7 PTEs in multimedia (seawater, sediment and organism) in typical subtropical bays in southern China. The results indicated that Zn was the most abundant element in seawater, and the average concentration of Cd in sediment was 3.93 times higher than the background value. Except for As, the seasonal differences in surface seawater were not significant. The content of Zn in fishes, crustacea, and shellfish was the highest, while the contents of Hg and Cd were relatively low. Bioaccumulation factor indicated that Zn was a strongly bioaccumulated element in seawater, while Cd was more highly enriched by aquatic organisms in sediment. According to principal component analysis (PCA), and positive matrix factorization (PMF), the main sources of PTEs in Quanzhou Bay were of natural derivation, industrial sewage discharge, and agricultural inputs, each contributing 40.4 %, 24.2 %, and 35.4 %, respectively. This study provides fundamental and significant information for the prevention of PTEs contamination in subtropical bays, the promotion of ecological safety, and the assessment of human health risk from PTEs in seafood.


Assuntos
Baías , Monitoramento Ambiental , Peixes , Sedimentos Geológicos , Água do Mar , Poluentes Químicos da Água , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Animais , Água do Mar/química , Água do Mar/análise , Medição de Risco , Organismos Aquáticos , Crustáceos , Frutos do Mar/análise , Bioacumulação
12.
Environ Geochem Health ; 46(8): 273, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958773

RESUMO

To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.


Assuntos
Disponibilidade Biológica , Cromo , Níquel , Poluentes do Solo , Níquel/análise , Níquel/farmacocinética , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Cromo/farmacocinética , Cromo/análise , Humanos , Medição de Risco , Exposição Ambiental , Monitoramento Ambiental/métodos , Solo/química
13.
Mar Pollut Bull ; 205: 116657, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950514

RESUMO

Pakistan, a country with limited water resources and highly vulnerable to the adverse effects of climate change, faces numerous challenges in managing its water supply. In this sense, this study assessed potentially toxic elements (PTEs) in the surface water and sediments of Pakistan's Indus River and its tributaries. Key water quality parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) were determined, with respective average values of 7.1, 40 µS/cm, and 208 mg L-1. The concentrations of Cd, Cr, Cu, Ni, and Zn in surface water samples averaged 26 µg L-1, 0.9 µg L-1, 1.4 µg L-1, 22 µg L-1, and 2.1 µg L-1, respectively. The general sediment PTE profile was Ni > Cd > Zn > Cu > Cr. Certain PTE levels exceeded recommended thresholds, indicating the establishment of environmental pollution. Calculated geo-accumulation index values suggested moderate to heavy pollution levels in sediment, with PERI (404) values reinforcing the ecological risk posed by elevated PTE concentrations. Furthermore, significant correlations were observed between specific PTE pairs in both water and sediment samples. This study contributes with novel insights into the distribution and ecological implications of PTE contamination in the Indus River and its tributaries, paving the way for ecological risk management efforts.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Rios , Poluentes Químicos da Água , Paquistão , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Rios/química , Medição de Risco , Metais Pesados/análise
14.
Environ Sci Pollut Res Int ; 31(35): 47923-47945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012531

RESUMO

The patterns of the potentially toxic elements (PTEs: Cr, Fe, Ni, Cu, Zn, As, Mo, Pb, Hg) distribution in soils were studied together with the health risk assessment in the area of ore mineralization, past gold activity, and tailing effects of the Sarala gold-ore group located in the Republic of Khakassia, Russia. High PTE concentrations were found in soils with the presence of potential negative impact on human health based on the following: local background investigation, according to statistics; geochemical, environmental, and human health risk calculations; and comparative analysis using international and local reference, such as continental crust, clarke, and permissible concentrations. Sources of PTE soil enrichment and pollution were statistically identified in ascending order of degree: geogenic (local background) < geogenic-technogenic (sites with geological exploration traces - trenches) < technogenic (waste tailings). The main pollutants are Hg and As which showed moderate to significant ecological risk. Negative impact of Cr on soils was found. The pollution degree and toxicity (moderate to significant) of other PTEs increase in the location of ore mineralization zone with exploration trenches and waste tailings. Arsenic poses a carcinogenic risk to adults and children upon contact with polluted soils and non-carcinogenic effect on children in areas affected by tailings and ore mineralization zone. The non-carcinogenic effect of Fe on children was found in soils of all sites. The results provide useful information regarding the studied PTEs and their impact on the environment and human health. Such information can be helpful for the state-level decision-making process when addressing solutions for contaminated areas.


