Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 513
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701416

RESUMO

Predicting protein function is crucial for understanding biological life processes, preventing diseases and developing new drug targets. In recent years, methods based on sequence, structure and biological networks for protein function annotation have been extensively researched. Although obtaining a protein in three-dimensional structure through experimental or computational methods enhances the accuracy of function prediction, the sheer volume of proteins sequenced by high-throughput technologies presents a significant challenge. To address this issue, we introduce a deep neural network model DeepSS2GO (Secondary Structure to Gene Ontology). It is a predictor incorporating secondary structure features along with primary sequence and homology information. The algorithm expertly combines the speed of sequence-based information with the accuracy of structure-based features while streamlining the redundant data in primary sequences and bypassing the time-consuming challenges of tertiary structure analysis. The results show that the prediction performance surpasses state-of-the-art algorithms. It has the ability to predict key functions by effectively utilizing secondary structure information, rather than broadly predicting general Gene Ontology terms. Additionally, DeepSS2GO predicts five times faster than advanced algorithms, making it highly applicable to massive sequencing data. The source code and trained models are available at https://github.com/orca233/DeepSS2GO.


Assuntos
Algoritmos , Biologia Computacional , Redes Neurais de Computação , Estrutura Secundária de Proteína , Proteínas , Proteínas/química , Proteínas/metabolismo , Proteínas/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas , Ontologia Genética , Análise de Sequência de Proteína/métodos , Software
2.
Biophys Rev ; 16(2): 189-218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737201

RESUMO

The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.

3.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791544

RESUMO

Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adversarial Network (FBGAN), a deep generative model that incorporates a classifier during its training phase. Our study aims to explore the impact of enhanced classifiers on the generative capabilities of FBGAN. To this end, we introduce two alternative classifiers for the FBGAN framework, both surpassing the accuracy of the original classifier. The first classifier utilizes the k-mers technique, while the second applies transfer learning from the large protein language model Evolutionary Scale Modeling 2 (ESM2). Integrating these classifiers into FBGAN not only yields notable performance enhancements compared to the original FBGAN but also enables the proposed generative models to achieve comparable or even superior performance to established methods such as AMPGAN and HydrAMP. This achievement underscores the effectiveness of leveraging advanced classifiers within the FBGAN framework, enhancing its computational robustness for AMP de novo design and making it comparable to existing literature.


Assuntos
Peptídeos Antimicrobianos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Desenho de Fármacos/métodos , Redes Neurais de Computação , Aprendizado Profundo , Algoritmos
4.
BMC Bioinformatics ; 25(1): 174, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698340

RESUMO

BACKGROUND: In last two decades, the use of high-throughput sequencing technologies has accelerated the pace of discovery of proteins. However, due to the time and resource limitations of rigorous experimental functional characterization, the functions of a vast majority of them remain unknown. As a result, computational methods offering accurate, fast and large-scale assignment of functions to new and previously unannotated proteins are sought after. Leveraging the underlying associations between the multiplicity of features that describe proteins could reveal functional insights into the diverse roles of proteins and improve performance on the automatic function prediction task. RESULTS: We present GO-LTR, a multi-view multi-label prediction model that relies on a high-order tensor approximation of model weights combined with non-linear activation functions. The model is capable of learning high-order relationships between multiple input views representing the proteins and predicting high-dimensional multi-label output consisting of protein functional categories. We demonstrate the competitiveness of our method on various performance measures. Experiments show that GO-LTR learns polynomial combinations between different protein features, resulting in improved performance. Additional investigations establish GO-LTR's practical potential in assigning functions to proteins under diverse challenging scenarios: very low sequence similarity to previously observed sequences, rarely observed and highly specific terms in the gene ontology. IMPLEMENTATION: The code and data used for training GO-LTR is available at https://github.com/aalto-ics-kepaco/GO-LTR-prediction .


Assuntos
Biologia Computacional , Proteínas , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas , Algoritmos
5.
Interdiscip Sci ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568406

RESUMO

With the rapid development of NGS technology, the number of protein sequences has increased exponentially. Computational methods have been introduced in protein functional studies because the analysis of large numbers of proteins through biological experiments is costly and time-consuming. In recent years, new approaches based on deep learning have been proposed to overcome the limitations of conventional methods. Although deep learning-based methods effectively utilize features of protein function, they are limited to sequences of fixed-length and consider information from adjacent amino acids. Therefore, new protein analysis tools that extract functional features from proteins of flexible length and train models are required. We introduce DeepPI, a deep learning-based tool for analyzing proteins in large-scale database. The proposed model that utilizes Global Average Pooling is applied to proteins of flexible length and leads to reduced information loss compared to existing algorithms that use fixed sizes. The image generator converts a one-dimensional sequence into a distinct two-dimensional structure, which can extract common parts of various shapes. Finally, filtering techniques automatically detect representative data from the entire database and ensure coverage of large protein databases. We demonstrate that DeepPI has been successfully applied to large databases such as the Pfam-A database. Comparative experiments on four types of image generators illustrated the impact of structure on feature extraction. The filtering performance was verified by varying the parameter values and proved to be applicable to large databases. Compared to existing methods, DeepPI outperforms in family classification accuracy for protein function inference.

6.
Arch Biochem Biophys ; 755: 109979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583654

RESUMO

Although protein sequences encode the information for folding and function, understanding their link is not an easy task. Unluckily, the prediction of how specific amino acids contribute to these features is still considerably impaired. Here, we developed a simple algorithm that finds positions in a protein sequence with potential to modulate the studied quantitative phenotypes. From a few hundred protein sequences, we perform multiple sequence alignments, obtain the per-position pairwise differences for both the sequence and the observed phenotypes, and calculate the correlation between these last two quantities. We tested our methodology with four cases: archaeal Adenylate Kinases and the organisms optimal growth temperatures, microbial rhodopsins and their maximal absorption wavelengths, mammalian myoglobins and their muscular concentration, and inhibition of HIV protease clinical isolates by two different molecules. We found from 3 to 10 positions tightly associated with those phenotypes, depending on the studied case. We showed that these correlations appear using individual positions but an improvement is achieved when the most correlated positions are jointly analyzed. Noteworthy, we performed phenotype predictions using a simple linear model that links per-position divergences and differences in the observed phenotypes. Predictions are comparable to the state-of-art methodologies which, in most of the cases, are far more complex. All of the calculations are obtained at a very low information cost since the only input needed is a multiple sequence alignment of protein sequences with their associated quantitative phenotypes. The diversity of the explored systems makes our work a valuable tool to find sequence determinants of biological activity modulation and to predict various functional features for uncharacterized members of a protein family.

7.
Curr Res Struct Biol ; 7: 100142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655428

RESUMO

Binding of nucleotides and their derivatives is one of the most ancient elementary functions dating back to the Origin of Life. We review here the works considering one of the key elements in binding of (di)nucleotide-containing ligands - phosphate binding. We start from a brief discussion of major participants, conditions, and events in prebiotic evolution that resulted in the Origin of Life. Tracing back to the basic functions, including metal and phosphate binding, and, potentially, formation of primitive protein-protein interactions, we focus here on the phosphate binding. Critically assessing works on the structural, functional, and evolutionary aspects of phosphate binding, we perform a simple computational experiment reconstructing its most ancient and generic sequence prototype. The profiles of the phosphate binding signatures have been derived in form of position-specific scoring matrices (PSSMs), their peculiarities depending on the type of the ligands have been analyzed, and evolutionary connections between them have been delineated. Then, the apparent prototype that gave rise to all relevant phosphate-binding signatures had also been reconstructed. We show that two major signatures of the phosphate binding that discriminate between the binding of dinucleotide- and nucleotide-containing ligands are GxGxxG and GxxGxG, respectively. It appears that the signature archetypal for dinucleotide-containing ligands is more generic, and it can frequently bind phosphate groups in nucleotide-containing ligands as well. The reconstructed prototype's key signature GxGGxG underlies the role of glycine residues in providing flexibility and interactions necessary for binding the phosphate groups. The prototype also contains other ancient amino acids, valine, and alanine, showing versatility towards evolutionary design and functional diversification.

8.
BMC Bioinformatics ; 25(1): 146, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600441

RESUMO

BACKGROUND: The advent of high-throughput technologies has led to an exponential increase in uncharacterized bacterial protein sequences, surpassing the capacity of manual curation. A large number of bacterial protein sequences remain unannotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, making it necessary to use auto annotation tools. These tools are now indispensable in the biological research landscape, bridging the gap between the vastness of unannotated sequences and meaningful biological insights. RESULTS: In this work, we propose a novel pipeline for KEGG orthology annotation of bacterial protein sequences that uses natural language processing and deep learning. To assess the effectiveness of our pipeline, we conducted evaluations using the genomes of two randomly selected species from the KEGG database. In our evaluation, we obtain competitive results on precision, recall, and F1 score, with values of 0.948, 0.947, and 0.947, respectively. CONCLUSIONS: Our experimental results suggest that our pipeline demonstrates performance comparable to traditional methods and excels in identifying distant relatives with low sequence identity. This demonstrates the potential of our pipeline to significantly improve the accuracy and comprehensiveness of KEGG orthology annotation, thereby advancing our understanding of functional relationships within biological systems.


Assuntos
Proteínas de Bactérias , Processamento de Linguagem Natural , Genoma , Anotação de Sequência Molecular , Sequência de Aminoácidos
9.
Comput Biol Chem ; 110: 108064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677014

RESUMO

MOTIVATION: Elucidating protein function is a central problem in biochemistry, genetics, and molecular biology. Developing computational methods for protein function prediction is critical due to the significant gap between sequence and functional data. Recent advances in protein structure prediction, which strongly correlates with function, make it feasible to use structure to predict function. However, current structure-based methods overlook the fact that individual residues may contribute differently to the protein's function and do not take into account the correlation between protein residues and their functions. The challenge of effectively utilizing the relationship between protein residues and function-level information to predict protein function remains unsolved. RESULT: We proposed a protein function prediction method based on Soft Mask Graph Networks and Residue-Label Attention (POLAT), which could combine sequence features, predicted structure features, and function-level information to get an accurate prediction. We use soft mask graph networks to adaptively extract the residues relevant to functions. A residue-label attention mechanism is adopted to obtain the protein-level encoded features of a protein, which are then concatenated with a protein-level embedding and fed into a dense classifier to determine the probabilities of each function. POLAT achieves 0.670, 0.515, 0.578 Fmax and 0.677, 0.409, 0.507 AUPR on the PDB cdhit test set for the MFO, BPO, and CCO domains, respectively, outperforming the existing structure-based SOTA method GAT-GO (Fmax 0.633, 0.492, 0.547; AUPR 0.660, 0.381, 0.479). POLAT is also competitive in extensive experiments among sequence-based and multimodal methods and achieves the SOTA performance in three out of six metrics.


Assuntos
Biologia Computacional , Proteínas , Proteínas/química , Proteínas/metabolismo , Conformação Proteica , Algoritmos
10.
Int Immunopharmacol ; 133: 112088, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626547

RESUMO

The signaling lymphocytic activation molecule (SLAM) family participates in the modulation of various innate and adaptive immune responses. SLAM family (SLAMF) receptors include nine transmembrane glycoproteins, of which SLAMF3 (also known as CD229 or Ly9) has important roles in the modulation of immune responses, from the fundamental activation and suppression of immune cells to the regulation of intricate immune networks. SLAMF3 is mainly expressed in immune cells, such as T, B, and natural killer cells. It has a unique molecular structure, including four immunoglobulin-like domains in the extracellular domain and two immunoreceptor tyrosine-based signaling motifs in the intracellular structural domains. These unique structures have important implications for protein functioning. SLAMF3 is involved in pathogenesis of various disease, particularly autoimmune diseases and cancer. However, despite its potential clinical significance, a comprehensive overview of the current paradigm of SLAMF3 research is lacking. This review summarizes the structure, functional mechanisms, and therapeutic implications of SLAMF3. Our findings highlight the significance of SLAMF3 in both physiological and pathological contexts, and underline its dual role in autoimmunity and malignancies, and including disease progression and prognosis. The review also proposes that future studies on SLAMF3 should explore its context-specific inhibitory and stimulatory effects, expand on its potential in disease mapping, investigate related signaling pathways, and explore its value as a drug target. Research in these areas related to SLAMF3 can provide more precise directions for future therapeutic strategies.


Assuntos
Neoplasias , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária , Humanos , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Animais , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia
11.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38492232

RESUMO

The recent assembly and annotation of the 26 maize nested association mapping population founder inbreds have enabled large-scale pan-genomic comparative studies. These studies have expanded our understanding of agronomically important traits by integrating pan-transcriptomic data with trait-specific gene candidates from previous association mapping results. In contrast to the availability of pan-transcriptomic data, obtaining reliable protein-protein interaction (PPI) data has remained a challenge due to its high cost and complexity. We generated predicted PPI networks for each of the 26 genomes using the established STRING database. The individual genome-interactomes were then integrated to generate core- and pan-interactomes. We deployed the PPI clustering algorithm ClusterONE to identify numerous PPI clusters that were functionally annotated using gene ontology (GO) functional enrichment, demonstrating a diverse range of enriched GO terms across different clusters. Additional cluster annotations were generated by integrating gene coexpression data and gene description annotations, providing additional useful information. We show that the functionally annotated PPI clusters establish a useful framework for protein function prediction and prioritization of candidate genes of interest. Our study not only provides a comprehensive resource of predicted PPI networks for 26 maize genomes but also offers annotated interactome clusters for predicting protein functions and prioritizing gene candidates. The source code for the Python implementation of the analysis workflow and a standalone web application for accessing the analysis results are available at https://github.com/eporetsky/PanPPI.


Assuntos
Zea mays , Zea mays/genética , Mapas de Interação de Proteínas/genética , Anotação de Sequência Molecular , Ontologia Genética , Genoma de Planta , Locos de Características Quantitativas , Biologia Computacional/métodos , Algoritmos , Genes de Plantas , Característica Quantitativa Herdável , Fenótipo , Bases de Dados Genéticas , Genômica/métodos
12.
Biomolecules ; 14(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540707

RESUMO

Disordered linkers (DLs) are intrinsically disordered regions that facilitate movement between adjacent functional regions/domains, contributing to many key cellular functions. The recently completed second Critical Assessments of protein Intrinsic Disorder prediction (CAID2) experiment evaluated DL predictions by considering a rather narrow scenario when predicting 40 proteins that are already known to have DLs. We expand this evaluation by using a much larger set of nearly 350 test proteins from CAID2 and by investigating three distinct scenarios: (1) prediction residues in DLs vs. in non-DL regions (typical use of DL predictors); (2) prediction of residues in DLs vs. other disordered residues (to evaluate whether predictors can differentiate residues in DLs from other types of intrinsically disordered residues); and (3) prediction of proteins harboring DLs. We find that several methods provide relatively accurate predictions of DLs in the first scenario. However, only one method, APOD, accurately identifies DLs among other types of disordered residues (scenario 2) and predicts proteins harboring DLs (scenario 3). We also find that APOD's predictive performance is modest, motivating further research into the development of new and more accurate DL predictors. We note that these efforts will benefit from a growing amount of training data and the availability of sophisticated deep network models and emphasize that future methods should provide accurate results across the three scenarios.


Assuntos
Biologia Computacional , Proteínas Intrinsicamente Desordenadas , Biologia Computacional/métodos , Proteínas/química , Proteínas Intrinsicamente Desordenadas/química , Bases de Dados de Proteínas
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446740

RESUMO

Protein annotation has long been a challenging task in computational biology. Gene Ontology (GO) has become one of the most popular frameworks to describe protein functions and their relationships. Prediction of a protein annotation with proper GO terms demands high-quality GO term representation learning, which aims to learn a low-dimensional dense vector representation with accompanying semantic meaning for each functional label, also known as embedding. However, existing GO term embedding methods, which mainly take into account ancestral co-occurrence information, have yet to capture the full topological information in the GO-directed acyclic graph (DAG). In this study, we propose a novel GO term representation learning method, PO2Vec, to utilize the partial order relationships to improve the GO term representations. Extensive evaluations show that PO2Vec achieves better outcomes than existing embedding methods in a variety of downstream biological tasks. Based on PO2Vec, we further developed a new protein function prediction method PO2GO, which demonstrates superior performance measured in multiple metrics and annotation specificity as well as few-shot prediction capability in the benchmarks. These results suggest that the high-quality representation of GO structure is critical for diverse biological tasks including computational protein annotation.


Assuntos
Benchmarking , Biologia Computacional , Ontologia Genética , Aprendizagem , Anotação de Sequência Molecular
14.
J Biol Chem ; 300(3): 105736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336297

RESUMO

Advances in personalized medicine and protein engineering require accurately predicting outcomes of amino acid substitutions. Many algorithms correctly predict that evolutionarily-conserved positions show "toggle" substitution phenotypes, which is defined when a few substitutions at that position retain function. In contrast, predictions often fail for substitutions at the less-studied "rheostat" positions, which are defined when different amino acid substitutions at a position sample at least half of the possible functional range. This review describes efforts to understand the impact and significance of rheostat positions: (1) They have been observed in globular soluble, integral membrane, and intrinsically disordered proteins; within single proteins, their prevalence can be up to 40%. (2) Substitutions at rheostat positions can have biological consequences and ∼10% of substitutions gain function. (3) Although both rheostat and "neutral" (defined when all substitutions exhibit wild-type function) positions are nonconserved, the two classes have different evolutionary signatures. (4) Some rheostat positions have pleiotropic effects on function, simultaneously modulating multiple parameters (e.g., altering both affinity and allosteric coupling). (5) In structural studies, substitutions at rheostat positions appear to cause only local perturbations; the overall conformations appear unchanged. (6) Measured functional changes show promising correlations with predicted changes in protein dynamics; the emergent properties of predicted, dynamically coupled amino acid networks might explain some of the complex functional outcomes observed when substituting rheostat positions. Overall, rheostat positions provide unique opportunities for using single substitutions to tune protein function. Future studies of these positions will yield important insights into the protein sequence/function relationship.


Assuntos
Substituição de Aminoácidos , Aminoácidos , Proteínas , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Sequência Conservada , Evolução Molecular , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Engenharia de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Relação Estrutura-Atividade , Humanos
15.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314876

RESUMO

Substitution models of evolution are necessary for diverse evolutionary analyses including phylogenetic tree and ancestral sequence reconstructions. At the protein level, empirical substitution models are traditionally used due to their simplicity, but they ignore the variability of substitution patterns among protein sites. Next, in order to improve the realism of the modeling of protein evolution, a series of structurally constrained substitution models were presented, but still they usually ignore constraints on the protein activity. Here, we present a substitution model of protein evolution with selection on both protein structure and enzymatic activity, and that can be applied to phylogenetics. In particular, the model considers the binding affinity of the enzyme-substrate complex as well as structural constraints that include the flexibility of structural flaps, hydrogen bonds, amino acids backbone radius of gyration, and solvent-accessible surface area that are quantified through molecular dynamics simulations. We applied the model to the HIV-1 protease and evaluated it by phylogenetic likelihood in comparison with the best-fitting empirical substitution model and a structurally constrained substitution model that ignores the enzymatic activity. We found that accounting for selection on the protein activity improves the fitting of the modeled functional regions with the real observations, especially in data with high molecular identity, which recommends considering constraints on the protein activity in the development of substitution models of evolution.


Assuntos
Aminoácidos , Evolução Molecular , Filogenia , Probabilidade , Modelos Genéticos , Substituição de Aminoácidos
16.
Genome Biol ; 25(1): 41, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303023

RESUMO

Protein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272.


Assuntos
Aprendizado Profundo , Humanos , Biologia Computacional/métodos , Proteínas/metabolismo , Software , Anotação de Sequência Molecular
17.
Genes (Basel) ; 15(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397155

RESUMO

Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Vacinas , Animais , Suínos , Feminino , Infecções por Coronavirus/veterinária , Proteínas Virais , Diarreia/veterinária
18.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388682

RESUMO

Proteins play an important role in life activities and are the basic units for performing functions. Accurately annotating functions to proteins is crucial for understanding the intricate mechanisms of life and developing effective treatments for complex diseases. Traditional biological experiments struggle to keep pace with the growing number of known proteins. With the development of high-throughput sequencing technology, a wide variety of biological data provides the possibility to accurately predict protein functions by computational methods. Consequently, many computational methods have been proposed. Due to the diversity of application scenarios, it is necessary to conduct a comprehensive evaluation of these computational methods to determine the suitability of each algorithm for specific cases. In this study, we present a comprehensive benchmark, BeProf, to process data and evaluate representative computational methods. We first collect the latest datasets and analyze the data characteristics. Then, we investigate and summarize 17 state-of-the-art computational methods. Finally, we propose a novel comprehensive evaluation metric, design eight application scenarios and evaluate the performance of existing methods on these scenarios. Based on the evaluation, we provide practical recommendations for different scenarios, enabling users to select the most suitable method for their specific needs. All of these servers can be obtained from https://csuligroup.com/BEPROF and https://github.com/CSUBioGroup/BEPROF.


Assuntos
Aprendizado Profundo , Benchmarking , Proteínas , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala
19.
Proteins ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221646

RESUMO

The spindle checkpoint complex is a key surveillance mechanism in cell division that prevents premature separation of sister chromatids. Mad2 is an integral component of this spindle checkpoint complex that recognizes cognate substrates such as Mad1 and Cdc20 in its closed (C-Mad2) conformation by fastening a "seatbelt" around short peptide regions that bind to the substrate recognition site. Mad2 is also a metamorphic protein that adopts not only the fold found in C-Mad2, but also a structurally distinct open conformation (O-Mad2) which is incapable of binding substrates. Here, we show using chemical exchange saturation transfer (CEST) and relaxation dispersion (CPMG) NMR experiments that Mad2 transiently populates three other higher free energy states with millisecond lifetimes, two in equilibrium with C-Mad2 (E1 and E2) and one with O-Mad2 (E3). E1 is a mimic of substrate-bound C-Mad2 in which the N-terminus of one C-Mad2 molecule inserts into the seatbelt region of a second molecule of C-Mad2, providing a potential pathway for autoinhibition of C-Mad2. E2 is the "unbuckled" conformation of C-Mad2 that facilitates the triage of molecules along competing fold-switching and substrate binding pathways. The E3 conformation that coexists with O-Mad2 shows fluctuations at a hydrophobic lock that is required for stabilizing the O-Mad2 fold and we hypothesize that E3 represents an early intermediate on-pathway towards conversion to C-Mad2. Collectively, the NMR data highlight the rugged free energy landscape of Mad2 with multiple low-lying intermediates that interlink substrate-binding and fold-switching, and also emphasize the role of molecular dynamics in its function.

20.
Adv Protein Chem Struct Biol ; 138: 179-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38220424

RESUMO

Intrinsically disordered proteins (IDPs), which are functional proteins without stable tertiary structure, and hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) constitute prominent parts of all proteomes collectively known as unfoldomes. IDPs/IDRs exist as highly dynamic structural ensembles of rapidly interconverting conformations and are characterized by the exceptional structural heterogeneity, where their different parts are (dis)ordered to different degree, and their overall structure represents a complex mosaic of foldons, inducible foldons, inducible morphing foldons, non-foldons, semifoldons, and even unfoldons. Despite their lack of unique 3D structures, IDPs/IDRs play crucial roles in the control of various biological processes and the regulation of different cellular pathways and are commonly involved in recognition and signaling, indicating that the disorder-based functional repertoire is complementary to the functions of ordered proteins. Furthermore, IDPs/IDRs are frequently multifunctional, and this multifunctionality is defined by their structural flexibility and heterogeneity. Intrinsic disorder phenomenon is at the roots of the structure-function continuum model, where the structure continuum is defined by the presence of differently (dis)ordered regions, and the function continuum arises from the ability of all these differently (dis)ordered parts to have different functions. In their everyday life, IDPs/IDRs utilize a broad spectrum of interaction mechanisms thereby acting as interaction specialists. They are crucial for the biogenesis of numerous proteinaceous membrane-less organelles driven by the liquid-liquid phase separation. This review introduces functional unfoldomics by representing some aspects of the intrinsic disorder-based functionality.


Assuntos
Proteínas Intrinsicamente Desordenadas , Conformação Proteica , Modelos Moleculares , Proteínas Intrinsicamente Desordenadas/metabolismo , Transdução de Sinais , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...