Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
FASEB J ; 38(17): e70017, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39213037

RESUMO

The use of traditional nicotine delivery products such as tobacco has long been linked to detrimental health effects. However, little work to date has focused on the emerging market of aerosolized nicotine delivery known as electronic nicotine delivery systems (ENDS) or electronic cigarettes, and their potential for new effects on human health. Challenges studying these devices include heterogeneity in the formulation of the common components of most available ENDS, including nicotine and a carrier (commonly composed of propylene glycol and vegetable glycerin, or PG/VG). In the present study, we report on experiments interrogating the effects of major identified components in e-cigarettes. Specifically, the potential concomitant effects of nicotine and common carrier ingredients in commercial "vape" products are explored in vitro to inform the potential health effects on the craniofacial skeleton through novel vectors as compared to traditional tobacco products. MC3T3-E1 murine pre-osteoblast cells were cultured in vitro with clinically relevant liquid concentrations of nicotine, propylene glycol (PG), vegetable glycerin (VG), Nicotine+PG/VG, and the vape liquid of a commercial product (Juul). Cells were treated acutely for 24 h and RNA-Seq was utilized to determine segregating alteration in mRNA signaling. Influential gene targets identified with sparse partial least squares discriminant analysis (sPLS-DA) implemented in mixOmics were assessed using the PANTHER Classification system for molecular functions, biological processes, cellular components, and pathways of effect. Additional endpoint functional analyses were used to confirm cell cycle changes. The initial excitatory concentration (EC50) studied defined a target concentration of carrier PG/VG liquid that altered the cell cycle of the calvarial cells. Initial sPLS-DA analysis demonstrated the segregation of nicotine and non-nicotine exposures utilized in our in vitro modeling. Pathway analysis suggests a strong influence of nicotine exposures on cellular processes including metabolic processes and response to stimuli including autophagic flux. Further interrogation of the individual treatment conditions demonstrated segregation by treatment modality (Control, Nicotine, Carrier (PG+VG), Nicotine+PG/VG) along three dimensions best characterized by: latent variable 1 (PLSDA-1) showing strong segregation based on nicotine influence on cellular processes associated with cellular adhesion to collagen, osteoblast differentiation, and calcium binding and metabolism; latent variable 2 (PLSDA-2) showing strong segregation of influence based on PG+VG and Control influence on cell migration, survival, and cycle regulation; and latent variable 3 (PLSDA-3) showing strong segregation based on Nicotine and Control exposure influence on cell activity and growth and developmental processes. Further, gene co-expression network analysis implicates targets of the major pathway genes associated with bone growth and development, particularly craniofacial (FGF, Notch, TGFß, WNT) and analysis of active subnetwork pathways found these additionally overrepresented in the Juul exposure relative to Nicotine+PG/VG. Finally, experimentation confirmed alterations in cell count, and increased evidence of cell stress (markers of autophagy), but no alteration in apoptosis. These data suggest concomitant treatment with Nicotine+PG/VG drives alterations in pre-osteoblast cell cycle signaling, specifically transcriptomic targets related to cell cycle and potentially cell stress. Although we suspected cell stress and well as cytotoxic effects of Nicotine+PG/VG, no great influence on apoptotic factors was observed. Further RNA-Seq analysis allowed for the direct interrogation of molecular targets of major pathways involved in bone and craniofacial development, each demonstrating segregation (altered signaling) due to e-cigarette-type exposure. These data have implications directed toward ENDS formulation as synergistic effects of Nicotine+PG/VG are evidenced here. Thus, future research will continue to interrogate how varied formulation of Nicotine+PG/VG affects overall cell functions in multiple vital systems.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Osteoblastos , Animais , Camundongos , Nicotina/farmacologia , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Propilenoglicol , Linhagem Celular
2.
Cell Signal ; 121: 111300, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004327

RESUMO

BACKGROUND: Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS: We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS: The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS: This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.


Assuntos
Osteogênese por Distração , Osteogênese , Crânio , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Animais , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Camundongos , Crânio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Diferenciação Celular , Transdução de Sinais , Mecanotransdução Celular , Suturas Cranianas/metabolismo , Fator de Transcrição Sp7/metabolismo , Fator de Transcrição Sp7/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas Adaptadoras de Transdução de Sinal
3.
Acta Histochem ; 125(7): 152095, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37757516

RESUMO

Topiramate [2,3:4,5-bis-o-(1-methylethylidene) ß-D-fructo-pyranose sulfamate; TPM] is one of the most used new-generation antiepileptic drugs. It has been reported to regulate the differentiation of human bone cells. However, the molecular mechanism of TPM in osteoblast differentiation is not fully elucidated. In the present study, we examined the effect of TPM on osteogenic differentiation of C3H10T1/2, MC3T3-E1, primary mouse calvarial cells, and primary bone marrow stem cells (BMSCs). Primary cells were isolated from mice calvaria and bone marrow respectively. Expression of the osteogenic gene was determined by RT-PCR. The osteogenic protein levels were measured by Western blot analysis. Alkaline phosphatase (ALP) staining experiment was performed to evaluate ALP activity. Alizarin red s (ARS) staining was performed to measure zebrafish caudal fin regeneration. Treatment of TPM up-regulated the osteogenic genes including distal-less homeobox 5 (Dlx5) and runt-related transcription factor 2 (Runx2). In addition, TPM also increased the Dlx5 and Runx2 protein levels, Smad1/5/9 phosphorylation, and alkaline phosphatase (ALP) activity. Furthermore, TPM activated AMPK, and inhibition of AMPK decreased TPM-induced osteogenic differentiation. In the zebrafish model, osteogenic effect of TPM was identified. TPM was increased amputated caudal fin rays of zebrafish. These results demonstrate that TPM enhances osteogenic differentiation via AMPK-mediated Smad1/5/9 phosphorylation.

4.
Biomimetics (Basel) ; 8(4)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37622949

RESUMO

The formation of bone in a bone defect is accomplished by osteoblasts, while the over activation of fibroblasts promotes fibrosis. However, it is not clear how the extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts. This study aim to investigate the effect of bone-regeneration microenvironment stiffness on cell adhesion, cell proliferation, cell differentiation, synthesizing matrix ability and its potential mechanisms in mechanotransduction, in pre-osteoblasts and fibroblasts. Polyacrylamide substrates mimicking the matrix stiffness of different stages of the bone-healing process (15 kPa, mimic granulation tissue; 35 kPa, mimic osteoid; 150 kPa, mimic calcified bone matrix) were prepared. Mouse pre-osteoblasts MC3T3-E1 and mouse fibroblasts NIH3T3 were plated on three types of substrates, respectively. There were significant differences in the adhesion of pre-osteoblasts and fibroblasts on different polyacrylamide substrates. Runx2 expression increased with increasing substrate stiffness in pre-osteoblasts, while no statistical differences were found in the Acta2 expression in fibroblasts on three substrates. OPN expression in pre-osteoblasts, as well as Fn1 and Col1a1 expression in fibroblasts, decreased with increasing stiffness. The difference between the cell traction force generated by pre-osteoblasts and fibroblasts on substrates was also found. Our results indicated that substrate stiffness is a potent regulator of pre-osteoblasts and fibroblasts with the ability of promoting osteogenic differentiation of pre-osteoblasts, while having no effect on myofibroblast differentiation of fibroblasts.

5.
Mol Cell Biochem ; 478(10): 2191-2206, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36640256

RESUMO

The study aims to explore the role of the ERK signaling pathway in the crosstalk between Dkk-1 and TNF-α in MC3T3E1 pre-osteoblasts under cyclic tensile/compressive stress. A forced four-point bending system was used to apply cyclic uniaxial tensile/compressive strain (2000 µ, 0.5 Hz) to MC3T3E1 cells. Dkk-1 and TNF-α expression were upregulated in MC3T3E1 cells under compressive strain. Cell proliferation, the cell cycle, osteogenesis-related gene (Wnt5a, Runx2, Osterix) expression, ß-catenin expression, and the p-ERK/ERK ratio were significantly enhanced, whereas apoptosis, the RANKL/OPG ratio, and TNF-α expression were significantly attenuated, by Dkk-1 silencing. Dkk-1 expression increased and the effects of Dkk-1 silencing were reversed when exogenous TNF-α was added. Mechanically, TNF-α crosstalked with Dkk-1 through ERK signaling in MC3T3E1 cells. ERK signaling blockade impaired Dkk-1-induced TNF-α expression and TNF-α-mediated Dkk-1 expression. Dkk-1 and TNF-α crosstalked, partially through ERK signaling, in MC3T3E1 cells under compressive/tensile strain, synergistically modulating various biological behaviors of the cells. These findings not only provide mechanical insight into the cellular events and molecular regulation of orthodontic tooth movement (OTM), but also aid the development of novel strategies to accelerate OTM.


Assuntos
Transdução de Sinais , Fator de Necrose Tumoral alfa , Diferenciação Celular , Proliferação de Células , Osteoblastos/metabolismo , Osteogênese , Estresse Mecânico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Camundongos
6.
Front Bioeng Biotechnol ; 10: 1011853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338134

RESUMO

Bioactive coatings are promising for improving osseointegration and the long-term success of titanium dental or orthopaedic implants. Biomimetic octacalcium phosphate (OCP) coating can be used as a carrier for osteoinductive agents. κ-Carrageenan, a highly hydrophilic and biocompatible seaweed-derived sulfated-polysaccharide, promotes pre-osteoblast activity required for bone regeneration. Whether κ-carrageenan can functionalize OCP-coating to enhance osseointegration of titanium implants is unclear. This study aimed to analyze carrageenan-functionalized biomimetic OCP-coated titanium structure, and effects of carrageenan functionalization on pre-osteoblast behavior and osteogenic differentiation. Titanium discs were coated with OCP/κ-carrageenan at 0.125-2 mg/ml OCP solution, and physicochemical and biological properties were investigated. κ-Carrageenan (2 mg/ml) in the OCP coating of titanium discs decreased the pore size in the sheet-like OCP crystal by 41.32%. None of the κ-carrageenan concentrations tested in the OCP-coating did affect hydrophilicity. However, κ-carrageenan (2 mg/ml) increased (1.26-fold) MC3T3-E1 pre-osteoblast spreading at 1 h i.e., κ-Carrageenan in the OCP-coating increased pre-osteoblast proliferation (max. 1.92-fold at 2 mg/ml, day 1), metabolic activity (max. 1.50-fold at 2 mg/ml, day 3), and alkaline phosphatase protein (max. 4.21-fold at 2 mg/ml, day 3), as well as matrix mineralization (max. 5.45-fold at 2 mg/ml, day 21). κ-Carrageenan (2 mg/ml) in the OCP-coating increased gene expression of Mepe (4.93-fold) at day 14, and Runx2 (2.94-fold), Opn (3.59-fold), Fgf2 (3.47-fold), Ocn (3.88-fold), and Dmp1 (4.59-fold) at day 21 in pre-osteoblasts. In conclusion, κ-carrageenan modified the morphology and microstructure of OCP-coating on titanium discs, and enhanced pre-osteoblast metabolic activity, proliferation, and osteogenic differentiation. This suggests that κ-carrageenan-functionalized OCP coating may be promising for in vivo improvement of titanium implant osseointegration.

7.
Front Bioeng Biotechnol ; 10: 957263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213076

RESUMO

The lack of bioactivity in three-dimensional (3D)-printing of poly-є-caprolactone (PCL) scaffolds limits cell-material interactions in bone tissue engineering. This constraint can be overcome by surface-functionalization using glycosaminoglycan-like anionic polysaccharides, e.g., carboxymethyl cellulose (CMC), a plant-based carboxymethylated, unsulfated polysaccharide, and κ-carrageenan, a seaweed-derived sulfated, non-carboxymethylated polysaccharide. The sulfation of CMC and carboxymethylation of κ-carrageenan critically improve their bioactivity. However, whether sulfated carboxymethyl cellulose (SCMC) and carboxymethyl κ-carrageenan (CM-κ-Car) affect the osteogenic differentiation potential of pre-osteoblasts on 3D-scaffolds is still unknown. Here, we aimed to assess the effects of surface-functionalization by SCMC or CM-κ-Car on the physicochemical and mechanical properties of 3D-printed PCL scaffolds, as well as the osteogenic response of pre-osteoblasts. MC3T3-E1 pre-osteoblasts were seeded on 3D-printed PCL scaffolds that were functionalized by CM-κ-Car (PCL/CM-κ-Car) or SCMC (PCL/SCMC), cultured up to 28 days. The scaffolds' physicochemical and mechanical properties and pre-osteoblast function were assessed experimentally and by finite element (FE) modeling. We found that the surface-functionalization by SCMC and CM-κ-Car did not change the scaffold geometry and structure but decreased the elastic modulus. Furthermore, the scaffold surface roughness and hardness increased and the scaffold became more hydrophilic. The FE modeling results implied resilience up to 2% compression strain, which was below the yield stress for all scaffolds. Surface-functionalization by SCMC decreased Runx2 and Dmp1 expression, while surface-functionalization by CM-κ-Car increased Cox2 expression at day 1. Surface-functionalization by SCMC most strongly enhanced pre-osteoblast proliferation and collagen production, while CM-κ-Car most significantly increased alkaline phosphatase activity and mineralization after 28 days. In conclusion, surface-functionalization by SCMC or CM-κ-Car of 3D-printed PCL-scaffolds enhanced pre-osteoblast proliferation and osteogenic activity, likely due to increased surface roughness and hydrophilicity. Surface-functionalization by SCMC most strongly enhanced cell proliferation, while CM-κ-Car most significantly promoted osteogenic activity, suggesting that surface-functionalization by CM-κ-Car may be more promising, especially in the short-term, for in vivo bone formation.

8.
J Colloid Interface Sci ; 611: 491-502, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973654

RESUMO

Hydroxyapatite (HA), an inorganic compound, plays an essential role in the proliferation and differentiation of bone cells. Using cellulose nanocrystals (CNCs) as green dispersants to improve homogenization of HA is promising in the fabrication of nanocomposite scaffolds with biocompatibility for bone tissue engineering. The HA/CNC (HC) nanoparticle suspension was incorporated in polyvinyl alcohol (PVA)-based scaffold to investigate the physical and chemical properties. The PVA/HC composites demonstrated high porous structure and swelling ability for cell attachment and a 3-fold improvement in compressive modulus compared with free HC scaffold. Moreover, the presence of HC nanoparticles has promoted the proliferation and mineralization of pre-osteoblast. Our findings could provide an effective strategy by using bio-dispersants to incorporate mineral elements into synthetic polymers for the fabrication of functional tissue engineering scaffolds.


Assuntos
Durapatita , Osteoblastos , Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Engenharia Tecidual , Alicerces Teciduais
9.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684714

RESUMO

Current cell-based bone tissue regeneration strategies cannot cover large bone defects. K-carrageenan is a highly hydrophilic and biocompatible seaweed-derived sulfated polysaccharide, that has been proposed as a promising candidate for tissue engineering applications. Whether κ-carrageenan can be used to enhance bone regeneration is still unclear. In this study, we aimed to investigate whether κ-carrageenan has osteogenic potential by testing its effect on pre-osteoblast proliferation and osteogenic differentiation in vitro. Treatment with κ-carrageenan (0.5 and 2 mg/mL) increased both MC3T3-E1 pre-osteoblast adhesion and spreading at 1 h. K-carrageenan (0.125-2 mg/mL) dose-dependently increased pre-osteoblast proliferation and metabolic activity, with a maximum effect at 2 mg/mL at day three. K-carrageenan (0.5 and 2 mg/mL) increased osteogenic differentiation, as shown by enhanced alkaline phosphatase activity (1.8-fold increase at 2 mg/mL) at day four, and matrix mineralization (6.2-fold increase at 2 mg/mL) at day 21. K-carrageenan enhanced osteogenic gene expression (Opn, Dmp1, and Mepe) at day 14 and 21. In conclusion, κ-carrageenan promoted MC3T3-E1 pre-osteoblast adhesion and spreading, metabolic activity, proliferation, and osteogenic differentiation, suggesting that κ-carrageenan is a potential osteogenic inductive factor for clinical application to enhance bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Carragenina/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Regeneração Óssea/efeitos dos fármacos , Carragenina/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/fisiologia , Engenharia Tecidual/métodos
10.
Physiol Rep ; 9(12): e14917, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34174021

RESUMO

Bone mass increases after error-loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short-term (minutes) by changing F-actin stress fiber distribution, in the intermediate-term (hours) by signaling molecule production, and in the long-term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3-E1 pre-osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0-6 h, or 21/28 days of post-incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre-osteoblast inside a parallel-plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3-fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long-term, which may explain enhanced bone formation resulting from mechanical stimuli.


Assuntos
Diferenciação Celular/fisiologia , Osteoblastos/fisiologia , Fluxo Pulsátil/fisiologia , Actinas/metabolismo , Actinas/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Análise de Elementos Finitos , Expressão Gênica , Camundongos , Óxido Nítrico/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia
11.
Carbohydr Polym ; 251: 117035, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142593

RESUMO

A biomimetic-based approaches, especially with artificial scaffolding, have established great potential to provide tissue regeneration capacity and an effective way to bridge the gap between host cell responses and organ demands. However, the synthesis of biomaterial is most efficient when the functional behavior involved most resembles the natural extracellular matrix. Here, a fibrous scaffold was engineered by integrating zein and chitosan (CS) in to polyurethane (PU) associated with functionalized multiwalled carbon nanotubes (fMWCNTs) as a bone cell repair material. The chitosan-based, tissue-engineered scaffold containing 0.1 mg/mL fMWCNTs shows potent synergistic results where improved biomechanical strength, hydrophilicity and antibacterial efficacy produce a scaffold akin to a truly natural extracellular matrix found in the bone cell microenvironments. The scaffold enables rapid cell-to-cell communication through a bio-interface and greatly promotes the regenerative effect of pre-osteoblast (MC3T3-E1) which is reflected in terms of cell growth, proliferation, and differentiation in our in vitro experiments. Alizarin red staining analysis, alkaline phosphatase activity, and Western blotting also confirm the nucleation of hydroxyapatite (HA) nanocrystals and the expression of osteogenic protein markers, all of which indicate the scaffold's excellent osteoinductive properties. These results suggest that this precisely engineered PU/Zein/CS-fMWCNTs fibrous scaffold possesses suitable biological behavior to act as an artificial bone extracellular matrix that will ensure bone cell regeneration while contributing numerous benefits to the field of artificial bone grafts.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Quitosana , Osteogênese , Engenharia Tecidual , Alicerces Teciduais , Zeína , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Microambiente Celular , Quitosana/química , Camundongos , Nanotubos de Carbono/química , Osteoblastos , Poliuretanos/química , Zeína/química
12.
Development ; 147(9)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398354

RESUMO

Osteoblasts arise from bone-surrounding connective tissue containing tenocytes and fibroblasts. Lineages of these cell populations and mechanisms of their differentiation are not well understood. Screening enhancer-trap lines of zebrafish allowed us to identify Ebf3 as a transcription factor marking tenocytes and connective tissue cells in skeletal muscle of embryos. Knockout of Ebf3 in mice had no effect on chondrogenesis but led to sternum ossification defects as a result of defective generation of Runx2+ pre-osteoblasts. Conditional and temporal Ebf3 knockout mice revealed requirements of Ebf3 in the lateral plate mesenchyme cells (LPMs), especially in tendon/muscle connective tissue cells, and a stage-specific Ebf3 requirement at embryonic day 9.5-10.5. Upregulated expression of connective tissue markers, such as Egr1/2 and Osr1, increased number of Islet1+ mesenchyme cells, and downregulation of gene expression of the Runx2 regulator Shox2 in Ebf3-deleted thoracic LPMs suggest crucial roles of Ebf3 in the onset of lateral plate mesoderm differentiation towards osteoblasts forming sternum tissues.


Assuntos
Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Fibroblastos/metabolismo , Hibridização In Situ , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Gravidez , RNA-Seq , Esterno/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
J Bone Miner Res ; 35(8): 1387-1398, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31991009

