Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Circulation ; 148(23): 1870-1886, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37886847

RESUMO

BACKGROUND: Microvasculature dysfunction is a common finding in pathologic remodeling of the heart and is thought to play an important role in the pathogenesis of hypertrophic cardiomyopathy (HCM), a disease caused by sarcomere gene mutations. We hypothesized that microvascular dysfunction in HCM was secondary to abnormal microvascular growth and could occur independent of ventricular hypertrophy. METHODS: We used multimodality imaging methods to track the temporality of microvascular dysfunction in HCM mouse models harboring mutations in the sarcomere genes Mybpc3 (cardiac myosin binding protein C3) or Myh6 (myosin heavy chain 6). We performed complementary molecular methods to assess protein quantity, interactions, and post-translational modifications to identify mechanisms regulating this response. We manipulated select molecular pathways in vivo using both genetic and pharmacological methods to validate these mechanisms. RESULTS: We found that microvascular dysfunction in our HCM models occurred secondary to reduced myocardial capillary growth during the early postnatal time period and could occur before the onset of myocardial hypertrophy. We discovered that the E3 ubiquitin protein ligase MDM2 (murine double minute 2) dynamically regulates the protein stability of both HIF1α (hypoxia-inducible factor 1 alpha) and HIF2α (hypoxia-inducible factor 2 alpha)/EPAS1 (endothelial PAS domain protein 1) through canonical and noncanonical mechanisms. The resulting HIF imbalance leads to reduced proangiogenic gene expression during a key period of myocardial capillary growth. Reducing MDM2 protein levels by genetic or pharmacological methods normalized HIF protein levels and prevented the development of microvascular dysfunction in both HCM models. CONCLUSIONS: Our results show that sarcomere mutations induce cardiomyocyte MDM2 signaling during the earliest stages of disease, and this leads to long-term changes in the myocardial microenvironment.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas Proto-Oncogênicas c-mdm2 , Camundongos , Animais , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Mutação , Hipertrofia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
2.
Circ Res ; 133(7): 572-587, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641975

RESUMO

BACKGROUND: A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that PKA (cAMP-dependent protein kinase or protein kinase A) activates the 26S proteasome by pS14-Rpn6 (serine14-phosphorylated Rpn6), but this discovery and its physiological significance remain to be established in vivo. METHODS: Male and female mice with Ser14 of Rpn6 (regulatory particle non-ATPase 6) mutated to Ala (S14A [Rpn6/Psmd11S14A]) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system functioning was evaluated with the GFPdgn (green fluorescence protein with carboxyl fusion of the CL1 degron) reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G [arginine120 to glycine missense mutant alpha B-crystallin]). RESULTS: PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type but not S14A embryonic fibroblasts (mouse embryonic fibroblasts), adult cardiomyocytes, and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and adult mouse cardiomyocytes than in wild-type counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with nontransgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than wild-type neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates, and of aberrant CryAB (alpha B-crystallin) protein aggregates, less fetal gene reactivation, and cardiac hypertrophy, and delays in cardiac malfunction. CONCLUSIONS: This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifying a new therapeutic target to reduce cardiac proteotoxicity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Cadeia B de alfa-Cristalina , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Miócitos Cardíacos , Proteínas Quinases Dependentes de AMP Cíclico , Ubiquitinas
3.
Circulation ; 146(12): 934-954, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35983756

RESUMO

BACKGROUND: Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival. Here, we investigate alterations in TNFα-TRAF2-NF-κB signaling in the pathogenesis of DOX cardiotoxicity. METHODS: Using a combination of in vivo (4 weekly injections of DOX 5 mg·kg-1·wk-1) in C57/BL6J mice and in vitro approaches (rat, mouse, and human inducible pluripotent stem cell-derived cardiac myocytes), we monitored TNFα levels, lactate dehydrogenase, cardiac ultrastructure and function, mitochondrial bioenergetics, and cardiac cell viability. RESULTS: In contrast to vehicle-treated mice, ultrastructural defects, including cytoplasmic swelling, mitochondrial perturbations, and elevated TNFα levels, were observed in the hearts of mice treated with DOX. While investigating the involvement of TNFα in DOX cardiotoxicity, we discovered that NF-κB was readily activated by TNFα. However, TNFα-mediated NF-κB activation was impaired in cardiac myocytes treated with DOX. This coincided with loss of K63- linked polyubiquitination of RIPK1 from the proteasomal degradation of TRAF2. Furthermore, TRAF2 protein abundance was markedly reduced in hearts of patients with cancer treated with DOX. We further established that the reciprocal actions of the ubiquitinating and deubiquitinating enzymes cellular inhibitors of apoptosis 1 and USP19 (ubiquitin-specific peptidase 19), respectively, regulated the proteasomal degradation of TRAF2 in DOX-treated cardiac myocytes. An E3-ligase mutant of cellular inhibitors of apoptosis 1 (H588A) or gain of function of USP19 prevented proteasomal degradation of TRAF2 and DOX-induced cell death. Furthermore, wild-type TRAF2, but not a RING finger mutant defective for K63-linked polyubiquitination of RIPK1, restored NF-κB signaling and suppressed DOX-induced cardiac cell death. Last, cardiomyocyte-restricted expression of TRAF2 (cardiac troponin T-adeno-associated virus 9-TRAF2) in vivo protected against mitochondrial defects and cardiac dysfunction induced by DOX. CONCLUSIONS: Our findings reveal a novel signaling axis that functionally connects the cardiotoxic effects of DOX to proteasomal degradation of TRAF2. Disruption of the critical TRAF2 survival pathway by DOX sensitizes cardiac myocytes to TNFα-mediated necrotic cell death and DOX cardiotoxicity.


Assuntos
Cardiomiopatias , NF-kappa B , Fator 2 Associado a Receptor de TNF , Animais , Apoptose , Cardiomiopatias/metabolismo , Cardiotoxicidade , Enzimas Desubiquitinantes/metabolismo , Doxorrubicina/toxicidade , Endopeptidases , Humanos , Lactato Desidrogenases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Ratos , Fator 2 Associado a Receptor de TNF/genética , Troponina T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/farmacologia
4.
Cell J ; 24(1): 51-54, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35182065

RESUMO

General control non-derepressible 5 (Gcn5) is a member of histone acetyltransferase (HAT) that plays key roles during embryogenesis as well as in the development of various human cancers. Gcn5, an epigenetic regulator of Hoxc11, has been reported to be negatively regulated by Akt1 in the mouse embryonic fibroblasts (MEFs). However, the exact mechanism by which Akt1 regulates Gcn5 is not well understood. Using protein stability chase assay, we observed that Gcn5 is negatively regulated by Akt1 at the post-translational level in MEFs. The stability of Gcn5 protein is determined by the competitive binding with the protein partner that interacts with Gcn5. The interaction of Gcn5 and Cul4a-Ddb1 complex predominates and promotes ubiquitination of Gcn5 in the wild-type MEFs. On the other hand, in the Akt1-null MEFs, the interaction of Gcn5 and And-1 inhibits binding of Gcn5 and Cul4a-Dbd1 E3 ubiquitin ligase complex, thereby increasing the stability of the Gcn5 protein. Taken together, our study indicates that Akt1 negatively controls Gcn5 via the proteasomal degradation pathway, suggesting a potential mechanism that regulates the expression of Hox genes.

5.
Breast ; 60: 230-237, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763270

RESUMO

PURPOSE: To assess whether contralateral parenchymal enhancement (CPE) on MRI is associated with gene expression pathways in ER+/HER2-breast cancer, and if so, whether such pathways are related to survival. METHODS: Preoperative breast MRIs were analyzed of early ER+/HER2-breast cancer patients eligible for breast-conserving surgery included in a prospective observational cohort study (MARGINS). The contralateral parenchyma was segmented and CPE was calculated as the average of the top-10% delayed enhancement. Total tumor RNA sequencing was performed and gene set enrichment analysis was used to reveal gene expression pathways associated with CPE (N = 226) and related to overall survival (OS) and invasive disease-free survival (IDFS) in multivariable survival analysis. The latter was also done for the METABRIC cohort (N = 1355). RESULTS: CPE was most strongly correlated with proteasome pathways (normalized enrichment statistic = 2.04, false discovery rate = .11). Patients with high CPE showed lower tumor proteasome gene expression. Proteasome gene expression had a hazard ratio (HR) of 1.40 (95% CI = 0.89, 2.16; P = .143) for OS in the MARGINS cohort and 1.53 (95% CI = 1.08, 2.14; P = .017) for IDFS, in METABRIC proteasome gene expression had an HR of 1.09 (95% CI = 1.01, 1.18; P = .020) for OS and 1.10 (95% CI = 1.02, 1.18; P = .012) for IDFS. CONCLUSION: CPE was negatively correlated with tumor proteasome gene expression in early ER+/HER2-breast cancer patients. Low tumor proteasome gene expression was associated with improved survival in the METABRIC data.


Assuntos
Neoplasias da Mama , Complexo de Endopeptidases do Proteassoma , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Feminino , Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Prognóstico , Estudos Prospectivos , Complexo de Endopeptidases do Proteassoma/genética , Receptor ErbB-2/genética
6.
J Tradit Chin Med ; 41(3): 432-437, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114401

RESUMO

OBJECTIVE: To investigate the efficacy and mechanism of the Qingre Huayu Fang () on atherosclerotic vulnerable plaque in apolipoprotein E (ApoE) knockout mice through the ubiquitin proteasome pathway. METHODS: Sixty 8-week-old C57BL/6J ApoE knockout mice were fed a high-fat for 12 weeks and randomly divided into four treatment groups (n = 15 each): high-fat control, bortezomib (a proteasome inhibitor), bortezomib combined with Qingre Huayu Fang, and Qingre Huayu Fang alone. Aortic sections were examined for plaque development, inflammatory cell infiltration, type Ⅰ/Ⅲ collagen expression and immunohistochemical staining of CD40L, nuclear factor-kappa B (NF-κB)/P65 and ubiquitin. RESULTS: Mice in the high-fat control group had obvious atherosclerosis, with increased aortic plaque area. The degree of atherosclerosis of the atherosclerotic plaque was reduced in all of the treatment groups that received bortezomib and/or Duzhong (Cortex Eucommiae) Qingre Huayu. The expression of NF-?B, CD40L and ubiquitin were all reduced in the group that received combination bortezomib + Qingre Huayu Fang. CONCLUSION: The Qingre Huayu Fang inhibited aortic atherosclerosis in mice through a mechanism that may involve inhibition of the ubiquitin proteasome pathway.


Assuntos
Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/genética , Complexo de Endopeptidases do Proteassoma/genética
7.
Hypertension ; 76(3): 985-996, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32713273

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell-mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE-fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE-fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE-induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell-dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.


Assuntos
Apoptose , Células Endoteliais , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão Pulmonar/metabolismo , Peptídeos/farmacologia , Artéria Pulmonar , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Diferenciação Celular , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertensão Pulmonar/prevenção & controle , Fatores Imunológicos/farmacologia , Imunoproteínas , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Complexo de Endopeptidases do Proteassoma , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Linfócitos T
8.
J Thromb Haemost ; 18(4): 771-780, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898400

RESUMO

Platelets are small anucleate blood cells with a life span of 7 to 10 days. They are main regulators of hemostasis. Balanced platelet activity is crucial to prevent bleeding or occlusive thrombus formation. Growing evidence supports that platelets also participate in immune reactions, and interaction between platelets and leukocytes contributes to both thrombosis and inflammation. The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis by its ability to degrade non-functional self-, foreign, or short-lived regulatory proteins. Platelets express standard and immunoproteasomes. Inhibition of the proteasome impairs platelet production and platelet function. Platelets also express major histocompatibility complex (MHC) class I molecules. Peptide fragments released by proteasomes can bind to MHC class I, which makes it also likely that platelets can activate epitope specific cytotoxic T lymphocytes (CTLs). In this review, we focus on current knowledge on the significance of the proteasome for the functions of platelets as critical regulators of hemostasis as well as modulators of the immune response.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Plaquetas , Antígenos de Histocompatibilidade Classe I , Humanos , Testes de Função Plaquetária
9.
Hypertension ; 73(6): 1308-1318, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31067191

RESUMO

Excessive accumulation of misfolded proteins was recently demonstrated in preeclampsia. We examined levels and activity of circulatory proteasome and immunoproteasome (inflammatory subtype) in preeclampsia and hemolysis, elevated liver enzymes, and thrombocytopenia (HELLP) syndrome. We analyzed samples from women with hypertensive pregnancy disorders (n=115), including preeclampsia with severe features (sPE) and HELLP syndrome, and normotensive controls (n=45). Plasma proteasome and immunoproteasome immunoreactivity were determined by quantifying the α-subunit of the 20S core and ß5i (proteasome subunit beta 8 [PSMB8]), respectively. Plasma proteasome activity was analyzed with fluorogenic substrates. MG132, lactacystin, and ONX0914 were used to inhibit the circulating proteasome and immunoproteasome, respectively. Plasma cytokine profiles were evaluated by multiplex immunoassay. Placental expression of ß5 (constitutive proteasome) and ß5i (immunoproteasome) was interrogated by immunohistochemistry. Women with sPE had increased plasma 20S levels ( P<0.001) and elevated lytic activities (chymotrypsin-like 7-fold, caspase-like 4.2-fold, trypsin-like 2.2-fold; P <0.001 for all) compared with pregnant controls. Women with features of HELLP displayed the highest plasma proteasome levels and activity, which correlated with decreased IFN-γ (interferon-γ), and increased IL (interleukin)-8 and IL-10. In sPE and HELLP, chymotrypsin-like activity was suppressed by proteasome inhibitors including ONX0914. Compared with gestational age-matched controls, sPE placentas harbored increased ß5 and ß5i immunostaining in trophoblasts. ß5i signal was elevated in HELLP with predominant staining in villous core, extravillous trophoblasts in placental islands, and extracellular vesicles in intervillous spaces. Pregnancy represents a state of increased proteostatic stress. sPE and HELLP were characterized by significant upregulation in circulating levels and lytic activity of the proteasome that was partially explained by placental immunoproteasome upregulation.


Assuntos
Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Citocinas/sangue , Síndrome HELLP/sangue , Hemólise , Pré-Eclâmpsia/sangue , Complexo de Endopeptidases do Proteassoma/sangue , Adulto , Biomarcadores/sangue , Pressão Sanguínea/fisiologia , Estudos de Casos e Controles , Feminino , Seguimentos , Idade Gestacional , Humanos , Imuno-Histoquímica , Fígado/enzimologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Complicações na Gravidez , Índice de Gravidade de Doença
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-734454

RESUMO

Objective To investigate the changes of iodine uptake capability (IUC) and mRNA expression of iodine uptake-related proteins in ARO and WRO thyroid carcinoma cell lines after silence of proteasome activator γ (REGγ),and observe the relation between REGγ and IUC of thyroid carcinoma.Methods The AROshN,AROshR,WROshN and WROshR (shN =blank plasmid,shR =plasmid with silence of REGγ) thyroid carcinoma cell lines were routinely cultured.Low dosage (3.7 kBq) of Na125I was added and then IUC was determined at different time points (5,10,15,20,40 and 70 min).The mRNA expressions of sodium/iodine symporter (NIS),thyroid stimulating hormone receptor (TSHR),thyroid peroxidase (TPO) and thyroglobulin (Tg) were examined by real-time PCR.Paired t test was used to analyze the data.Results After the silence of REGγ,the peak values of IUC in AROshR and WROshR cells were increased from (1 974±12) to (4 502±23) counts/min,and from (2 988±25) to (5 001±16) counts/min,respectively.The increase rates were 128.1% in AROshR cells and 67.4% in WROshR cells (t values:17.30,13.20,both P<0.05).The mRNA expressions of NIS,TSHR,TPO,Tg in AROshR cells were 2.82,1.98,2.65 and 2.31 times higher than those in AROshN cells,and the expressions in WROshR cells were 2.21,1.78,2.51 and 1.78 times higher than those in WROshN cells (t values:13.80-21.93,all P<0.05).Conclusion Silence of REGγcan increase the gene expressions of the iodine uptake-related proteins and elevate the IUC of thyroid carcinoma cells.

11.
Arq. neuropsiquiatr ; 76(12): 831-839, Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-983856

RESUMO

ABSTRACT Considering aging as a phenomenon in which there is a decline in essential processes for cell survival, we investigated the autophagic and proteasome pathways in three different groups: young, older and oldest old male adults. The expression profile of autophagic pathway-related genes was carried out in peripheral blood, and the proteasome quantification was performed in plasma. No significant changes were found in plasma proteasome concentrations or in correlations between proteasome concentrations and ages. However, some autophagy- and/or apoptosis-related genes were differentially expressed. In addition, the network and enrichment analysis showed an interaction between four of the five differentially expressed genes and an association of these genes with the transcriptional process. Considering that the oldest old individuals maintained both the expression of genes linked to the autophagic machinery, and the proteasome levels, when compared with the older group, we concluded that these factors could be considered crucial for successful aging.


RESUMO Considerando o envelhecimento como um fenômeno em que há um declínio nos processos essenciais a sobrevivência celular, investigamos as vias autofágica e proteassômica em três grupos: jovens, idosos e longevos. O perfil de expressão dos genes relacionados à via autofágica foi analisado em sangue periférico, e a quantificação do proteassoma realizada em plasma. Não foram encontradas alterações significativas nas concentrações plasmáticas de proteassoma ou na correlação entre as concentrações de proteassoma e as idades. No entanto, alguns genes relacionados a autofagia e / ou apoptose foram expressos diferencialmente. Além disso, as análises de rede e de enriquecimento mostraram uma interação entre quatro dos cinco genes diferencialmente expressos e a associação desses ao processo transcricional. Considerando que os indivíduos longevos mantiveram tanto a expressão de genes ligados à maquinaria autofágica, quanto os níveis de proteassoma quando comparados aos idosos, concluímos que esses fatores poderiam ser considerados cruciais para o envelhecimento bem-sucedido.


Assuntos
Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Autofagia/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Longevidade/genética , Autofagia/fisiologia , Brasil , Regulação da Expressão Gênica , Apoptose/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Longevidade/fisiologia
12.
Circulation ; 138(14): 1431-1445, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-29650545

RESUMO

BACKGROUND: L-type CaV1.2 channels play crucial roles in the regulation of blood pressure. Galectin-1 (Gal-1) has been reported to bind to the I-II loop of CaV1.2 channels to reduce their current density. However, the mechanistic understanding for the downregulation of CaV1.2 channels by Gal-1 and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. METHODS: In vitro experiments involving coimmunoprecipitation, Western blot, patch-clamp recordings, immunohistochemistry, and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 downregulates CaV1.2 channel in transfected, human embryonic kidney 293 cells, smooth muscle cells, arteries from Lgasl1-/- mice, rat, and human patients. In vivo experiments involving the delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting CaV1.2-Gal-1 interaction on blood pressure monitored by tail-cuff or telemetry methods. RESULTS: Our study reveals that Gal-1 is a key regulator for proteasomal degradation of CaV1.2 channels. Gal-1 competed allosterically with the CaVß subunit for binding to the I-II loop of the CaV1.2 channel. This competitive disruption of CaVß binding led to CaV1.2 degradation by exposing the channels to polyubiquitination. It is notable that we demonstrated that the inverse relationship of reduced Gal-1 and increased CaV1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice because of the upregulated CaV1.2 protein level in arteries. To directly regulate blood pressure by targeting the CaV1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1 by a miniosmotic pump, and this specific disruption of CaV1.2-Gal-1 coupling increased smooth muscle CaV1.2 currents, induced larger arterial contraction, and caused hypertension in rats. In contrasting experiments, overexpression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. CONCLUSIONS: We have defined molecularly that Gal-1 promotes CaV1.2 degradation by replacing CaVß and thereby exposing specific lysines for polyubiquitination and by masking I-II loop endoplasmic reticulum export signals. This mechanistic understanding provided the basis for targeting CaV1.2-Gal-1 interaction to demonstrate clearly the modulatory role that Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Galectina 1/metabolismo , Terapia Genética/métodos , Hipertensão/terapia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Canais de Cálcio Tipo L/genética , Estudos de Casos e Controles , Dependovirus , Modelos Animais de Doenças , Galectina 1/genética , Vetores Genéticos , Células HEK293 , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Parvovirinae/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
13.
Circ Res ; 122(6): e34-e48, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29374072

RESUMO

RATIONALE: Heart development involves differentiation of cardiac progenitors and assembly of the contractile sarcomere apparatus of cardiomyocytes. However, little is known about the mechanisms that regulate actin cytoskeleton remodeling during cardiac cell differentiation. OBJECTIVE: The Asb2α (Ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2) CRL5 (cullin 5 RING E3 ubiquitin ligase) triggers polyubiquitylation and subsequent degradation by the proteasome of FLNs (filamins). Here, we investigate the role of Asb2α in heart development and its mechanisms of action. METHODS AND RESULTS: Using Asb2 knockout embryos, we show that Asb2 is an essential gene, critical to heart morphogenesis and function, although its loss does not interfere with the overall patterning of the embryonic heart tube. We show that the Asb2α E3 ubiquitin ligase controls Flna stability in immature cardiomyocytes. Importantly, Asb2α-mediated degradation of the actin-binding protein Flna marks a previously unrecognized intermediate step in cardiac cell differentiation characterized by cell shape changes and actin cytoskeleton remodeling. We further establish that in the absence of Asb2α, myofibrils are disorganized and that heartbeats are inefficient, leading to embryonic lethality in mice. CONCLUSIONS: These findings identify Asb2α as an unsuspected key regulator of cardiac cell differentiation and shed light on the molecular and cellular mechanisms determining the onset of myocardial cell architecture and its link with early cardiac function. Although Flna is known to play roles in cytoskeleton organization and to be required for heart function, this study now reveals that its degradation mediated by Asb2α ensures essential functions in differentiating cardiac progenitors.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Filaminas/metabolismo , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular , Células Cultivadas , Filaminas/genética , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Proteólise , Proteínas Supressoras da Sinalização de Citocina
14.
Cancer Sci ; 108(4): 732-743, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28165654

RESUMO

To identify potential therapeutic targets for lung cancer, we performed semi-genome-wide shRNA screening combined with the utilization of genome-wide expression and copy number data. shRNA screening targeting 5043 genes in NCI-H460 identified 51 genes as candidates. Pathway analysis revealed that the 51 genes were enriched for the five pathways, including ribosome, proteasome, RNA polymerase, pyrimidine metabolism and spliceosome pathways. We focused on the proteasome pathway that involved six candidate genes because its activation has been demonstrated in diverse human malignancies, including lung cancer. Microarray expression and array CGH data showed that PSMA6, a proteasomal subunit of a 20S catalytic core complex, was highly expressed in lung cancer cell lines, with recurrent gene amplifications in some cases. Therefore, we further examined the roles of PSMA6 in lung cancer. Silencing of PSMA6 induced apoptosis or G2/M cell cycle arrest in cancer cell lines but not in an immortalized normal lung cell line. These results suggested that PSMA6 serves as an attractive target with a high therapeutic index for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Domínio Catalítico/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Complexo de Endopeptidases do Proteassoma/genética , Células A549 , Idoso , Apoptose/genética , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Amplificação de Genes , Perfilação da Expressão Gênica/métodos , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
15.
Circ Heart Fail ; 9(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27609832

RESUMO

BACKGROUND: A greater understanding of the different underlying mechanisms between patients with heart failure with reduced (HFrEF) and with preserved (HFpEF) ejection fraction is urgently needed to better direct future treatment. However, although skeletal muscle impairments, potentially mediated by inflammatory cytokines, are common in both HFrEF and HFpEF, the underlying cellular and molecular alterations that exist between groups are yet to be systematically evaluated. The present study, therefore, used established animal models to compare whether alterations in skeletal muscle (limb and respiratory) were different between HFrEF and HFpEF, while further characterizing inflammatory cytokines. METHODS AND RESULTS: Rats were assigned to (1) HFrEF (ligation of the left coronary artery; n=8); (2) HFpEF (high-salt diet; n=10); (3) control (con: no intervention; n=7). Heart failure was confirmed by echocardiography and invasive measures. Soleus tissue in HFrEF, but not in HFpEF, showed a significant increase in markers of (1) muscle atrophy (ie, MuRF1, calpain, and ubiquitin proteasome); (2) oxidative stress (ie, higher nicotinamide adenine dinucleotide phosphate oxidase but lower antioxidative enzyme activities); (3) mitochondrial impairments (ie, a lower succinate dehydrogenase/lactate dehydrogenase ratio and peroxisome proliferator-activated receptor-γ coactivator-1α expression). The diaphragm remained largely unaffected between groups. Plasma concentrations of circulating cytokines were significantly increased in HFrEF for tumor necrosis factor-α, whereas interleukin-1ß and interleukin-12 were higher in HFpEF. CONCLUSIONS: Our findings suggest, for the first time, that skeletal muscle alterations are exacerbated in HFrEF compared with HFpEF, which predominantly reside in limb, rather than in respiratory, muscle. This disparity may be mediated, in part, by the different circulating inflammatory cytokines that were elevated between HFpEF and HFrEF.


Assuntos
Citocinas/sangue , Insuficiência Cardíaca/sangue , Mediadores da Inflamação/sangue , Músculo Esquelético/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Animais , Diafragma/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Interleucina-12/sangue , Interleucina-1beta/sangue , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/sangue , Atrofia Muscular/patologia , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima
16.
Circ Res ; 118(10): 1577-92, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174951

RESUMO

Aging-related cardiovascular diseases are a rapidly increasing problem worldwide. Cardiac aging demonstrates progressive decline of diastolic dysfunction of ventricle and increase in ventricular and arterial stiffness accompanied by increased fibrosis stimulated by angiotensin II and proinflammatory cytokines. Reactive oxygen species and multiple signaling pathways on cellular senescence play major roles in the process. Aging is also associated with an alteration in steady state of macromolecular dynamics including a dysfunction of protein synthesis and degradation. Currently, impaired macromolecular degradation is considered to be closely related to enhanced inflammation and be involved in the process and mechanism of cardiac aging. Herein, we review the role and mechanisms of the degradation system of intracellular macromolecules in the process and pathophysiology of cardiovascular aging.


Assuntos
Envelhecimento/metabolismo , Miocárdio/metabolismo , Proteólise , Envelhecimento/patologia , Animais , Autofagia , Vasos Coronários/crescimento & desenvolvimento , Vasos Coronários/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 35(12): 2657-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26471267

RESUMO

OBJECTIVE: Platelets express a functional ubiquitin-proteasome system. Mass spectrometry shows that platelets contain several deubiquitinases, but whether these are functional, modulate the proteome, or affect platelet reactivity are unknown. APPROACH AND RESULTS: Platelet lysates contained ubiquitin-protein deubiquitinase activity hydrolyzing both Lys48 and Lys63 polyubiquitin conjugates that was suppressed by the chemically unrelated deubiquitinase inhibitors PYR41 and PR619. These inhibitors acutely and markedly increased monoubiquitination and polyubiquitination of the proteome of resting platelets. PYR41 (intravenous, 15 minutes) significantly impaired occlusive thrombosis in FeCl3-damaged carotid arteries, and deubiquitinase inhibition reduced platelet adhesion and retention during high shear flow of whole blood through microfluidic chambers coated with collagen. Total internal reflection microscopy showed that adhesion and spreading in the absence of flow were strongly curtailed by these inhibitors with failure of stable process extension and reduced the retraction of formed clots. Deubiquitinase inhibition also sharply reduced homotypic platelet aggregation in response to not only the incomplete agonists ADP and collagen acting through glycoprotein VI but also to the complete agonist thrombin. Suppressed aggregation was accompanied by curtailed procaspase activating compound-1 binding to activated IIb/IIIa and inhibition of P-selectin translocation to the platelet surface. Deubiquitinase inhibition abolished the agonist-induced spike in intracellular calcium, suppressed Akt phosphorylation, and reduced agonist-stimulated phosphatase and tensin homolog phosphatase phosphorylation. Platelets express the proteasome-associated deubiquitinases USP14 and UCHL5, and selective inhibition of these enzymes by b-AP15 reproduced the inhibitory effect of the general deubiquitinase inhibitors on ex vivo platelet function. CONCLUSIONS: Remodeling of the ubiquitinated platelet proteome by deubiquitinases promotes agonist-stimulated intracellular signal transduction and platelet responsiveness.


Assuntos
Plaquetas/enzimologia , Agregação Plaquetária , Complexo de Endopeptidases do Proteassoma/sangue , Trombose/enzimologia , Proteases Específicas de Ubiquitina/sangue , Aminopiridinas/farmacologia , Animais , Benzoatos/farmacologia , Plaquetas/efeitos dos fármacos , Cloretos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Compostos Férricos , Furanos , Humanos , Camundongos Endogâmicos C57BL , Técnicas Analíticas Microfluídicas , Microscopia de Interferência , Piperidonas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Testes de Função Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Pirazóis/farmacologia , Receptores de Colágeno/sangue , Receptores de Trombina/sangue , Transdução de Sinais , Tiocianatos/farmacologia , Trombose/sangue , Trombose/induzido quimicamente , Trombose/prevenção & controle , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/sangue , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Ubiquitinação
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-470709

RESUMO

Objective To investigate the changes in 20S proteasome activities in the brain and spinal cord of acute and chronic morphine-dependent mice.Metbods Male ICR mice,weighing 25-30 g,were used in the study.The experiment was performed in 2 parts.In experiment Ⅰ,16 mice were randomly divided into 5 groups (n =8 each) using a random number table:control group (group C) and acute morphine dependence group (AMD group).In experiment Ⅱ,16 mice were randomly divided into 5 groups (n =8 each) using a random number table:control group (group C) and chronic morphine dependence group (CMD group).Acute morphine dependence was induced with morphine 100 mg/kg injected subcutaneously,and the mice were sacrificed 3 h later.Chronic morphine dependence was induced by increasing doses of morphine for 4 days,the initial dose of morphine was 20 mg/kg injected subcutaneously twice a day and was increased by 10 mg/kg every day,the dose of morphine was 10 mg/kg injected subcutaneously on 5th day,and then the mice were sacrificed 1 h later.In group C,the equal volume of normal saline was given instead,and the other treatments were similar to those previously described in morphine dependence groups.After the mice were sacrificed,the hippocampus,prefrontal cortex,striatum and spinalcord were isolated for determination of 20S proteasome activity,measured as chymotrypsin-like (ChT-L),trypsin-like (T-L) and peptidylglutamyl-like hydrolyzing (PGLH) activities.Results Experiment Ⅰ Compared with C group,PGLH activity in the spinal cord and T-L activity in the striatum or prefrontal cortex were significantly weakened in group AMD.There was no significant difference in 20S proteasome activity in the hippocampus between the two groups.Experiment Ⅱ Compared with C group,ChT-L and T-L activities in the spinal cord were significantly weakened,and PGLH activity in the striatum was enhanced in CMD group.There was no significant difference in 20S proteasome activity in the prefrontal cortex and hippocampus between the two groups.Conclusion 20S proteasome activity in the spinal cord and brain is weakened in acute morphine-dependent mice,20S proteasome activity in the spinal cord is weakened,20S proteasome activity in the striatum is enhanced in chronic morphine-dependent mice,these changes have specificity in terms of position and type of activity,and the changes mentioned above may be related to development of morphine dependence in mice.

20.
Hypertension ; 64(6): 1368-1375, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25225202

RESUMO

Angiotensin-converting enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of angiotensin II (Ang-II) to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contributes to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 downregulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significant attenuation of ACE2 enzymatic activity. Examination of the subcellular localization of ACE2 revealed that Ang-II treatment leads to ACE2 internalization and degradation into lysosomes. These effects were prevented by both the Ang-II type 1 receptor (AT1R) blocker losartan and the lysosomal inhibitor leupeptin. In contrast, in HEK293T cells, which lack endogenous AT1R, Ang-II failed to promote ACE2 internalization. Moreover, this effect could be induced after AT1R transfection. Furthermore, coimmunoprecipitation experiments demonstrated that AT1R and ACE2 form complexes, and these interactions were decreased by Ang-II treatment, which also enhanced ACE2 ubiquitination. In contrast, ACE2 activity was not changed by transfection of AT2 or Mas receptors. In vivo, Ang-II-mediated hypertension was blunted by chronic infusion of leupeptin in wildtype C57Bl/6, but not in ACE2 knockout mice. Overall, this is the first demonstration that elevated Ang-II levels reduce ACE2 expression and activity by stimulation of lysosomal degradation through an AT1R-dependent mechanism.


Assuntos
Angiotensina II/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Peptidil Dipeptidase A/biossíntese , Receptor Tipo 1 de Angiotensina/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA