Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Imaging Radionucl Ther ; 33(2): 90-93, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38949418

RESUMO

Objectives: Meckel scintigraphy is used to diagnose Meckel's diverticulum. Previously, premedication with ranitidine was the most frequently used method to increase the accuracy of scintigraphy. However, ranitidine can no longer be used because it is banned by the Food and Drug Administration. The aim of this study was to investigate the usability of pantoprazole as a premedication instead of ranitidine in Meckel scintigraphy. Methods: Twelve New Zealand rabbits were used in this experimental study. Rabbits were divided into two groups: pantoprazole and control. Six rabbits were premedicated with pantoprazole for three days. Meckel scintigraphy was performed on all rabbits. Counts were made and compared by drawing regions of interest from the stomach walls. Results: According to the findings of this experimental study, pantoprazole significantly increased Tc-99m-pertechnetate uptake in the stomach of rabbits on both visual and quantitative evaluation. Conclusion: Pantoprazole increases the gastric wall uptake of Tc-99m-pertechnetate in rabbits and is a potential drug for premedication in Meckel scintigraphy.

2.
Mol Imaging Biol ; 26(4): 555-568, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958882

RESUMO

Labeling and tracking existing and emerging cell-based immunotherapies using nuclear imaging is widely used to guide the preclinical phases of development and testing of existing and new emerging off-the-shelf cell-based immunotherapies. In fact, advancing our knowledge about their mechanism of action and limitations could provide preclinical support and justification for moving towards clinical experimentation of newly generated products and expedite their approval by the Food and Drug Administration (FDA).Here we provide the reader with a ready to use protocol describing the labeling methodologies and practical procedures to render different candidate cell therapies in vivo traceable by nuclear-based imaging. The protocol includes sufficient practical details to aid researchers at all career stages and from different fields in familiarizing with the described concepts and incorporating them into their work.


Assuntos
Imunoterapia , Imunoterapia/métodos , Humanos , Animais , Coloração e Rotulagem , Núcleo Celular/metabolismo
3.
Bioimpacts ; 14(3): 27510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938758

RESUMO

Introduction: This study aimed to assess the potential of poly (acrylic acid)/tricalcium phosphate nanoparticles (PAA/triCaPNPs) scaffold in terms of biocompatibility and osteoconductivity properties the in-vivo evaluation as well as to investigate the performance of PAA/triCaPNPs scaffold (with or without exosomes derived from UC-MSCs) for bone regeneration of rat critical-sized defect. Methods: PAA/triCaPNPs scaffold was made from acrylic acid (AA) monomer, N,N'-methylenebisacrylamide (MBAA), sodium bicarbonate (SBC), and ammonium persulfate (APS) through freeze-drying method. For in vivo evaluation, we randomly divided 24 rats into three groups. The rat calvarial bone defects were treated as follows: (1) Control group: defects without any treatment, (2) scaffold group: defects treated with scaffold only, (3) scaffold+exo group: defects treated with scaffold enriched with exosomes (1 µg/µL, 150 µg per rat). Eight- and 12-weeks post-surgery, half of the animals were sacrificed and bone regeneration was examined through micro-computerized tomography (µ-CT), histological staining, and immunohistochemistry (IHC). Results: Quantitative analysis based on µ-CT scan images at 8 and 12 weeks post-implantation clearly indicated that healing rate for defects that were filled with scaffold enriched with exosome was significantly higher than defects filled with scaffold without exosome. The H&E and Masson staining results revealed that more new bone-like form developed in the scaffold+exo group than that in control and scaffold groups. Further, IHC staining for osteocalcin and CD31 confirmed that more bone healing in the scaffold+exo group at 12 weeks could be associated with osteogenesis and angiogenesis concurrently. Conclusion: In the present study, we aimed to investigate the therapeutic potential of PAA/triCaPNPs scaffold as a carrier of human UC-MSC-derived exosome to achieve the exosome-controlled release on calvarial bone defect. The in vivo results indicated that the exosome-enriched scaffold could effectively minify the defect area and improve the bone healing in rat model, and as such it could be an option for exosome-based therapy.

4.
Phys Med Biol ; 69(15)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38925140

RESUMO

Objective.225Ac radiopharmaceuticals have tremendous potential for targeted alpha therapy, however,225Ac (t1/2= 9.9 d) lacks direct gamma emissions forin vivoimaging.226Ac (t1/2= 29.4 h) is a promising element-equivalent matched diagnostic radionuclide for preclinical evaluation of225Ac radiopharmaceuticals.226Ac has two gamma emissions (158 keV and 230 keV) suitable for SPECT imaging. This work is the first feasibility study forin vivoquantitative226Ac SPECT imaging and validation of activity estimation.Approach.226Ac was produced at TRIUMF (Vancouver, Canada) with its Isotope Separator and Accelerator (ISAC) facility. [226Ac]Ac3+was radiolabelled with the bioconjugate crown-TATE developed for therapeutic targeting of neuroendocrine tumours. Mice with AR42J tumour xenografts were injected with either 2 MBq of [226Ac]Ac-crown-TATE or 4 MBq of free [226Ac]Ac3+activity and were scanned at 1, 2.5, 5, and 24 h post injection in a preclinical microSPECT/CT. Quantitative SPECT images were reconstructed from the 158 keV and 230 keV photopeaks with attenuation, background, and scatter corrections. Image-based226Ac activity measurements were assessed from volumes of interest within tumours and organs of interest. Imaging data was compared withex vivobiodistribution measured via gamma counter.Main results. We present, to the best of our knowledge, the first everin vivoquantitative SPECT images of226Ac activity distributions. Time-activity curves derived from SPECT images quantify thein vivobiodistribution of [226Ac]Ac-crown-TATE and free [226Ac]Ac3+activity. Image-based activity measurements in the tumours and organs of interest corresponded well withex vivobiodistribution measurements.Significance. Here in, we established the feasibility ofin vivo226Ac quantitative SPECT imaging for accurate measurement of actinium biodistribution in a preclinical model. This imaging method could facilitate more efficient development of novel actinium labelled compounds by providing accurate quantitativein vivopharmacokinetic information essential for estimating toxicities, dosimetry, and therapeutic potency.


Assuntos
Actínio , Estudos de Viabilidade , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Camundongos , Linhagem Celular Tumoral , Estudo de Prova de Conceito , Distribuição Tecidual , Feminino
5.
Mol Imaging Biol ; 26(4): 668-679, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907124

RESUMO

PURPOSE: Preclinical imaging, with translational potential, lacks a standardized method for defining volumes of interest (VOIs), impacting data reproducibility. The aim of this study was to determine the interobserver variability of VOI sizes and standard uptake values (SUVmean and SUVmax) of different organs using the same [18F]FDG-PET and PET/CT datasets analyzed by multiple observers. In addition, the effect of a standardized analysis approach was evaluated. PROCEDURES: In total, 12 observers (4 beginners and 8 experts) analyzed identical preclinical [18F]FDG-PET-only and PET/CT datasets according to their local default image analysis protocols for multiple organs. Furthermore, a standardized protocol was defined, including detailed information on the respective VOI size and position for multiple organs, and all observers reanalyzed the PET/CT datasets following this protocol. RESULTS: Without standardization, significant differences in the SUVmean and SUVmax were found among the observers. Coregistering CT images with PET images improved the comparability to a limited extent. The introduction of a standardized protocol that details the VOI size and position for multiple organs reduced interobserver variability and enhanced comparability. CONCLUSIONS: The protocol offered clear guidelines and was particularly beneficial for beginners, resulting in improved comparability of SUVmean and SUVmax values for various organs. The study suggested that incorporating an additional VOI template could further enhance the comparability of the findings in preclinical imaging analyses.


Assuntos
Fluordesoxiglucose F18 , Variações Dependentes do Observador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Humanos , Padrões de Referência , Animais , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
6.
J Imaging ; 10(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921622

RESUMO

Aortic aneurysms, life-threatening and often undetected until they cause sudden death, occur when the aorta dilates beyond 1.5 times its normal size. This study used ultrasound scans and micro-computed tomography to monitor and measure aortic volume in preclinical settings, comparing it to the well-established measurement using ultrasound scans. The reproducibility of measurements was also examined for intra- and inter-observer variability, with both modalities used on 8-week-old C57BL6 mice. For inter-observer variability, the µCT (micro-computed tomography) measurements for the thoracic, abdominal, and whole aorta between observers were highly consistent, showing a strong positive correlation (R2 = 0.80, 0.80, 0.95, respectively) and no significant variability (p-value: 0.03, 0.03, 0.004, respectively). The intra-observer variability for thoracic, abdominal, and whole aorta scans demonstrated a significant positive correlation (R2 = 0.99, 0.96, 0.87, respectively) and low variability (p-values = 0.0004, 0.002, 0.01, respectively). The comparison between µCT and USS (ultrasound) in the suprarenal and infrarenal aorta showed no significant difference (p-value = 0.20 and 0.21, respectively). µCT provided significantly higher aortic volume measurements compared to USS. The reproducibility of USS and µCT measurements was consistent, showing minimal variance among observers. These findings suggest that µCT is a reliable alternative for comprehensive aortic phenotyping, consistent with clinical findings in human data.

7.
Front Oncol ; 14: 1334541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774411

RESUMO

Background: Radiomics can capture microscale information in medical images beyond what is visible to the naked human eye. Using a clinically relevant mouse model for endometrial cancer, the objective of this study was to develop and validate a radiomic signature (RS) predicting response to standard chemotherapy. Methods: Mice orthotopically implanted with a patient-derived grade 3 endometrioid endometrial cancer organoid model (O-PDX) were allocated to chemotherapy (combined paclitaxel/carboplatin, n=11) or saline/control (n=13). During tumor progression, the mice underwent weekly T2-weighted (T2w) magnetic resonance imaging (MRI). Segmentation of primary tumor volume (vMRI) allowed extraction of radiomic features from whole-volume tumor masks. A radiomic model for predicting treatment response was derived employing least absolute shrinkage and selection operator (LASSO) statistics at endpoint images in the orthotopic O-PDX (RS_O), and subsequently applied on the earlier study timepoints (RS_O at baseline, and week 1-3). For external validation, the radiomic model was tested in a separate T2w-MRI dataset on segmented whole-volume subcutaneous tumors (RS_S) from the same O-PDX model, imaged at three timepoints (baseline, day 3 and day 10/endpoint) after start of chemotherapy (n=8 tumors) or saline/control (n=8 tumors). Results: The RS_O yielded rapidly increasing area under the receiver operating characteristic (ROC) curves (AUCs) for predicting treatment response from baseline until endpoint; AUC=0.38 (baseline); 0.80 (week 1), 0.85 (week 2), 0.96 (week 3) and 1.0 (endpoint). In comparison, vMRI yielded AUCs of 0.37 (baseline); 0.69 (w1); 0.83 (week 2); 0.92 (week 3) and 0.97 (endpoint). When tested in the external validation dataset, RS_S yielded high accuracy for predicting treatment response at day10/endpoint (AUC=0.85) and tended to yield higher AUC than vMRI (AUC=0.78, p=0.18). Neither RS_S nor vMRI predicted response at day 3 in the external validation set (AUC=0.56 for both). Conclusions: We have developed and validated a radiomic signature that was able to capture chemotherapeutic treatment response both in an O-PDX and in a subcutaneous endometrial cancer mouse model. This study supports the promising role of preclinical imaging including radiomic tumor profiling to assess early treatment response in endometrial cancer models.

8.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675474

RESUMO

Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting efficacy of octreotide-functionalized 68Ga-radiolabelled NDs for cancer imaging and compared it with the tumor uptake using [68Ga]Ga-DOTA-TOC. In vivo studies in mice bearing AR42J tumors demonstrated the highest accumulation of the radiolabeled functionalized NDs in the liver and spleen, with relatively low tumor uptake compared to [68Ga]Ga-DOTA-TOC. Our findings suggest that, within the scope of this study, functionalization did not enhance the tumor-targeting capabilities of NDs.

9.
Front Aging Neurosci ; 16: 1306312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414634

RESUMO

Huntington's disease is an inherited disorder characterized by psychiatric, cognitive, and motor symptoms due to degeneration of medium spiny neurons in the striatum. A prodromal phase precedes the onset, lasting decades. Current biomarkers include clinical score and striatal atrophy using Magnetic Resonance Imaging (MRI). These markers lack sensitivity for subtle cellular changes during the prodromal phase. MRI and MR spectroscopy offer different contrasts for assessing metabolic, microstructural, functional, or vascular alterations in the disease. They have been used in patients and mouse models. Mouse models can be of great interest to study a specific mechanism of the degenerative process, allow better understanding of the pathogenesis from the prodromal to the symptomatic phase, and to evaluate therapeutic efficacy. Mouse models can be divided into three different constructions: transgenic mice expressing exon-1 of human huntingtin (HTT), mice with an artificial chromosome expressing full-length human HTT, and knock-in mouse models with CAG expansion inserted in the murine htt gene. Several studies have used MRI/S to characterized these models. However, the multiplicity of modalities and mouse models available complicates the understanding of this rich corpus. The present review aims at giving an overview of results obtained using MRI/S for each mouse model of HD, to provide a useful resource for the conception of neuroimaging studies using mouse models of HD. Finally, despite difficulties in translating preclinical protocols to clinical applications, many biomarkers identified in preclinical models have already been evaluated in patients. This review also aims to cover this aspect to demonstrate the importance of MRI/S for studying HD.

10.
Cancers (Basel) ; 16(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254864

RESUMO

Tumor neoangiogenesis is an important hallmark of cancer progression, triggered by alternating selective pressures from the hypoxic tumor microenvironment. Non-invasive, non-contrast-enhanced multiparametric MRI combining blood-oxygen-level-dependent (BOLD) MRI, which depicts blood oxygen saturation, and intravoxel-incoherent-motion (IVIM) MRI, which captures intravascular and extravascular diffusion, can provide insights into tumor oxygenation and neovascularization simultaneously. Our objective was to identify imaging markers that can predict hypoxia-induced angiogenesis and to validate our findings using multiplexed immunohistochemical analyses. We present an in vivo study involving 36 female athymic nude mice inoculated with luminal A, Her2+, and triple-negative breast cancer cells. We used a high-field 9.4-tesla MRI system for imaging and subsequently analyzed the tumors using multiplex immunohistochemistry for CD-31, PDGFR-ß, and Hif1-α. We found that the hyperoxic-BOLD-MRI-derived parameter ΔR2* discriminated luminal A from Her2+ and triple-negative breast cancers, while the IVIM-derived parameter fIVIM discriminated luminal A and Her2+ from triple-negative breast cancers. A comprehensive analysis using principal-component analysis of both multiparametric MRI- and mpIHC-derived data highlighted the differences between triple-negative and luminal A breast cancers. We conclude that multiparametric MRI combining hyperoxic BOLD MRI and IVIM MRI, without the need for contrast agents, offers promising non-invasive markers for evaluating hypoxia-induced angiogenesis.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38765853

RESUMO

Neurosurgical fluorescence guidance relies on contrast agents to identify tumor regions to aid in increasing the extent of resection. Existing contrast agents for this indication each have their own limitation: unpredictable contrast from tumor heterogeneity, significant extravasation into the background brain and long incubation times. An ideal contrast agent should have high and rapid contrast that persists well into the surgical procedure. By using a whole animal hyperspectral cryo-imaging system several CAs were screened for these favorable properties and compared to the gold standard of gadolinium enhanced MR. Herein, we briefly report on the leading candidate Rd-PEG1k, which shows high contrast within minutes of administration that persists for at least 90 minutes.

13.
Braz. j. med. biol. res ; 46(11): 936-942, 18/1jan. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-694024

RESUMO

The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA