Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Transgenic Res ; 33(3): 149-157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842603

RESUMO

RNA silencing is an innate immune mechanism of plants against invasion by viral pathogens. Artificial microRNA (amiRNA) can be engineered to specifically induce RNA silencing against viruses in transgenic plants and has great potential for disease control. Here, we describe the development and application of amiRNA-based technology to induce resistance to soybean mosaic virus (SMV), a plant virus with a positive-sense single-stranded RNA genome. We have shown that the amiRNA targeting the SMV P1 coding region has the highest antiviral activity than those targeting other SMV genes in a transient amiRNA expression assay. We transformed the gene encoding the P1-targeting amiRNA and obtained stable transgenic Nicotiana benthamiana lines (amiR-P1-3-1-2-1 and amiR-P1-4-1-2-1). Our results have demonstrated the efficient suppression of SMV infection in the P1-targeting amiRNA transgenic plants in an expression level-dependent manner. In particular, the amiR-P1-3-1-2-1 transgenic plant showed high expression of amiR-P1 and low SMV accumulation after being challenged with SMV. Thus, a transgenic approach utilizing the amiRNA technology appears to be effective in generating resistance to SMV.


Assuntos
Resistência à Doença , MicroRNAs , Nicotiana , Doenças das Plantas , Plantas Geneticamente Modificadas , Potyvirus , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Plantas Geneticamente Modificadas/imunologia , Nicotiana/genética , Nicotiana/virologia , Nicotiana/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Potyvirus/patogenicidade , Potyvirus/genética , Interferência de RNA , Glycine max/genética , Glycine max/virologia , Glycine max/imunologia
2.
Virus Genes ; 60(4): 423-433, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833150

RESUMO

White yam (Dioscorea rotundata) plants collected from farmers' fields and planted at the Areka Agricultural Research Center, Southern Ethiopia, displayed mosaic, mottling, and chlorosis symptoms. To determine the presence of viral pathogens, an investigation for virome characterization was conducted by Illumina high-throughput sequencing. The bioinformatics analysis allowed the assembly of five viral genomes, which according to the ICTV criteria were assigned to a novel potyvirus (3 genome sequences) and a novel crinivirus (2 genome sequences). The potyvirus showed ~ 66% nucleotide (nt) identity in the polyprotein sequence to yam mosaic virus (NC004752), clearly below the demarcation criteria of 76% identity. For the crinivirus, the RNA 1 and RNA 2 shared the highest sequence identity to lettuce chlorosis virus, and alignment of the aa sequence of the RdRp, CP and HSP70h (~ 49%, 45% and 76% identity), considered for the demarcation criteria, revealed the finding of a novel virus species. The names Ethiopian yam virus (EYV) and Yam virus 1 (YV-1) are proposed for the two tentative new virus species.


Assuntos
Crinivirus , Dioscorea , Genoma Viral , Filogenia , Doenças das Plantas , Potyvirus , Dioscorea/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Potyvirus/classificação , Etiópia , Doenças das Plantas/virologia , Crinivirus/genética , Crinivirus/isolamento & purificação , Crinivirus/classificação , Genoma Viral/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Coinfecção/virologia
3.
J Virol ; 98(6): e0050724, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775482

RESUMO

Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.


Assuntos
Doenças das Plantas , Potyvirus , Proteínas Virais , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cucumis melo/virologia , Resistência à Doença/genética , Morte Celular , Plasmodesmos/virologia , Plasmodesmos/metabolismo , Virulência , Cucurbitaceae/virologia , Interações Hospedeiro-Patógeno , Retículo Endoplasmático/virologia , Retículo Endoplasmático/metabolismo , Mutação , Citrullus/virologia
4.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793569

RESUMO

Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by insect-borne viruses, among which pepper veinal mottle virus (PVMV) is one of the most prevalent. PVMV is a member of the genus Potyvirus of the family Potyviridae and is non-persistently transmitted by aphids. Its infection significantly reduces tomato fruit yield and quality. So far, no PVMV-resistant tomato lines are available. In this study, we performed nitrite-induced mutagenesis of the PVMV tomato isolate Tn to generate attenuated PVMV mutants. PVMV Tn causes necrotic lesions in Chenopodium quinoa leaves and severe mosaic and wilting in Nicotiana benthamiana plants. After nitrite treatment, three attenuated PVMV mutants, m4-8, m10-1, and m10-11, were selected while inducing milder responses to C. quinoa and N. benthamiana with lower accumulation in tomato plants. In greenhouse tests, the three mutants showed different degrees of cross-protection against wild-type PVMV Tn. m4-8 showed the highest protective efficacy against PVMV Tn in N. benthamiana and tomato plants, 100% and 97.9%, respectively. A whole-genome sequence comparison of PVMV Tn and m4-8 revealed that 20 nucleotide substitutions occurred in the m4-8 genome, resulting in 18 amino acid changes. Our results suggest that m4-8 has excellent potential to protect tomato crops from PVMV. The application of m4-8 in protecting other Solanaceae crops, such as peppers, will be studied in the future.


Assuntos
Nicotiana , Doenças das Plantas , Potyvirus , Solanum lycopersicum , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Potyvirus/genética , Potyvirus/fisiologia , Nicotiana/virologia , Produtos Agrícolas/virologia , Resistência à Doença , Genoma Viral , Chenopodium quinoa/virologia , Mutação , Folhas de Planta/virologia , Taiwan , Mutagênese
5.
Plants (Basel) ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732454

RESUMO

The best-characterized functional motifs of the potyviral Helper-Component protease (HC-Pro) responding for aphid transmission, RNA silencing suppression, movement, symptom development, and replication are gathered in this review. The potential cellular protein targets of plant virus proteases remain largely unknown despite their multifunctionality. The HC-Pro catalytic domain, as a cysteine protease, autoproteolytically cleaves the potyviral polyproteins in the sequence motif YXVG/G and is not expected to act on host targets; however, 146 plant proteins in the Viridiplantae clade containing this motif were searched in the UniProtKB database and are discussed. On the other hand, more than 20 interactions within the entire HC-Pro structure are known. Most of these interactions with host targets (such as the 20S proteasome, methyltransferase, transcription factor eIF4E, and microtubule-associated protein HIP2) modulate the cellular environments for the benefit of virus accumulation or contribute to symptom severity (interactions with MinD, Rubisco, ferredoxin) or participate in the suppression of RNA silencing (host protein VARICOSE, calmodulin-like protein). On the contrary, the interaction of HC-Pro with triacylglycerol lipase, calreticulin, and violaxanthin deepoxidase seems to be beneficial for the host plant. The strength of these interactions between HC-Pro and the corresponding host protein vary with the plant species. Therefore, these interactions may explain the species-specific sensitivity to potyviruses.

6.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767756

RESUMO

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Potyvirus/patogenicidade , Potyvirus/fisiologia , Arabidopsis/virologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral , Nicotiana/virologia , Nicotiana/genética
7.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568788

RESUMO

During summer 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. Highthroughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via RT-PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using RACE methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long and they shared 99.9-100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kDa) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3%/84.4% nt/aa polyproteins identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below species threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).

8.
BMC Plant Biol ; 24(1): 172, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443837

RESUMO

BACKGROUND: Plant responses to a wide range of stresses are known to be regulated by epigenetic mechanisms. Pathogen-related investigations, particularly against RNA viruses, are however scarce. It has been demonstrated that Arabidopsis thaliana plants defective in some members of the RNA-directed DNA methylation (RdDM) or histone modification pathways presented differential susceptibility to the turnip mosaic virus. In order to identify genes directly targeted by the RdDM-related RNA Polymerase V (POLV) complex and the histone demethylase protein JUMONJI14 (JMJ14) during infection, the transcriptomes of infected mutant and control plants were obtained and integrated with available chromatin occupancy data for various epigenetic proteins and marks. RESULTS: A comprehensive list of virus-responsive gene candidates to be regulated by the two proteins was obtained. Twelve genes were selected for further characterization, confirming their dynamic regulation during the course of infection. Several epigenetic marks on their promoter sequences were found using in silico data, raising confidence that the identified genes are actually regulated by epigenetic mechanisms. The altered expression of six of these genes in mutants of the methyltransferase gene CURLY LEAF and the histone deacetylase gene HISTONE DEACETYLASE 19 suggests that some virus-responsive genes may be regulated by multiple coordinated epigenetic complexes. A temporally separated multiple plant virus infection experiment in which plants were transiently infected with one virus and then infected by a second one was designed to investigate the possible roles of the identified POLV- and JMJ14-regulated genes in wild-type (WT) plants. Plants that had previously been stimulated with viruses were found to be more resistant to subsequent virus challenge than control plants. Several POLV- and JMJ14-regulated genes were found to be regulated in virus induced resistance in WT plants, with some of them poisoned to be expressed in early infection stages. CONCLUSIONS: A set of confident candidate genes directly regulated by the POLV and JMJ14 proteins during virus infection was identified, with indications that some of them may be regulated by multiple epigenetic modules. A subset of these genes may also play a role in the tolerance of WT plants to repeated, intermittent virus infections.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vírus de Plantas , Viroses , Metilação de DNA , Arabidopsis/genética , Histona Desacetilases , Histona Desmetilases com o Domínio Jumonji
9.
Heliyon ; 10(5): e26387, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449648