Assuntos
Monitoramento Ambiental , Ouro , Mineração , Poluentes do Solo , Solo , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Federação Russa
15.
J Hazard Mater ; 476: 135184, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39024766

RESUMO

Determining sources and spatial distributions of potentially toxic elements (PTEs) is a crucial issue of soil pollution survey. However, uncertainty estimation for source contributions remains lack, and accurate spatial prediction is still challenging. Robust Bayesian multivariate receptor model (RBMRM) was applied to the soil dataset of Qingzhou City (8 PTEs in 429 samples), to calculate source contributions with uncertainties. Multi-task convolutional neural network (MTCNN) was proposed to predict spatial distributions of soil PTEs. RBMRM afforded three sources, consistent with US-EPA positive matrix factorization. Natural source dominated As, Cr, Cu, and Ni contents (78.5 %∼86.1 %), and contributed 37.1 %, 61.0 %, and 65.9 % of Cd, Pb, and Zn, exhibiting low uncertainties with uncertainty index (UI) < 26.7 %. Industrial, traffic, and agricultural sources had significant influences on Cd, Pb, and Zn (30.2 %∼61.9 %), with UI < 39.3 %. Hg originated dominantly from atmosphere deposition (99.1 %), with relatively high uncertainties (UI=87.7 %). MTCNN acquired satisfactory accuracies, with R2 of 0.357-0.896 and nRMSE of 0.092-0.366. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb, and Zn were influenced by parent materials. Cd, Hg, Pb, and Zn showed significant hotspot in urban area. This work conducted a new approach exploration, and practical implications for soil pollution regulation were proposed.

16.
Sci Total Environ ; 948: 174760, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39025144

RESUMO

In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes. The derivation calculations are subject to high uncertainties, and substantial knowledge gaps remain regarding the relative importance of the unique pathways, territories, and periods. This publication presents a monitoring method designed to quantify the unique emission pathways of HS in large geographical areas characterized by differences in land use, population, and economic development. The method will be tested for a wide range of HS (ubiquitous organic and inorganic pollutants, pesticides, pharmaceuticals) throughout small sub-catchments located on tributaries. The results of the test application demonstrate a high diversity of both emission loads and instream concentrations throughout different regions for numerous substances. Riverine concentrations are found to be highly dependent on the flow status. Soil concentration levels of polycyclic aromatic hydrocarbons (PAH) and perfluoroalkyl substances (PFAS) are found to be in proportion, whereas that of potentially toxic elements (PTE) in a reverse relationship with economic development. In many instances, concentration levels are also contingent upon land use. The findings of this study reinforce the necessity for the implementation of harmonised and concerted HS monitoring programmes, which should encompass a diverse range of substances, emission sources, pathways and geographical areas. This is essential for the reliable development of emission factors.

17.
Front Pharmacol ; 15: 1398394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027336

RESUMO

Introduction: Early risk assessment studies usually based on total heavy metal (loid) contents, inevitably leading to an overestimation of the health risks. In addition, inputs are represented as single-point estimates in deterministic models, leading to underestimation or overestimation of the health risks. Methods: To overcome these barriers, a novel probabilistic risk assessment strategy based on the combinational use of bioaccessibility and Monte Carlo simulation was developed to assess heavy metal (loid) associated health risks of earthworms in this study. To obtain a realistic and robust probabilistic risk assessment, heavy metal (loid) exposure duration and frequency were determined using our questionnaire data. Results: As a result, the mean gastrointestinal bioaccessibility was in the order: Cd > As > Cu > Hg. The mean hazard index (HI) values for investigated metal (loid)s were 0.65 and 0.59 for male and female, respectively, demonstrating an acceptable health risk in an average community. However, the 90th percentile of HI values was 1.87 and 1.65 for male and female, respectively. And the total non-cancer risks of heavy metal (loid) exposure exceeded the acceptable threshold for 19.9% and 17.8% of male and female, respectively. In addition, the total cancer risk (TCR) value through co-exposure to As and Cd suggested that the carcinogenic risks may be of concern for average exposure population. Sensitivity analyses revealed that the exposure frequency and bioaccessible As concentration were the dominant contributors to the total risk variance, which provided meaningful implications for environmental management. Conclusion: Altogether, the refined strategy based on bioaccessibility and Monte Carlo simulation is the first of its kind, such effort attempts to scientifically guide the rational clinic use of TCM and the improvement of population-health.

18.
Food Chem Toxicol ; 191: 114862, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986833

RESUMO

This study investigates concentrations of toxic and potentially toxic elements (PTEs) in organic and conventional wheat flour and grains marketed in Las Vegas. Geographic origins of the samples were evaluated using Linear Discriminant Analysis (LDA). Monte Carlo Simulation technique was also employed to evaluate non-carcinogenic risk in four life stages. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, and Zn were determined using inductively coupled plasma mass spectrometry (ICP-MS) following hot block-assisted digestion. Obtained results showed non-significant differences in contents of toxic and PTEs between conventional and organic wheat grains/flour. Using LDA, metal (loid)s were found to be indicative of geographical origin. The LDA produced a total correct classification rate of 95.8% and 100% for US and West Pacific Region samples, respectively. The results of the present study indicate that the estimated non-carcinogenic risk associated with toxic element intakes across the four life stages were far lower than the threshold value (Target Hazard Quotient (THQ) > 1). However, the probability of exceeding the threshold value for Mn is approximately 32% in children aged between 5 and 8 years. The findings of this study can aid in understanding dietary Mn exposure in children in Las Vegas.

19.
Environ Geochem Health ; 46(7): 258, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886307

RESUMO

Road deposited sediments (RDS) are important sinks of potentially toxic elements (PTEs), which may have a significant impact on human health. A systematic review of published papers on the PTEs occurrence in RDS was carried out. The main goal was to assess the global RDS contamination by PTEs and human health risks linked with anthropogenic activities. A systematic search was made to collect information about the most cited PTEs in the published literature and perform a statistical analysis. Subsequently, health risks were assessed for 35 different areas worldwide. PTE concentrations showed high variability, and means were multiple times higher than the corresponding consensus-based threshold effect concentrations (5.2-, 10.3-, 5.3-, 3-, 7.3-, and 3.6-fold higher for Zn, Pb, Ni, Cr, Cu, and Cd, respectively). PTEs concentrations were ranked as Zn > Pb > Cu > Mn > Cr > Ni > Cd. Non carcinogenic risks followed the trend Pb > Cu > Zn > Cd. Lead is responsible for the highest significant non carcinogenic risk to human health. Unacceptable exposition to carcinogenic risks is present in most areas. The top carcinogenic risk areas were Singapore > Beijing > Yixing > Shanghai > Zhuzhou for adult male, Dresden > Singapore > Ulsan > Huludao for adult females, and Dresden > Singapore > Ulsan > Huludao for children. Highest chromium and nickel carcinogenic risks occurred in Singapore, Cd in Dresden, and Cu in Huludao. Highest RDS contamination was seen in industrial areas due to pollutants deposition. Highest Zn, Cu, Cd, and Pb concentrations occur in densely urbanized areas due to heavy-duty vehicular exhausts.


Assuntos
Sedimentos Geológicos , Feminino , Humanos , Masculino , Exposição Ambiental , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Medição de Risco , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA