RESUMO
In flexible ethanol-butanol plants, low tolerance to butanol by solventogenic clostridia (and resulting dilute fermentation) results in considerable number of empty fermentors whenever production focuses on ethanol. This research identified scenarios in which vacuum fermentation (in-situ vacuum recovery) may be applied to solve this problem. We conducted ethanol (Saccharomyces cerevisiae) and ABE (Clostridium beijerinckii NCIMB 8052) batch vacuum fermentations of eucalyptus hydrolysates according to the distribution of sugars in a flexible plant. Based on the experiments and performance targets set for the ABE fermentation, we simulated a flexible plant that processes 1000 dry t eucalyptus/day using pretreatment and enzymatic hydrolysis steps with moderate solids loading (15% w/w). The simulation showed that the number of fermentation tanks can decrease by 62% (eliminating 10 idle tanks, 3748 m3 each) by applying vacuum recovery only to the fermentation of mixed (cellulose + hemicellulose) hydrolysates to ABE. We concluded that this configuration can result in savings of up to 2 MMUS$/year in comparison with flexible plants having only conventional batch fermentors, and additional cost savings are expected from reduced wastewater footprint.
Assuntos
Butanóis/metabolismo , Etanol/metabolismo , Eucalyptus/química , Bioengenharia , Reatores Biológicos/economia , Reatores Biológicos/microbiologia , Clostridium beijerinckii , Fermentação , Hidrólise , Saccharomyces cerevisiae , Vácuo , Madeira/químicaRESUMO
This work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant. Whereas the lower costs of the steam explosion technology turns the investment more attractive (NPVâ¯=â¯184â¯MMUSD; IRRâ¯=â¯29%), the organosolv technology provides better flexibility to the plant. This work also shows that excessive power consumption is a hurdle in the development of flash fermentation technology chosen for the flexible plant. These results indicate that conventional batch fermentation is preferable if the enzymatic hydrolysis step operates with solids loading up to 20â¯wt%.