RESUMO

Yam (Dioscorea spp.) is a staple food crop with cultural, nutritional and economic significance for millions of small-scale farmers in sub-Saharan Africa. While various virus-like symptoms such as mosaic and chlorosis are frequently observed in yam fields in Ethiopia, little information is available on the prevalence, distribution, and molecular characteristics of viruses causing these symptoms. The aim of this study was to investigate the incidence and distribution of yam viruses and determine the primary cause of yam mosaic diseases (YMD) in Ethiopia. Both symptomatic (n = 280) and asymptomatic (n = 110) yam leaf samples were collected and tested for potyviruses using ACP-ELISA. In addition, the symptomatic leaf samples were screened for yam mosaic virus (YMV), yam mild mosaic virus (YMMV), and cucumber mosaic virus (CMV) by DAS-ELISA. Subsequently, total RNA was extracted from 130 leaf samples comprising 94 symptomatic and 36 asymptomatic samples representing the different study areas. The representative RT-PCR amplicons (n = 6) were Sanger sequenced. The ACP-ELISA and DAS-ELISA results showed 9.2%, and 12.9% YMV infection, respectively, while the RT-PCR analysis showed 28.5% YMV positivity rate. Both CMV and YMMV were not detected in any of the samples tested. Thus, YMV is confirmed as the primary cause of YMD in Ethiopia. YMV isolates from Ethiopia shared 92-93% nucleotide identity among themselves and 85-99% with other YMV isolates from the GenBank. Phylogenetic analysis revealed that YMV isolates from Ethiopia, South America, and west-central Africa have the most recent common ancestor, while isolates from China and Japan are clustered as sister groups. This study enhances our understanding of YMV's genetic diversity and provides valuable information regarding the first report of YMV in Ethiopia.

10.
Phytopathology ; : PHYTO08230287R, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38451704

RESUMO

HC-Pro and coat protein (CP) genes of a potyvirus facilitate cell-to-cell movement and are involved in the systemic movement of the viruses. The interaction between HC-Pro and CP is mandatory for aphid transmission. Two turnip mosaic virus (TuMV) isolates, RC4 and YC5, were collected from calla lily plants in Taiwan. The virus derived from the infectious clone pYC5 cannot move systemically in Chenopodium quinoa plants and loses aphid transmissibility in Nicotiana benthamiana plants, like the initially isolated virus. Sequence analysis revealed that two amino acids, P5 and A206, of YC5 CP uniquely differ from RC4 and other TuMV strains. Recombination assay and site-directed mutagenesis revealed that the fifth residue of leucine (L) at the N-terminal region of the CP (TuMV-RC4), rather than proline (P) (TuMV-YC5), is critical to permit the systemic spread in C. quinoa plants. Moreover, the single substitution mutant YC5-CPP5L became aphid transmissible, similar to RC4. Fluorescence microscopy revealed that YC5-GFP was restricted in the petioles of inoculated leaves, whereas YC5-CPP5L-GFP translocated through the petioles of inoculated leaves, the main stem, and the petioles of the upper uninoculated leaves of C. quinoa plants. In addition, YC5-GUS was blocked at the basal part of the petiole connecting to the main stem of the inoculated C. quinoa plants, whereas YC5-CPP5L-GFP translocated to the upper leaves. Thus, a single amino acid, the residue L5 at the N-terminal region right before the 6DAG8 motif, is critical for the systemic translocation ability of TuMV in a local lesion host and for aphid transmissibility in a systemic host.

11.
Plant Dis ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514443

RESUMO

Sugarcane mosaic virus (SCMV genus Potyvirus, family Potyviridae) can infect maize, sugarcane, sorghum, other graminaceous crops, and some weed species (Alegria et al., 2003; Achon et al., 2007). In August 2023, the leaves of goose grass (Eleusine indica) plants surrounding maize fields in a village of Liaocheng City, Shandong Province, China showed mosaic and chlorotic symptoms (26%, 11 of 43 grasses; Figure S1). Three symptomatic goose grass samples were selected and pooled for total RNA isolation using TRIzol reagent (Tiangen, Beijing, China). A small RNA library was created using 2.0 µg of total RNA and the mirVana miRNA Isolation Kit, followed by size selection (18-28 nt), adapter ligation, purification, reverse transcription (RT), and polymerase chain reaction (PCR) enrichment. High-throughput sequencing (HTS) was then performed on a HiSeq 2500 platform (Illumina, San Diego, CA, USA). The adapter sequences were removed and the reads were assembled de novo into larger contigs using ABySS software v. 1.9.0 with a k-mer of 32. Fifty-one contigs were obtained after the reads were spliced and screened (alignment length > 30 bp; e-value ≤ 0.05). The contigs were compared with viral sequences in GenBank using local BLASTn. Thirty-four contigs (34-64 nt) had the highest identities (97.18-100%) with the SCMV genome sequence, covering approximately 12.8% of the SCMV genome (Table S1). The low coverage of small contigs mapping to the SCMV genome in the HTS results may be attributed to variations in sequencing depth and sample preparation quality, biological aspects of the virus affecting siRNA production and detection, as well as the variability in viral genome and its size (Golyaev et al., 2019; Valenzuela et al., 2022). The other 17 contigs did not align to any plant virus sequences, but aligned to plant sequences, including Phragmites australis and Panicum virgatum. Potyvirus-degenerated primers PotyF (5'-ATGGTHTGGTGYATHGARAAYGG-3') and PotyR (5'-TGCTGCKGCYTTCATYTG-3') (Marie-Jeanne et al. 2000) were used in RT-PCR to detect SCMV in symptomatic leaves, yielding a ~300 bp amplicon. Sanger sequencing and BLASTn analysis confirmed the 97.98% nucleotide identity with SCMV isolate BJ (GenBank accession No. AY042184.1). The sequence was deposited in GenBank under accession number OR777055. In addition, specific SCMV primers SCMV-F (5'- TCCGGAACTGTGGATGCA-3') and SCMV-R (5'- GTGGTGCTGCTGCACTCCC-3') (coat protein region, 939 bp) detected the virus in all 11 symptomatic goose grass leaves, with no detection in asymptomatic leaves. Inoculation tests using extracts from symptomatic goose grass on maize plants resulted in mosaic symptoms (7 of 15 plants) at 4-6 days post-inoculation (Figure S2 and 3). However, no symptoms were observed in maize plants following inoculation with leaf extracts from healthy goose grass. RT-PCR confirmed the presence of SCMV in the diseased maize plants. Sequencing analysis revealed that all amplified fragments shared 100% identity with the partial CP-encoding sequence of SCMV. Taken together these results support the presence of SCMV in symptomatic goose grass. To the best of our knowledge, this is the first report of SCMV in E. indica in China. In general, potyviruses can be easily transmitted in multiple ways including aphid vectors, grafting, and wounding. Therefore, investigating SCMV in goose grass is crucial for developing integrated strategies to prevent its transmission to economically important plants such as maize.

12.
Phytopathology ; 114(2): 484-495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408034

RESUMO

Maize lethal necrosis (MLN) is a viral disease caused by host co-infection by maize chlorotic mottle virus (MCMV) and a potyvirus, such as sugarcane mosaic virus (SCMV). The disease is most effectively managed by growing MLN-resistant varieties. However, the relative importance of MCMV and potyvirus resistance in managing this synergistic disease is poorly characterized. In this study, we evaluated the effects of SCMV and/or MCMV resistance on disease, virus titers, and synergism and explored expression patterns of known potyvirus resistance genes TrxH and ABP1. MLN disease was significantly lower in both the MCMV-resistant and SCMV-resistant inbred lines compared with the susceptible control Oh28. Prior to 14 days postinoculation (dpi), MCMV titers in resistant lines N211 and KS23-6 were more than 100,000-fold lower than found in the susceptible Oh28. However, despite no visible symptoms, titer differences between MCMV-resistant and -susceptible lines were negligible by 14 dpi. In contrast, systemic SCMV titers in the potyvirus-resistant line, Pa405, ranged from 130,000-fold to 2 million-fold lower than susceptible Oh28 as disease progressed. Initial TrxH expression was up to 49,000-fold lower in Oh28 compared with other genotypes, whereas expression of ABP1 was up to 4.5-fold lower. Measures of virus synergy indicate that whereas MCMV resistance is effective in early infection, strong potyvirus resistance is critical for reducing synergist effects of co-infection on MCMV titer. These results emphasize the importance of both potyvirus resistance and MCMV resistance in an effective breeding program for MLN management.


Assuntos
Coinfecção , Potyvirus , Tombusviridae , Doenças das Plantas , Necrose
13.
Mol Plant Pathol ; 25(2): e13434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38388027

RESUMO

Viruses rely completely on host translational machinery to produce the proteins encoded by their genes. Controlling translation initiation is important for gaining translational advantage in conflicts between the host and virus. The eukaryotic translation initiation factor 4E (eIF4E) has been reported to be hijacked by potyviruses for virus multiplication. The role of translation regulation in defence and anti-defence between plants and viruses is not well understood. We report that the transcript level of eIF6 was markedly increased in turnip mosaic virus (TuMV)-infected Nicotiana benthamiana. TuMV infection was impaired by overexpression of N. benthamiana eIF6 (NbeIF6) either transiently expressed in leaves or stably expressed in transgenic plants. Polysome profile assays showed that overexpression of NbeIF6 caused the accumulation of 40S and 60S ribosomal subunits, the reduction of polysomes, and also compromised TuMV UTR-mediated translation, indicating a defence role for upregulated NbeIF6 during TuMV infection. However, the polysome profile in TuMV-infected leaves was not identical to that in leaves overexpressing NbeIF6. Further analysis showed that TuMV NIb protein, the RNA-dependent RNA polymerase, interacted with NbeIF6 and interfered with its effect on the ribosomal subunits, suggesting that NIb might have a counterdefence role. The results propose a possible regulatory mechanism at the translation level during plant-virus interaction.


Assuntos
Potyvirus , Viroses , Nicotiana/genética , Potyvirus/genética , Processamento de Proteína Pós-Traducional , Doenças das Plantas
14.
Genes (Basel) ; 15(1)2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275614

RESUMO

Bean common mosaic virus (BCMV) was detected on common bean (Phaseolus vulgaris) plants showing wrinkled and/or narrow leaves, curling, shrinking and chlorosis of leaves, dwarfing of plants, and mottled pods in Inner Mongolia and named BCMV-22Huhe. Its genome has a size of 10,062 bp and was deposited in GenBank under the accession number OR778613. It is closely related to BCMV-Az (GenBank accession no. KP903372, in China) in the lineage of AzBMV. A recombination event was detected for BCMV-22Huhe among the 99 BCMV isolates published in the NCBI GenBank database, showing that BCMV-CJ25 (MK069986, found in Mexico) was a potential major parent, and the minor parent is unknown. This work is the first description of the occurrence of BCMV in Inner Mongolia, China.


Assuntos
Phaseolus , Potyvirus , Doenças das Plantas/genética , Potyvirus/genética , Phaseolus/genética , China
15.
Plant Dis ; 108(6): 1786-1792, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38254325

RESUMO

Maize dwarf mosaic (MDM) is one of the most important virus diseases of maize worldwide. Caused by the potyviruses maize dwarf mosaic virus (MDMV) or sugarcane mosaic virus (SCMV), MDM can cause up to 90% yield loss in susceptible hybrids. One of the most effective management strategies for MDM is growing potyvirus-resistant corn varieties. However, yield impacts associated with MDM and the corresponding efficacy of genetic resistance present in modern United States commercial hybrid lines is uncharacterized. In this study, we evaluated the disease response of 78 commercial hybrids to MDMV and SCMV and quantified yield losses associated with infection over multiple trials. We determined that while 97% of the hybrids tested were resistant to MDMV, 100% were susceptible to SCMV, with mean disease incidence per line averaging between 45 and 78% across six trial years. Despite only one hybrid displaying visible mosaic symptoms when inoculated with MDMV, MDMV reduced average yields by approximately 5% across all hybrids compared with the mock-inoculated treatment. The yield impact of SCMV was more severe, reducing average yields by 10% across replicated experiments. These results indicate that while most commercial hybrids are resistant to MDMV, possibly due to the presence of the major Scmv1 resistance locus on chromosome 6, additional potyvirus resistance genes are needed to manage SCMV-induced MDM. Pyramiding resistance loci, such as Scmv2 on chromosome 3 or Scmv3 on chromosome 10 in addition to Scmv1, could be an effective strategy to mitigate the yield impact of MDM disease.


Assuntos
Resistência à Doença , Doenças das Plantas , Potyvirus , Zea mays , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Zea mays/virologia , Zea mays/genética , Potyvirus/fisiologia , Potyvirus/genética , Resistência à Doença/genética , Hibridização Genética
16.
Mol Plant Pathol ; 25(1): e13418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279849

RESUMO

Eukaryotic translation initiation factor 4E (eIF4E), which plays a pivotal role in initiating translation in eukaryotic organisms, is often hijacked by the viral genome-linked protein to facilitate the infection of potyviruses. In this study, we found that the naturally occurring amino acid substitution D71G in eIF4E is widely present in potyvirus-resistant watermelon accessions and disrupts the interaction between watermelon eIF4E and viral genome-linked protein of papaya ringspot virus-watermelon strain, zucchini yellow mosaic virus or watermelon mosaic virus. Multiple sequence alignment and protein modelling showed that the amino acid residue D71 located in the cap-binding pocket of eIF4E is strictly conserved in many plant species. The mutation D71G in watermelon eIF4E conferred resistance against papaya ringspot virus-watermelon strain and zucchini yellow mosaic virus, and the equivalent mutation D55G in tobacco eIF4E conferred resistance to potato virus Y. Therefore, our finding provides a potential precise target for breeding plants resistant to multiple potyviruses.


Assuntos
Aminoácidos , Potyvirus , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Aminoácidos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Doenças das Plantas/genética , Potyvirus/genética , Potyvirus/metabolismo , Citrullus/virologia
17.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240739

RESUMO

Plant viruses account for enormous agricultural losses worldwide, and the most effective way to combat them is to identify genetic material conferring plant resistance to these pathogens. Aiming to identify genetic associations with responses to infection, we screened a large panel of Arabidopsis thaliana natural inbred lines for four disease-related traits caused by infection by A. thaliana-naïve and -adapted isolates of the natural pathogen turnip mosaic virus (TuMV). We detected a strong, replicable association in a 1.5 Mb region on chromosome 2 with a 10-fold increase in relative risk of systemic necrosis. The region contains several plausible causal genes as well as abundant structural variation, including an insertion of a Copia transposon into a Toll/interleukin receptor (TIR-NBS-LRR) coding for a gene involved in defense, that could be either a driver or a consequence of the disease-resistance locus. When inoculated with TuMV, loss-of-function mutant plants of this gene exhibited different symptoms than wild-type plants. The direction and severity of symptom differences depended on the adaptation history of the virus. This increase in symptom severity was specific for infections with the adapted isolate. Necrosis-associated alleles are found worldwide, and their distribution is consistent with a trade-off between resistance during viral outbreaks and a cost of resistance otherwise, leading to negative frequency-dependent selection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Humanos , Arabidopsis/genética , Potyvirus/genética , Proteínas de Arabidopsis/genética , Necrose , Doenças das Plantas/genética
18.
Virol J ; 21(1): 6, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178191

RESUMO

BACKGROUND: In cellular organisms, inosine triphosphate pyrophosphatases (ITPases) prevent the incorporation of mutagenic deaminated purines into nucleic acids. These enzymes have also been detected in the genomes of several plant RNA viruses infecting two euphorbia species. In particular, two ipomoviruses produce replicase-associated ITPases to cope with high concentration of non-canonical nucleotides found in cassava tissues. METHOD: Using high-throughput RNA sequencing on the wild euphorbia species Mercurialis perennis, two new members of the families Potyviridae and Secoviridae were identified. Both viruses encode for a putative ITPase, and were found in mixed infection with a new partitivirid. Following biological and genomic characterization of these viruses, the origin and function of the phytoviral ITPases were investigated. RESULTS: While the potyvirid was shown to be pathogenic, the secovirid and partitivirid could not be transmitted. The secovirid was found belonging to a proposed new Comovirinae genus tentatively named "Mercomovirus", which also accommodates other viruses identified through transcriptome mining, and for which an asymptomatic pollen-associated lifestyle is suspected. Homology and phylogenetic analyses inferred that the ITPases encoded by the potyvirid and secovirid were likely acquired through independent horizontal gene transfer events, forming lineages distinct from the enzymes found in cassava ipomoviruses. Possible origins from cellular organisms are discussed for these proteins. In parallel, the endogenous ITPase of M. perennis was predicted to encode for a C-terminal nuclear localization signal, which appears to be conserved among the ITPases of euphorbias but absent in other plant families. This subcellular localization is in line with the idea that nucleic acids remain protected in the nucleus, while deaminated nucleotides accumulate in the cytoplasm where they act as antiviral molecules. CONCLUSION: Three new RNA viruses infecting M. perennis are described, two of which encoding for ITPases. These enzymes have distinct origins, and are likely required by viruses to circumvent high level of cytoplasmic non-canonical nucleotides. This putative plant defense mechanism has emerged early in the evolution of euphorbias, and seems to specifically target certain groups of RNA viruses infecting perennial hosts.


Assuntos
Coinfecção , Euphorbia , Ácidos Nucleicos , Vírus de Plantas , Potyviridae , Vírus de RNA , Inosina Trifosfatase , Filogenia , Vírus de RNA/genética , Nucleotídeos/genética , Potyviridae/genética , Vírus de Plantas/genética , Plantas/genética , RNA Viral/genética , Genoma Viral
19.
Int J Biol Macromol ; 254(Pt 2): 127798, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924902

RESUMO

An all-atom Molecular Dynamics (MD) study was applied to three viral nanoparticles (VLPs) of Turnip mosaic virus (TuMV), a potyvirus: the particles genetically functionalized with two peptides, VIP (human vasoactive intestinal peptide) and VEGFR (peptide derived from the human receptor 3 of the vascular endothelial growth factor), and the non-functionalized VLP. Previous experimental results showed that VIP-VLP was the only construct of the three that was not viable. VLPs subjected to our MD study were modeled by four complete turns of the particle involving 35 subunits of the coat protein (CP). The MD simulations showed differences in structures and interaction energies associated to the crucial contribution of the disordered N-terminal arms of CP to the global stability of the particle. These differences suggested an overall stability greater in VEGFR-VLP and smaller in VIP-VLP as compared to the unfunctionalized VLP. Our novel MD study of potyviral VLPs revealed essential clues about structure and interactions of these assembled protein particles and suggests that the computational prediction of the viability of VLPs can be a valuable contribution in the field of viral nanobiotechnology.


Assuntos
Potyvirus , Fator A de Crescimento do Endotélio Vascular , Humanos , Peptídeos
20.
Plant Dis ; 108(2): 434-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709726

RESUMO

Country bean (Lablab purpureus, family Fabaceae) is grown in subsistence agriculture in Bangladesh as a multipurpose crop for food, animal feed, and green manure. This study was undertaken to investigate the genetic diversity of bean common mosaic necrosis virus (BCMNV, genus Potyvirus, family Potyviridae) in country beans. Leaf samples from country beans showing yellowing, vein banding, and mosaic symptoms were collected during field surveys between 2015 and 2019 cropping seasons from farmers' fields in different geographic regions. These samples were tested by serological and molecular diagnostic assays for the presence of BCMNV. Virus-positive samples were subjected to high-throughput Illumina sequencing to generate near-complete genomes of BCMNV isolates. In pairwise comparisons, the polyprotein sequences of BCMNV isolates from Bangladesh showed greater than 98% identities among themselves and shared less than 84% sequence identity at the nucleotide level with virus isolates reported from other countries. In the phylogenetic analysis, BCMNV isolates from Bangladeshi country beans formed a separate clade from virus isolates reported from common beans in other countries in the Americas, Africa, Europe, and from East Timor. Grow-out studies showed seed-to-seedling transmission of BCMNV, implying a possible seedborne nature of the virus in country beans.


Assuntos
Fabaceae , Potyviridae , Potyvirus , Filogenia , Potyviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...