RESUMO

Paget's disease of bone (PDB) is a late-onset disorder frequently caused by mutations in the SQSTM1 gene, leading to hyperactive osteoclasts and resulting in bone pain, deformities, and fractures. However, some more severe forms of PDB-negative for SQSTM1 mutations-have been described, in which the disease degenerates into bone cancers and shows a poor prognosis. Osteosarcoma is the most frequent and aggressive tumor arising in PDB (OS/PDB), with a 5-year survival rate almost nil, but the underlying molecular mechanism is unknown. Here, we investigated an extended pedigree with 11 individuals affected by early onset and polyostotic PDB, mainly interesting the appendicular skeleton. Interestingly, three members also developed secondary osteosarcoma. We performed exome sequencing and identified a 4-bp deletion in the PFN1 gene, resulting in the degradation of the mutant protein. Copy number screening on 218 PDB individuals of our biobank disclosed that four of them (~2%) carry a germline heterozygous deletion of PFN1. The identification of these subjects, who exhibit a particularly severe form of disease, emphasizes the diagnostic value of this genetic screening to identify PDB individuals predisposed to develop osteosarcoma. In fact, we detected allelic imbalance at PFN1 locus also in 8 of 14 (57%) sporadic OS/PDB, further proving its causative role. in vitro experiments also confirmed PFN1 involvement in this form of PDB. Indeed, CRISPR-Cas9-mediated Pfn1 knockout in pre-osteoclasts resulted into enhanced osteoclast differentiation and resorption, with the formation of large osteoclasts never described before in PDB. In addition, Pfn1 lacking pre-osteoblasts lost their differentiation capability and failed to efficiently mineralize bone. Moreover, they acquired features of malignant transformation, including loss of focal adhesions and increased invasion ability. In conclusion, these findings disclose PFN1 haploinsufficiency as the pathological mechanism in OS/PDB. © 2020 American Society for Bone and Mineral Research.


Assuntos
Osteíte Deformante , Osteossarcoma , Profilinas/genética , Osso e Ossos , Humanos , Osteíte Deformante/genética , Osteossarcoma/genética , Linhagem , Proteína Sequestossoma-1/genética
14.
BMC Oral Health ; 19(1): 284, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31849322

RESUMO

BACKGROUND: Despite the wide use of dental materials for CAD/CAM system in prosthetic treatment, the effect of the materials, which are used as dental implants core fabricated, on cells involved in dental implant osseointegration is uncertain. This study aimed to investigate and compare the effect of single core materials used for dental implants fabricated by the dental prostheses fabrication process and the CAD/CAM milling method on MC3T3-E1 cells. METHODS: The materials used for prostheses restoration in this experiment were Porcelain Fused Gold (P.F.G), Lithium disilicate glass ceramic (LiSi2), Zirconia (ZrO2), Nickel-Chromium (Ni-Cr) and Cobalt-Chromium (Co-Cr). MC3T3-E1 cells were cultured and used, the cell adhesion and morphology were observed and analyzed using confocal laser scanning microscopy (CLSM). Methoxyphenyl tetrazolium salt (MTS) and alkaline phosphatase (ALP) assay were used to observe the cell proliferation and differentiation. RESULTS: CLSM revealed irregular cell adhesion and morphology and the filopodia did not spread in the Ni-Cr specimen group. Significantly high cell proliferation was observed in the ZrO2 specimen group. The LiSi2 specimen group presented significantly high cell differentiation. Intergroup comparison of cell proliferation and differentiation between the Ni-Cr specimen group and all other specimen groups showed significant differences (p < .05). CONCLUSION: Cell proliferation and differentiation were observed from the cores, which were fabricated with all specimen groups on cytocompatibility except the Ni-Cr specimen group.


Assuntos
Implantes Dentários , Materiais Dentários , Cerâmica , Desenho Assistido por Computador , Planejamento de Prótese Dentária , Teste de Materiais , Propriedades de Superfície
15.
Mater Sci Eng C Mater Biol Appl ; 97: 510-528, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678938

RESUMO

Silicate-substituted hydroxyapatite scaffolds containing multiscale porosity are manufactured. Model parts containing macropores of five cross-sectional geometries (circle, square, rhombus, star and triangle) and two sizes are shaped by microstereolithography. Three open microporosity contents (0.5, 23 or 37 vol%) are introduced in the ceramic. MC3T3-E1 pre-osteoblasts are seeded onto these scaffolds. Analysis of cell colonization inside the macropores after 7 and 14 days of cultivation shows that the cellular filling is proportional to the macropore size and strongly influenced by macropore shape. Straight edges and convex surfaces are detrimental. High aspect ratios, the absence of reentrant angles and the presence of acute angles, by creating concavities and minimizing flat surfaces, facilitate cell colonization. Rhombus and triangle cross-sections are thus particularly favorable, while square and star geometries are the least favored. An increase in the microporosity content strongly impairs cell growth in the macropores. The data are statistically analyzed using a principal components analysis that shows that macro- and microtopographical parameters of scaffolds must be collectively considered with correlated interactions to understand cell behavior. The results indicate the important cell sensing of topography during the initial step of cell adhesion and proliferation and evidence the need for an optimized scaffold design.


Assuntos
Cerâmica/química , Durapatita/química , Silício/química , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/farmacologia , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Porosidade , Análise de Componente Principal
16.
J Trace Elem Med Biol ; 50: 339-346, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262301

RESUMO

Titanium is widely used for biomedical applications, but little information is being delivered regarding the cellular/molecular mechanisms explaining their efficacy, mainly considering the effects of the Ti-released trace elements on pre-osteoblasts. We addressed this issue by investigating decisive intracellular signal transduction able to modulate cytoskeleton rearrangement, proliferative phenotype and extracellular matrix (ECM) remodeling. We considered titanium grades IV and V, submitted or not to dual acid-etching (w/DAE or wo/DAE, respectively). Our results showed there is no cytotoxicity, preserving AKT involvement. Additionally, Ti-enriched medium promoted a diminution of the downstream signaling upon integrin activation (phosphorylating Rac1 and cofilin), guaranteeing a dynamic cytoskeleton rearrangement. Moreover, the low profile of ECM remodeling obtained in response to trace molecules released by Ti-based devices seems contributing to the osteoblast performance in mediating extracellular support to cell anchorage. This hypothesis was validated by the up-expression of ß1-integrin, src and Focal adhesion kinase (fak) genes, mainly in response to titanium grade V. Proliferative phenotype showed an unbalance between cyclin-dependent kinases (CDKs) and p15INK4b/p21Cip1. In conjunction, we showed for the first time that trace elements from Ti-based biomedical devices provoke important modulation of the osteoblast biology, driving cell anchoring, viability, and proliferative phenotype. Certainly, these biological outcomes compromise implant osseointegration.


Assuntos
Meios de Cultura/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/química , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Camundongos , Microscopia Confocal , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Titânio
17.
Artif Cells Nanomed Biotechnol ; 46(sup2): 1145-1153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886755

RESUMO

Cell sheet engineering is an emerging field based on the acquisition of cells together with their extracellular matrix (ECM) and is used not only in vitro but also in regeneration studies of various tissues in the clinic. Within this scope, wide variety of cell types have been investigated in terms of sheet formation and underlying mechanism. MC3T3-E1 is a mouse pre-osteoblast cell line that has greatly attracted researchers' attention for bone tissue engineering (BTE) applications thanks to its high proliferation and differentiation properties. The potential of MC3T3-E1 cells on sheet formation and the effects of culture conditions have not been investigated in detail. This study aims to examine the effects of growth and osteogenic medium on cell sheet formation of MC3T3-E1. As a result of this study; intact, ECM-rich, transferable cell sheets at the beginning of the mineralization phase of the differentiation process were obtained by using osteogenic medium. Hereafter, 3D tissue model can be constructed by stacking MC3T3 cell sheets in vitro. This 3D model can conveniently be used for the development of novel biomaterials and in vitro drug screening applications to reduce the need for animal experiments.


Assuntos
Engenharia Celular/métodos , Osteogênese , Células 3T3 , Animais , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Colágeno/metabolismo , Meios de Cultura/química , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Camundongos
18.
Carbohydr Polym ; 193: 9-18, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29773402

RESUMO

The success of a dental implant relies on the presence of an optimal alveolar ridge. The aim of this study was to fabricate HPMC crosslinked chitosan based scaffolds for alveolar bone repair. Our results indicated that HPMC crosslinked CH/BG foams presented better morphological structure (132-90.5 µm) and mechanical responses (0.451 MPa with 100 mg BG) as confirmed by SEM analysis and fatigue testing respectively. Cytotoxicity analysis at day 2, 4 and 8 demonstrated that all composites were non-toxic and supported cellular viability. Calcein AM/propidium iodide staining, Hoechst nuclear staining and cell adhesion assay reiterated that scaffolds supported pre-osteoblast cell growth, adhesion and proliferation. Differentiation potential of pre-osteoblast cells was enhanced as confirmed by alkaline phosphate assay. Furthermore, loss of S. aureus viability as low as 35% was attributed to synergistic effects of components. Overall, our results suggest that HPMC crosslinked scaffolds are potential candidates for alveolar bone repair.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Transplante Ósseo , Quitosana/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Derivados da Hipromelose/farmacologia , Óxido de Zinco/farmacologia , Células 3T3 , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Vidro/química , Derivados da Hipromelose/química , Camundongos , Óxido de Zinco/química
19.
Acta Biomater ; 71: 37-48, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29505890

RESUMO

Poly(ethylene glycol) PEG-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The goal of this study was to investigate the impact of the FBR, and specifically the presence of inflammatory macrophages, on encapsulated cells and their ability to synthesize new extracellular matrix. This study employed an in vitro co-culture system with murine macrophages and MC3T3-E1 pre-osteoblasts encapsulated in a bone-mimetic hydrogel, which were cultured in transwell inserts, and exposed to an inflammatory stimulant, lipopolysaccharide (LPS). The co-culture was compared to mono-cultures of the cell-laden hydrogels alone and with LPS over 28 days. Two macrophage cell sources, RAW 264.7 and primary derived, were investigated. The presence of LPS-stimulated primary macrophages led to significant changes in the cell-laden hydrogel by a 5.3-fold increase in percent apoptotic osteoblasts at day 28, 4.2-fold decrease in alkaline phosphatase activity at day 10, and 7-fold decrease in collagen deposition. The presence of LPS-stimulated RAW macrophages led to significant changes in the cell-laden hydrogel by 5-fold decrease in alkaline phosphatase activity at day 10 and 4-fold decrease in collagen deposition. Mineralization, as measured by von Kossa stain or quantified by calcium content, was not sensitive to macrophages or LPS. Elevated interleukin-6 and tumor necrosis factor-α secretion were detected in mono-cultures with LPS and co-cultures. Overall, primary macrophages had a more severe inhibitory effect on osteoblast differentiation than the macrophage cell line, with greater apoptosis and collagen I reduction. In summary, this study highlights the detrimental effects of macrophages on encapsulated cells for bone tissue engineering. STATEMENT OF SIGNIFICANCE: Poly(ethylene glycol) (PEG)-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The impact of the FBR on encapsulated cells and their ability to synthesize tissue has not been well studied. This study utilizes thiol-ene click chemistry to create a biomimetic, enzymatically degradable hydrogel system with which to encapsulate MC3T3-E1 pre-osteoblasts. The osteogenic capabilities and differentiation of these cellswerestudied in co-culture with macrophages, known drivers of the FBR.This study demonstrates that macrophages reduce osteogenic capabilities of encapsulated cellsin vitroand suggestthat the FBR should be considered for in vivo tissue engineering.


Assuntos
Materiais Biomiméticos/química , Hidrogéis/química , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Polietilenoglicóis/química , Animais , Técnicas de Cocultura , Macrófagos/citologia , Camundongos , Osteoblastos/citologia , Células RAW 264.7
20.
Colloids Surf B Biointerfaces ; 158: 33-40, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28662392

RESUMO

Nano-graphene oxide (GO) and its functionalized derivatives have aroused a great interest for drug delivery, tissue engineering and photothermal cancer therapy, but their biocompatibility has not yet been fully assessed. The aim of the present study was to evaluate the proliferation and differentiation of MC3T3-E1 pre-osteoblasts after the uptake of GO nanosheets (c.a. 400nm), functionalized with poly(ethylene glycol-amine) (PEG) and labelled with fluorescein isothiocyanate (FITC). Significant proliferation decrease and apoptosis increase were observed 3days after incorporation of FITC-PEG-GO by MC3T3-E1 cells. However, alterations on healthy pre-osteoblast differentiation into cells exhibiting osteoblast phenotype were not observed, as they showed normal alkaline phosphatase levels and matrix mineralization 12days after nanosheet uptake. The results suggest that 40µg/mL concentrations of these nanosheets would not affect the differentiation of healthy pre-osteoblasts, thus these PEG-GO nanosheets have potential to be used for biomedical applications after their internalization, as the induction of local hyperthermia on bone cancer.


Assuntos
Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Grafite/química , Camundongos , Osteoblastos/fisiologia , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA