Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 408: 131201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097236

RESUMO

For revealing the influence of temperature on volatile fatty acids (VFAs) generation from primary sludge (PS) during the anaerobic fermentation process facilitated by peroxymonosulfate (PMS), five fermentation groups (15, 25, 35, 45, and 55 °C) were designed. The results indicated that the production of VFAs (5148 mg COD/L) and acetic acid (2019 mg COD/L) reached their peaks at 45 °C. High-throughput sequencing technology disclosed that Firmicutes, Proteobacteria, and Actinobacteria was the dominant phyla, carbohydrate metabolism and membrane transport were the most vigorous at 45 °C. Additionally, higher temperature and PMS exhibit synergistic effects in promoting VFAs accumulation. This study unveiled the mechanism of the effect of the pretreatment of PS with PMS on the VFAs production, which established a theoretical foundation for the production of VFAs.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Temperatura , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Peróxidos , Anaerobiose , Bactérias/metabolismo , Reatores Biológicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39198346

RESUMO

Obtaining value-added products from renewable resources is limited by the lack of specific operating conditions optimized for the physico-chemical characteristics of the biomass and the desired end product. A mathematical model and statistical optimization were developed for the production of volatile fatty acids (VFAs) by anaerobic digestion of municipal sewage sludge. The experimental tests were carried out in triplicate and investigated a wide range of conditions: pH 9.5, 10.5, and 11.5; temperatures 25 °C, 35 °C, 45 °C, and 55 °C; primary sludge with organic loading (OL) of 10 and 14 g VS (volatile solids); and digested sludge with 4 and 6 g VS. Subsequently, a statistical search was performed to obtain optimal production conditions, then a statistical model of VFA production was developed and the optimal conditions were validated at pilot plant scale. The maximum VFA concentration predicted was 6975 mg COD (chemical oxygen demand)/L using primary sludge at 25 °C, initial OL of 14 g VS, and pH 10.5. The obtained third-degree model (r2 = 0.83) is a powerful tool for bioprocess scale-up, offering a promising avenue for sustainable waste management and biorefinery development.

3.
Chemosphere ; 364: 142777, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971444

RESUMO

As a part of industrial or commercial discharge, the influx of nanoplastics (NPs) to the wastewater treatment plants is inevitable. Consequently, it has become a must to understand the effects of these NPs on different unit processes. This study aimed to investigate the impact of three different concentrations of polystyrene nanoplastics (PsNPs) on the fermentation of primary sludge (PrS), implemented in batch anaerobic bioreactors, at pH 5 and 10, considering the pH-dependent nature of the fermentation process. The results showed that PsNPs stimulated hydrogen gas production at a lower dose (50 µg/L), while a significant gas suppression was denoted at higher concentrations (150 µg/L, 250 µg/L). In both acidic and alkaline conditions, propionic and acetic acid predominated, respectively, followed by n-butyric acid. Under both acidic and alkaline conditions, exposure to PsNPs boosted the propagation of various antibiotic resistance genes (ARGs), including tetracycline, macrolide, ß-lactam and sulfonamide resistance genes, and integrons. Notably, under alkaline condition, the abundance of sul2 gene in the 250 µg PsNPs/L batch exhibited a 2.4-fold decrease compared to the control batch. The response of the microbial community to PsNPs exposure exhibited variations at different pH values. Bacteroidetes prevailed at both pH conditions, with their relative abundance increasing after PsNPs exposure, indicating a positive impact of PsNPs on PrS solubilization. Adverse impacts, however, were detected in Firmicutes, Chloroflexi and Actinobacteria. The observed variations in the survival rates of various microbes stipulate that they do not have the same tolerance levels under different pH conditions.

4.
Heliyon ; 10(3): e24731, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317917

RESUMO

The study assessed the valorisation of primary sludge through HTL and the influence of temperature on the product distribution. The experiments were conducted at different temperatures, 30 min reaction time, and 100 rpm stirring rate. The maximum yield of biocrude produced was 39.47% at 270 °C. The best yield of oils was 23.96% at 300 °C. The lowest yield of asphaltenes was 12.50% at 240 °C. HHV for biocrude were always between 39 and 41 MJ/kg, close to petroleum. Best energy recovery for biocrude was 82% at 270 °C.

5.
J Environ Manage ; 347: 119134, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793294

RESUMO

The biological thermal-alkaline hydrolysis-acidification (BTAHA) could promote sludge disintegration, which was conducive to producing volatile fatty acids (VFAs). However, high temperature and strong alkali could reduce the BTAHA effluent quality. Because high temperature denatures proteins and significantly changes the material and energy metabolism of bacteria, while strong alkali inhibits fermentation microorganisms (especially acid-producing microorganisms). This study investigated the internal mechanism of zero valent iron (ZVI) and magnetite (Mag.) alleviating temperature and alkali stress and improving the quality of hydrolysis-acidification effluent. At pH 7-10, compared with the control and magnetite, ZVI increased the average effluent VFAs by 24.0%-40.1% and 11.6%-18.1%, respectively. At pH 9, ZVI could provide an ecological niche for acidifying bacteria that preferred neutral and weakly alkaline conditions, with a 49.8% proportion of VFAs to soluble chemical oxygen demand (SCOD). At pH 12, the fluorescence intensity ratio of easy to difficult biodegradable organic matter in control, RMag., and RZVI were 0.63, 0.62, and 1.31, respectively. It indicated ZVI effectively alleviated high temperature and strong alkali stress. This study provides a reference for improving the quality of BTAHA effluent.


Assuntos
Ferro , Esgotos , Esgotos/química , Hidrólise , Óxido Ferroso-Férrico , Fermentação , Ácidos Graxos Voláteis , Bactérias , Concentração de Íons de Hidrogênio , Álcalis , Anaerobiose
6.
Water Res ; 247: 120767, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897995

RESUMO

Thermal hydrolysis (TH) is widely employed in combination with anaerobic digestion (AD) to efficiently treat primary sludge and waste-activated sludge in municipal wastewater treatment plants. In this study, four different scenarios-conventional AD (S1), TH-AD (S2), AD-TH-AD (S3), and characteristics-based AD-TH-AD (S4, primary AD only for primary sludge)-were evaluated to determine the optimal deployment of TH and AD for treating primary sludge and waste-activated sludge to maximize net energy output. The maximum net energy output of 4899 MJ/t-TSfed (per ton total solids of sludge fed) was achieved in S4 when assuming the recovered heat was only used for AD heating and surplus heat was wasted, and the net energy output of S4 was 70.8 % higher than that of S1 and 48.6 % higher than that of S2. This remarkable improvement was attributed to a reduction of > 15.2 % in refractory compounds, resulting in a 17 % increase in methane yield. Importantly, this study provides the first comparison of refractory compounds between inter-thermal hydrolysis (inter-TH) and pre-thermal hydrolysis (pre-TH) using a simulated A2O process. Overall, this study provides innovative insights and strategies for enhancing the TH and AD process performance based on the specific characteristics of sewage sludge derived from wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Metano
7.
Sci Total Environ ; 902: 166483, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611717

RESUMO

Primary filtration is a compact pre-treatment process for municipal wastewater, which can lead to high removal of total suspended solids (TSS) if polymer is added prior to filtration. Extensive carbon removal with rotating belt filter (RBF) can be combined with filter primary sludge fermentation at ambient temperature, in order to produce volatile fatty acids (VFAs) as carbon source for biological nutrient removal (BNR). This process was implemented at large pilot-scale and operated for more than a year. The results showed that the RBF efficiently removed particles >10 µm, and that the TSS removal had a strong linear correlation to the influent TSS concentration. Fermentation of the sludge at ambient temperature and five days retention time and addition of the fermentate to the wastewater could nearly double the VFA concentration in the wastewater by adding 31 ± 9 mg VFA-COD/L. Meanwhile, an increase of 2 mg/L of ammonium nitrogen, and 0.7 mg /L of phosphate phosphorus would be added to the wastewater with the fermentate. Adding the fermented sludge to the wastewater stream and removing the particles with RBF makes it possible to utilize nearly all the produced VFAs for BNR, and the feasibility of this configuration was shown at pilot-scale. According to simulations of subsequent BNR, the pre-treatment would lead to lower effluent total nitrogen concentrations. Alternatively, the required BNR volume could be reduced by 11-18 %. The estimated total biogas production was similar for pre-treatment with primary settler and RBF with fermentation. RBF without fermentation gave the most favourable energy balance, but did not reach the same low effluent value for total nitrogen as RBF with fermentation.


Assuntos
Esgotos , Águas Residuárias , Fermentação , Reatores Biológicos , Ácidos Graxos Voláteis , Nutrientes , Fósforo , Nitrogênio/análise , Carbono , Eliminação de Resíduos Líquidos/métodos
8.
Bioenergy Res ; : 1-14, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37359289

RESUMO

Co-digestion implementation in wastewater treatment plants enhances biogas yield, so this research investigated the optimal ratio of biodegradable waste and sewage sludge. The increase in biogas production was investigated through batch tests using basic BMP equipment, while synergistic effects were evaluated by chemical oxygen demand (COD) balance. Analyses were performed in four volume basis ratios (3/1, 1/1, 1/3, 1/0) of primary sludge and food waste with added low food waste: 3.375%, 4.675%, and 5.35%, respectively. The best proportion was found to be 1/3 with the maximum biogas production (618.7 mL/g VS added) and the organic removal of 52.8% COD elimination. The highest enhancement rate was observed among co-digs 3/1 and 1/1 (105.72 mL/g VS). A positive correlation between biogas yield and COD removal is noticed while microbial flux required an optimal pH, value of 8 significantly decreased daily production rate. COD reductions further supported the synergistic impact; specifically, an additional 7.1%, 12.8%, and 17% of COD were converted into biogas during the co-digestions 1, 2, and 3, respectively. Three mathematical models were applied to estimate the kinetic parameters and check the accuracy of the experiment. The first-order model with a hydrolysis rate of 0.23-0.27 indicated rapidly biodegradable co-/substrates, modified Gompertz confirmed immediate commencement of co-digs through zero lag phase, while the Cone model had the best fit of over 99% for all trials. Finally, the study points out that the COD method based on linear dependence can be used for developing relatively accurate model for biogas potential estimation in anaerobic digestors. Supplementary Information: The online version contains supplementary material available at 10.1007/s12155-023-10620-8.

9.
Water Res ; 242: 120181, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343334

RESUMO

Primary treatment of municipal wastewater by rotating belt filtration followed by hydrolysis and acidogenic fermentation of the filter primary sludge (FPS) at ambient temperature was studied at pilot-scale during one year. The seasonal variations of volatile fatty acids (VFAs), nutrient release and soluble COD production as well as microbial community assembly were assessed, leading to novel findings for fermentation at ambient temperature. The reproducibility of VFA production performance was first established by operating the two fermentation reactors under the same conditions, showing similar results regarding VFA production and microbial community structure. One year of operation at 5 d retention time (RT) and 16-29 °C resulted in an average VFA yield of 180±35 mg COD/g VSin and soluble COD yield of 242±40 mg COD/g VSin. The VFA formation was temperature-dependent, with Ï´=1.033±0.005 ( [Formula: see text] . The seasonal variations of the acetic and propionic acid productions were pronounced, whereas the productions of VFAs with longer chains were more stable regardless of temperature. The community structure of the reactor microbiomes was also clearly affected by season and temperature and linked with the production spectrum of VFAs. The ammonium and phosphate releases were stable during the year, leading to a decrease in ratios of soluble COD to NH4+-N and PO43--P during winter. The soluble COD yield was 11% and 27% higher at 5 d RT compared to 3 and 2 d RT respectively, but the corresponding volumetric productivities were lower. The dissimilarities between microbiomes in influent FPS and fermenters were significant even at a short RT of 2 d, and increased with longer RT of 3 and 5 d, primarily caused by selection of bacteria within Bacteroidota in the fermentation reactors.


Assuntos
Esgotos , Águas Residuárias , Fermentação , Esgotos/química , Estações do Ano , Reprodutibilidade dos Testes , Reatores Biológicos , Ácidos Graxos Voláteis , Ácidos , Concentração de Íons de Hidrogênio
10.
Environ Res ; 217: 114939, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435490

RESUMO

To obtain high-quality VFAs production from primary sludge, a novel strategy that combined peroxymonosulfate (PMS) pretreatment and alkaline fermentation (i.e., PMS & pH9) was proposed in the study. The results showed that PMS & pH9 was efficient in sludge solubilization and hydrolysis, resulting in a maximal VFAs yield of 401.2 mg COD/g VSS, which was 7.3-, 2.1-, and 8.8-fold higher than the sole PMS, sole pH9, and control, respectively. Acetate comprised 87.6% of VFAs in this integration system. Mechanism investigations revealed that sulfate and free radicals produced by PMS play roles in improving VFAs yield under alkaline conditions. Besides, sulfate also aided in C3∼C5 VFAs converting to acetate under alkaline conditions depending on the increase of incomplete-oxidative sulfate-reducing bacteria (iso-SRB) (i.e., Desulfobulbus and Desulfobotulus). Moreover, the relative abundances of acid-forming characteristic genera (i.e., Proteiniborus, Proteinilcasticum, and Acetoanaerobium) were higher in PMS & pH9.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Fermentação , Esgotos/microbiologia , Concentração de Íons de Hidrogênio
11.
Environ Sci Pollut Res Int ; 29(60): 91201-91211, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35879637

RESUMO

Resin acids are mixtures of high molecular weight carboxylic acids found in tree resins. Due to higher hydrophobicity and low solubility, they tend to adsorb on the suspended solids in pulp and paper (P&P) mill wastewater and accumulate in primary sludge through settling. Anaerobic digestion (AD) is a common practice stabilizing sludge; however, high concentration of resin acids affects the AD process. The aim of this research was mainly to determine the impact of ferrate (Fe (VI)) oxidation on selected resin acids and anaerobic digestibility of ferrate-treated primary sludge (PS) spiked with the resin acids. First, batch control oxidation of model resin acids with Fe (VI) was conducted to identify an optimum dosage, pH and contact time using a Box-Behnken design approach. Thereafter, anaerobic treatability studies of primary sludge spiked with resin acids both under control condition and optimum ferrate pretreatment were conducted. Up to 97% oxidation of resin acids occurred in pure water, while only 44%-62% oxidation of resin acids occurred in PS with an increasing Fe (VI) dosage from 0.034 to 0.137 mg Fe (VI)/mg tCODfed. The pretreatment did not affect the anaerobic biodegradability of resin acids; however, it lowered their negative influences on the PS digestibility. About 0.076 mg Fe (VI) dosage/mg tCODfed solubilized the sludge increasing the methane production by 40% compared to the untreated digester. The potential benefits of ferrate pretreatment of P&P primary sludge include resin acids oxidation and subsequent toxicity reduction, higher sludge solubilization enhancing methane production and enabling anaerobic digestion at higher COD loading.


Assuntos
Metano , Esgotos
12.
Bioresour Technol ; 360: 127528, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35760246

RESUMO

In order to promote practical engineering application of anaerobic ammonium oxidation(anammox) process, reduction of primary sludge(PS) in wastewater treatment plants(WWTPs) and removal of nitrate contaminant, a single-stage simultaneous alkaline fermentation coupled with partial denitrification(SAFPD) system was established successfully in this study. Nitrite production was rapidly achieved from nitrate wastewater with PS as inoculated sludge and fermentable substrate under anaerobic and anoxic operating conditions. During the stable operation period, the primary sludge reduction(PSR) and productivity of organic matters were 27.9% and 483.8mgCOD/gVSS, with nitrate removal of 90.7%, NO3- to NO2- transformation ratio(NTR) of 80.0%. After 125 days of acclimation, the relative abundance of Thauera, Dechloromonas and Candidatus_Competibacter increased from 0.17%, 0.02% and 0.05% to 11.58%, 4.28% and 5.6% respectively. Above results showed that this SAFPD system not only realized the reduction of PS and nitrate removal, but also laid a solid foundation for anammox process with its high nitrite production.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Desnitrificação , Fermentação , Nitratos , Nitritos , Nitrogênio , Óxidos de Nitrogênio , Oxirredução
13.
Saudi J Biol Sci ; 29(4): 2969-2977, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531229

RESUMO

This work aimed to co-digest various wastes to assess the best combination of all mixing ratio, also at choosing the best ratio between untreated primary sludge (UPS) singly from two sources, (South valley University (SUPS) and Abu tesht wastewater station (AUPS) and raw chicken manure (RCM) and comparing the results in either case. The co-digestions of untreated primary sludge from Abu tesht wastewater treatment stations with different levels of raw chicken manure (0:100, 10:90, 30:70, 50:50, 90:10, and 100:0) to obtain the best mixtures. Also, co-digestion of untreated primary sludge from south valley university with different levels of raw chicken manure at the same ratios, to obtain the best mixtures. Batch digestion tests were applied in 2.5 L digester with a working volume of 2.0 L. The samples in triplicates were separately loaded into the digesters locally fabricated and kept for 20 days as a retention period and diluted with the same amount of water. Mesophilic under 35 °C was adopted for untreated primary sludge as well as mixtures with raw chicken manure based on total solids (TS) and volatile solid (VS) proportions. The average biogas yields from AUPS/RCM mixture obtained ranged from 8570 to 5600 ml, by the following descending order, 10: 90 > 90:10 and so on >100:0, and the average biogas yields from SUPS/RCM obtained ranged from 6330 to 5635 ml, in the order of 90: 10 > 10:90 and so on >100:0. The results showed highest biogas yield from AUPS/RCM and SUPS/RCM mixtures with mixing ratio of 10:90 and 90:10, respectively, however, the lowest biogas production detected in separate digestion of AUPS and SUPS. The results indicated that co-digestion between the sludge and raw chicken manure could increase total biogas production volume, enhance sludge treatment process, and produce eco-friendly sludge because of co-digestion process than separate processing of each feedstock.

14.
Glob Chall ; 6(3): 2100091, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284090

RESUMO

The increasing commercial use of engineered zinc oxide nanomaterials necessitates a thorough understanding of their behavior following their release into wastewater. Herein, the fates of zinc oxide nanoparticles (ZnO NPs) and ionic Zn in a real primary sludge collected from a municipal wastewater system are studied via stable isotope tracing at an environmentally relevant spiking concentration of 15.2 µg g-1. Due to rapid dissolution, nanoparticulate ZnO does not impart particle-specific effects, and the Zn ions from NP dissolution and ionic Zn display indistinguishable behavior as they partition equally between the solid, liquid, and ultrafiltrate phases of the sludge over a 4-h incubation period. This work provides important constraints on the behavior of engineered ZnO nanomaterials in primary sludge-the first barrier in a wastewater treatment plant-at low, realistic concentrations. As the calculated solid-liquid partition coefficients are significantly lower than those reported in prior studies that employ unreasonably high spiking concentrations, this work highlights the importance of using low, environmentally relevant doses of engineered nanomaterials in experiments to obtain accurate risk assessments.

15.
Appl Radiat Isot ; 181: 110101, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35065517

RESUMO

Improving the treatment efficiency of sludge in Alexandria, Egypt, was studied to improve the primary and secondary sludge treatment efficiency, different doses ranging from 0.25 to 6 kGy of ionizing radiation were proposed and evaluated. The scope of This study is to assess the radiation-based treatment efficiency from physical, chemical, and biological perspectives and to compare between the conventional treatment method and the radiation-based treatment technology. To evaluate the performance of each treatment system, pH, oil and greases concentrations, total solid concentrations, BOD concentrations, COD concentrations, parasites, and microorganisms were assessed in the primary and secondary samples at different radiation doses (from 0.25 to 6 KGy), and in the conventionally treated samples. Irradiation by gamma radiation with a dose ranging from 0.25 to 6 kGy was efficient in reducing some of the physical contaminants. Oil & greases, Total Solids, BOD, COD concentrations were reduced significantly (p < 0.001) in a dose-dependent manner. Either primary or secondary sludge samples, total solid reduced significantly to about one-third of control concentration at six kGy. Six kGy able to reduce the BOD and COD concentrations in the primary sludge samples to that of the treated (after sludge dewatering) samples or less respectively and saved the secondary treatment stage. In primary and secondary sludge samples culture, E. coli, Staphylococcus aureus, and Vibrio spp were isolated as heavy growth on different culture media in the samples before radiation. After exposure to increasing doses of radiation, the number of isolated organisms decreased, however, the growth of Proteus, Acinetobacter, and vipro organisms was detected but in small numbers. No growth of any organism was noted at 5 kGy. On the other hand, in the secondary sludge samples, Proteus was isolated as heavy growth before radiation and After exposure to increasing doses of radiation, Moraxella spp. organisms were detected but in small numbers. By increasing the radiation doses, the free-living ciliates were decreased in the primary and secondary sludge samples. The free-living ciliates disappeared completely at 3 kGy. In the primary and secondary sludge samples, free-living ciliates reduction efficiency at 0.25 kGy was equivalent to the conventional treatment methods. So, we can conclude that radiation technology using Gamma rays at a dose higher than 5 kGy with a dose rate of 1.095 kGy/h is an effective technology for domestic and industrial waste sludge treatment from the environmental perspective and an experimental pilot plant study is required to optimize the cost of wastewater treatment through the use of irradiation technology.


Assuntos
Raios gama , Esgotos/química , Purificação da Água/métodos , Animais , Bactérias/efeitos da radiação , Egito , Concentração de Íons de Hidrogênio , Resíduos Industriais , Óleos/efeitos da radiação , Parasitos/efeitos da radiação , Doses de Radiação
16.
Bioresour Technol ; 343: 126160, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34678447

RESUMO

As an energy-efficient and eco-friendly sludge treatment process, two-stage anaerobic digestion (AD) is widely employed to recovery biomass energy from waste sludge. However, the effect of primary and secondary sludge for two-stage AD was not clear. In this study, two-stage AD of mixed sludge in different volume ratio was investigated. The maximum cumulative H2 yield (100.5 ml) and CH4 yield (2643.6 ml) were obtained in volume ratio of 1:3 (primary sludge: secondary sludge). In two-phase AD, mixed sludge could induce positive effect on both organics releasing in extracellular polymeric substances (EPS) and the utilization of volatile fatty acids (VFAs). By investigating the compositional characteristics of dissolved organic matters (DOM) through excitation-emission matrix (EEM) coupling with fluorescence regional integration (FRI), it revealed more degradable substances utilization in mixture of sludge. Results from this work suggest that two-phase AD with mixed sludge is efficient for renewable energy recovery.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Anaerobiose , Espectrometria de Fluorescência
17.
Sci Total Environ ; 813: 152498, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34968594

RESUMO

Fermentation (not anaerobic digestion) is an emerging biotechnology to transform waste into easily assimilable organic compounds such as volatile fatty acids, lactic acid and alcohols. Co-fermentation, the simultaneous fermentation of two or more waste, is an opportunity for wastewater treatment plants (WWTPs) to increase the yields of sludge mono-fermentation. Most publications have studied waste activated sludge co-fermentation with food waste or agri-industrial waste. Mixing ratio, pH and temperature are the most studied variables. The highest fermentation yields have been generally achieved in mixtures dominated by the most biodegradable substrate at circumneutral pH and mesophilic conditions. Nonetheless, most experiments have been performed in batch assays which results are driven by the capabilities of the starting microbial community and do not allow evaluating the microbial acclimation that occurs under continuous conditions. Temperature, pH, hydraulic retention time and organic load are variables that can be controlled to optimise the performance of continuous co-fermenters (i.e., favour waste hydrolysis and fermentation and limit the proliferation of methanogens). This review also discusses the integration of co-fermentation with other biotechnologies in WWTPs. Overall, this review presents a comprehensive and critical review of the achievements on co-fermentation research and lays the foundation for future research.


Assuntos
Eliminação de Resíduos , Purificação da Água , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Alimentos , Concentração de Íons de Hidrogênio , Esgotos , Águas Residuárias
18.
Data Brief ; 38: 107323, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34522731

RESUMO

Here, we report data of the principal component analysis (PCA) assessment and clustering analysis related to low-temperature thermal hydrolysis process (THP) for enhancing the anaerobic digestion (AD) of sludge in wastewater treatment plants (WWTPs) with primary sludge fermentation (Azizi et al., 2021). The PCA was examined to pinpoint the influence of different THP schemes on the variations of macromolecular compounds solubilization after low-temperature THP and the relative performances in enhancing methane potential in AD. We established 2 experimental setups with a total of 18 treatment conditions (3 exposure times, 30, 60, and 90 min at three temperature levels 50, 70 and 90 °C) in comparison to the untreated control samples. Scheme-1 comprises the THP of a mixture of (1:1 vol ratio) fermented primary sludge (FPS) and thickened waste activated sludge (TWAS); while scheme-2 comprised the THP of TWAS only. The factors employed in the assessment of the PCA encompassed the variations in the macromolecular compounds and other solubilization metrics. This included the variations in the levels of carbohydrates, lipids, proteins, and solubilization of chemical oxygen demand (COD) and volatile suspended solids (VSS). Furthermore, the evaluation considered the changes of volatile fatty acids (VFAs) and total ammonia nitrogen (TAN) with respect to time and temperature. The assessment of PCA classified the THP based on their differences and alterations that occurred after the treatment. The indices of the PCA assessments differed based on the factors of concern and the focus of each individual PCA assessment. In every individual PCA assessment, the respective contribution to the total variance in PCA analysis was calculated and manifested by the highest distribution of the principal components (PCs) axis PC1 and PC2. The differences in distributions of PCs after various PCA examinations can describe the relative influence of THP schemes and the most significant variables that can trigger major differences among THP conditions. The comparative differences demonstrated by PCA support the potential investigations of the efficiency of THPs conditions and their performance categories.

19.
J Environ Manage ; 299: 113623, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481372

RESUMO

Carbon source production from primary sludge in wastewater treatment plants (WWTPs) via anaerobic fermentation process has been paid more attention. However, slow hydrolysis rate and low yield of short-chain fatty acids (SCFAs) limited its application. This study aimed at improving the anaerobic fermentation efficiency of primary sludge by alkali regulation (NaOH, Na2CO3 and Ca(OH)2), and revealing the mechanism. Results showed that three kinds of alkalis allowed enhancing hydrolysis and acidification, and reducing methane production in the anaerobic fermentation process of primary sludge. The Na2CO3 regulation contributed to highest yield and productivity of SCFAs, reaching 1626 mg COD/L and 0.189 g COD/g VSS at 4th day, respectively. Microbial community structure analysis indicated that the relative abundance of fermentative microbial community was improved in the alkali regulation system, where methanogenic archaea was effectively inhibited. The continuous flow experiment further verified that the Na2CO3 regulation could steadily increase yield of SCFAs in the anaerobic fermentation process of primary sludge, and the yield was also the highest among three kinds of alkali regulation.


Assuntos
Esgotos , Purificação da Água , Álcalis , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise
20.
Sci Total Environ ; 796: 148905, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34271386

RESUMO

Several treatment plants were sampled for influent, primary clarifier sludge, return activated sludge (RAS), and anaerobically digested sludge throughout nine weeks during the summer of the COVID-19 pandemic. Primary clarifier sludge had a significantly higher number of SARS-CoV-2 gene copy number per liter (GC/L) than other sludge samples, within a range from 1.0 × 105 to 1.0 × 106 GC/L. Gene copy numbers in raw influent significantly correlated with gene copy numbers in RAS in Silver Creek (p-value = 0.007, R2 = 0.681) and East Canyon (p-value = 0.009, R2 = 0.775) WRFs; both of which lack primary clarifiers or industrial pretreatment processes. This data indicates that SARS-CoV-2 gene copies tend to partition into primary clarifier sludges, at which point a significant portion of them are removed through sedimentation. Furthermore, it was found that East Canyon WRF gene copy numbers in influent were a significant predictor of daily cases (p-value = 0.0322, R2 = 0.561), and gene copy numbers in RAS were a significant predictor of weekly cases (p-value = 0.0597, R2 = 0.449). However, gene copy numbers found in primary sludge samples from other plants significantly predicted the number of COVID-19 cases for the following week (t = 2.279) and the week after that (t = 2.122) respectively. These data indicate that SARS-CoV-2 extracted from WRF biosolids may better suit epidemiological monitoring that exhibits a time lag. It also supports the observation that primary sludge removes a significant portion of SARS-CoV-2 marker genes. In its absence, RAS can also be used to predict the number of COVID-19 cases due to direct flow through from influent. This research represents the first of its kind to thoroughly examine SARS-CoV-2 gene copy numbers in biosolids throughout the wastewater treatment process and the relationship between primary, return activated, and anaerobically digested sludge and reported positive COVID-19 cases.


Assuntos
COVID-19 , Purificação da Água , Anaerobiose , Humanos , Pandemias , Prevalência , SARS-CoV-2 , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA