Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 653: 123882, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38342324

RESUMO

The pyridoxal 5'-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibility to anticancer drugs. Here, we explore the conjugation of MGL to gold nanoparticles capped with citrate (AuNPs) as a novel strategy to deliver MGL to cancer cells. Measurements of Transmission Electron Microscopy, Dynamic Light Scattering, Asymmetrical Flow Field-Flow Fractionation, X-ray Photoelectron Spectroscopy, and Circular Dichroism allowed to achieve an extensive biophysical and biochemical characterization of the MGL-AuNP complex including particle size, size distribution, MGL loading yield, enzymatic activity, and impact of gold surface on protein structure. Noticeably, we found that activity retention was improved over time for the enzyme adsorbed to AuNPs with respect to the enzyme free in solution. The acquired body of knowledge on the nanocomplex properties and this encouraging stabilizing effect upon conjugation are the necessary basis for further studies aimed at the evaluation of the therapeutic potential of MGL-AuNP complex in a biological milieu.


Assuntos
Antineoplásicos , Liases de Carbono-Enxofre , Nanopartículas Metálicas , Neoplasias , Humanos , Ouro/química , Nanomedicina , Estudos Prospectivos , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/química , Metionina
2.
Int J Biol Macromol ; 260(Pt 2): 129503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244744

RESUMO

Despite of growing interest in use of carbon-based nanomaterials as carriers of functional proteins, less attention has been paid to the effects of these nanomaterials on the structure and function of the proteins. In this study, with the aim of shedding light on the mechanisms of interaction between carbon-based nanomaterials and proteins, the interactions of carbon quantum dots (CQDs) containing amine (CQD-NH2) or carboxyl groups (CQD-COOH) with Photinus pyralis firefly luciferase enzyme were investigated by experimental and computational approaches. The structural changes and reduction in activity of the luciferase upon treatment with CQDs were experimentally proved. CQD-NH2 induced more reduction in enzyme activity (15 %) compared to CQD-COOH (7.4 %). The interactions CQD-NH2 with luciferase led to higher affinity of the enzyme for its substrate. It was found by molecular dynamic simulations that CQD-NH2 binds to multiple regions on the surface of luciferase. Secondary structure analysis showed that CQD-NH2 had more profound effects on the active site amino acids, the adjacent amino acids to the active site and the residues involved in ATP binding site. In addition, CQD-NH2 interactions with luciferase were suggested to be stronger than CQD-COOH based on the number of hydrogen bonds and the binding energies.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Luciferases de Vaga-Lume , Aminas , Carbono/química , Luciferases/metabolismo , Aminoácidos
3.
Chemistry ; 29(46): e202301274, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37293933

RESUMO

Liquid-liquid phase separation (LLPS) of biopolymers to form condensates is a widespread phenomenon in living cells. Agents that target or alter condensation can help uncover elusive physiological and pathological mechanisms. Owing to their unique material properties and modes of interaction with biomolecules, nanoparticles represent attractive condensate-targeting agents. Our work focused on elucidating the interaction between ultrasmall gold nanoparticles (usGNPs) and diverse types of condensates of tau, a representative phase-separating protein associated with neurodegenerative disorders. usGNPs attract considerable interest in the biomedical community due to unique features, including emergent optical properties and good cell penetration. We explored the interaction of usGNPs with reconstituted self-condensates of tau, two-component tau/polyanion and three-component tau/RNA/alpha-synuclein coacervates. The usGNPs were found to concentrate into condensed liquid droplets, consistent with the formation of dynamic client (nanoparticle) - scaffold (tau) interactions, and were observable thanks to their intrinsic luminescence. Furthermore, usGNPs were capable to promote LLPS of a protein domain which is unable to phase separate on its own. Our study demonstrates the ability of usGNPs to interact with and illuminate protein condensates. We anticipate that nanoparticles will have broad applicability as nanotracers to interrogate phase separation, and as nanoactuators controlling the formation and dissolution of condensates.


Assuntos
Condensados Biomoleculares , Nanopartículas Metálicas , Humanos , Ouro , Luminescência , Domínios Proteicos
4.
Int J Biol Macromol ; 169: 290-301, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340622

RESUMO

Proteins are biopolymers of highly varied structures taking part in almost all processes occurring in living cells. When nanoparticles (NPs) interact with proteins in biological environments, they are surrounded by a layer of biomolecules, mainly proteins adsorbing to the surfaces. This protein rich layer formed around NPs is called the "protein corona". Consequential interactions between NPs and proteins are governed due to the characteristics of the corona. The features of NPs such as the size, surface chemistry, charge are the critical factors influencing the behavior of protein corona. Molecular properties and protein corona composition affect the cellular uptake of NPs. Understanding and analyzing protein corona formation in relation to protein-NP properties, and elucidating its biological implications play an important role in bio-related nano-research studies. Protein-NP interactions have been studied extensively for the purpose of investigating the potential use of NPs as carriers in drug delivery systems. Further study should focus on exploring the effects of various characteristic parameters, such as the particle size, modifier type, temperature, pH on protein-NP interactions, providing toxicity information of novel NPs. In this contribution, important aspects related to protein corona forming, influential factors, novel findings and future perspectives on protein-NP interactions are overviewed.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Adsorção , Animais , Sistemas de Liberação de Medicamentos , Humanos , Tamanho da Partícula , Proteínas/química
5.
Molecules ; 25(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171781

RESUMO

BACKGROUND: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, ß2-microglobulin (ß2m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit ß2m fibril formation in vitro. METHODS: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on ß2m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. RESULTS: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of ß2m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. CONCLUSIONS: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/química , Proteínas/química , Microglobulina beta-2/química , Amiloide/química , Óxidos N-Cíclicos/farmacologia , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Domínios Proteicos , Mapeamento de Interação de Proteínas , Espectrofotometria , Marcadores de Spin
6.
Int J Biol Macromol ; 154: 206-216, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179119

RESUMO

The notion that nanoscale surfaces influence protein conformational transitions stimulates the investigation of fibrillogenic polypeptides adsorbing to nanomaterials. Alpha-synuclein (αS) is a prototypical amyloidogenic protein whose aggregation is associated with severe neurodegenerative disorders. We explored the interaction of αS with silica nanoparticles (SNPs) in diverse solution conditions, ranging from protein-free to protein-rich media. We found that the SNP-binding region of αS, determined by site-resolved NMR spectroscopy, was similar in simple buffer and blood serum. Competition binding experiments with isotopic homologues and different proteins showed that cosolutes elicited molecular exchange in a protein-specific manner. The interaction of an oxidized, fibrillation-resistant protein form with SNPs was similar to that of unmodified αS. SNPs, however, did not stimulate fibrillation of the oxidized protein, which remained fibrillation incompetent. CD experiments revealed SNP-induced perturbations of the structural properties of oxidized and non-oxidized αS. Thus, while αS binding to SNPs is essentially orthogonal to fibril formation, the interaction perturbs the distribution of conformational states populated by the protein in the colloidal suspension. This study sheds light on the dynamic nature of αS interactions with NPs, an aspect that crucially impacts on our ability to control aggregation of αS.


Assuntos
Nanopartículas/química , Agregação Patológica de Proteínas , Proteínas Recombinantes/química , Dióxido de Silício/química , alfa-Sinucleína/química , Humanos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
7.
Colloids Surf B Biointerfaces ; 177: 362-369, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776780

RESUMO

Magnetic hydroxyapatite (MHAp) exhibits excellent biocompatibility, making it an ideal candidate as a biomaterial. Recent investigations have shown that the combined effect of magnetite and hydroxyapatite nanostructures provide efficient means for diagnostic and therapeutic applications which can be controlled with an external magnetic field. For these applications an important aspect to be considered is the interaction of the MHAp nanoparticles (NPs) with biomolecules such as protein (P) and the subsequent biological response. The present study involves synthesis and characterization of Fe doped MHAp NPs, surface functionalized with tri-lithium citrate and cetyl pyridinium chloride having Li+ and Cl- as counterions, respectively. The electrostatic interaction of the MHAp NPs (with and without surface functionalization) with proteins such as Hen egg white lysozyme and Pepsin A were investigated to study the P-NP interactions. The crystalline structure and compositions of these NPs were characterized using X-ray diffraction. The size and aspect ratio were measured using transmission electron microscopy. The P-NP interaction was characterized by Dynamic light scattering, Zeta-potential measurements, UV-vis absorption and fluorescence emission spectroscopies. The conformational changes of the protein secondary structures were investigated by circular dichroism spectroscopy. The functionality of the protein after interaction with surface modified MHAp NPs were studied using activity assays.


Assuntos
Durapatita/química , Nanopartículas de Magnetita/química , Muramidase/química , Pepsina A/química , Animais , Galinhas , Muramidase/metabolismo , Tamanho da Partícula , Propriedades de Superfície
8.
Chemistry ; 24(22): 5911-5919, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29446497

RESUMO

In biological systems, nanoparticles (NPs) elicit bioactivity upon interaction with proteins. As a result of post-translational modification, proteins occur in a variety of alternative covalent forms, including structural isomers, which present unique molecular surfaces. We aimed at a detailed description of the recognition of protein isomeric species by NP surfaces. The transient adsorption of isomeric ubiquitin (Ub) dimers by NPs was investigated by solution NMR spectroscopy. Lys63- and Lys48-linked Ub2 were adsorbed by large anionic NPs with different affinities, whereas the binding strength was similar in the cases of smaller particles. After the incorporation of paramagnetic tags into NPs, the observed site-resolved paramagnetic footprints provided a high-resolution map of the different protein surfaces binding to NPs. The approach described could be extended to further protein isoforms and more specialized NP systems to allow better control of the interactions between NPs and protein targets.


Assuntos
Nanopartículas/química , Proteínas/química , Ubiquitina/química , Adsorção , Isomerismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Processamento de Proteína Pós-Traducional
9.
Small ; 13(12)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28139876

RESUMO

The development of biocompatible nanomaterials for smart drug delivery and bioimaging has attracted great interest in recent years in biomedical fields. Here, the interaction between the recently reported nitrogenated graphene (C2 N) and a prototypical protein (villin headpiece HP35) utilizing atomistic molecular dynamics simulations is studied. The simulations reveal that HP35 can form a stable binding with the C2 N monolayer. Although the C2 N-HP35 attractive interactions are constantly preserved, the binding strength between C2 N and the protein is mild and does not cause significant distortion in the protein's structural integrity. This intrinsic biofriendly property of native C2 N is distinct from several widely studied nanomaterials, such as graphene, carbon nanotubes, and MoS2 , which can induce severe protein denaturation. Interestingly, once the protein is adsorbed onto C2 N surface, its transverse migration is highly restricted at the binding sites. This restriction is orchestrated by C2 N's periodic porous structure with negatively charged "holes," where the basic residues-such as lysine-can form stable interactions, thus functioning as "anchor points" in confining the protein displacement. It is suggested that the mild, immobilized protein attraction and biofriendly aspects of C2 N would make it a prospective candidate in bio- and medical-related applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Grafite/química , Proteínas dos Microfilamentos/química , Nitrogênio/química , Aminoácidos/química , Animais , Galinhas , Ligação de Hidrogênio , Proteínas dos Microfilamentos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Teoria Quântica , Termodinâmica , Fatores de Tempo
10.
J Biophotonics ; 10(2): 271-277, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26871886

RESUMO

A plasmon waveguide resonance (PWR) sensor is proposed for studying the interaction between gold nanoparticles and proteins. The ability of the PWR sensor to operate in both TM and TE Polarizations, i.e. its polarization diversity, facilitates the simultaneous spectroscopy of the nanoparticles surface reactions using both polarizations. The response of each polarization to streptavidin-biotin binding at the surface of gold nanoparticles is investigated in real time. Finally, using the principles of multimode spectroscopy, the nanoparticle's surface reactions are decoupled from the bulk solution refractive index variations. Schematic diagram of the NP-modified PWR sensor.


Assuntos
Nanopartículas Metálicas/química , Proteínas/química , Ouro , Cinética , Refratometria , Ressonância de Plasmônio de Superfície
11.
J Biomol NMR ; 66(1): 1-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27558624

RESUMO

In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex â‰« Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789-5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd(3+), we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k ex â‰« Γ2) the ratio of the apparent proton to carbon methyl PREs, ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γΗ/γC)(2). However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ2 is comparable in magnitude to k ex) the ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ) ratio provides a reliable measure of the 'true' methyl PREs.


Assuntos
Espectroscopia de Ressonância Magnética , Algoritmos , Lipossomos/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Ubiquitinas/química
12.
Eur J Pharm Biopharm ; 94: 284-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26070388

RESUMO

The adsorption of proteins on nanoparticle surface is one of the first events that occur when nanoparticles enter in the blood stream, which influences nanoparticles lifetime and further biodistribution. Albumin, which is the most abundant protein in serum and which has been deeply characterized, is an interesting model protein to investigate nanoparticle-protein interactions. Therefore, the interaction of nanoparticles with serum albumin has been widely studied. Immunomethods were suggested for the investigation of adsorption isotherms because of their ease to quantify the non-adsorbed bovine serum albumin without the need of applying separation methods that could modify the balance between the adsorbed and non-adsorbed proteins. The present work revealed that this method should be applied with caution. Artifacts in the determination of free protein can be generated by the presence of surfactants such as polysorbate 80, widely used in the pharmaceutical and biomedical field, that are needed to preserve the stability of nanoparticle dispersions. It was shown that the presence of traces of polysorbate 80 in the dispersion leads to an overestimation of the amount of bovine serum albumin remaining free in the dispersion medium when determined by both radial immunodiffusion and rocket immunoelectrophoresis. However, traces of poloxamer 188 did not result in clear perturbed migrations. These methods are not appropriate to perform adsorption isotherms of proteins on nanoparticle dispersions containing traces of remaining free surfactant. They should only be applied on dispersions that are free of surfactant that is not associated with nanoparticles.


Assuntos
Nanopartículas/química , Polissorbatos/química , Soroalbumina Bovina/química , Tensoativos/química , Adsorção , Cianoacrilatos/química , Embucrilato , Imunoeletroforese , Ácido Láctico/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Soluções , Propriedades de Superfície
13.
Biomaterials ; 34(35): 8925-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23968854

RESUMO

Optical coherence tomography (OCT) is a modern high resolution subsurface medical imaging technique. Herein we describe: (i) the synthesis of a thiophene-functionalized oligo(ethylene glycol) methacrylate (OEGMA)-based statistical copolymer, denoted poly(2TMOI-OEGMA); (ii) the preparation of sterically-stabilized polypyrrole (PPy) nanoparticles of approximately 60 nm diameter; (iii) the evaluation of these nanoparticles as a NIR-absorbing optical contrast agent for high-resolution OCT imaging. We show that poly(2TMOI-OEGMA)-stabilized PPy nanoparticles exhibit similar optical properties to poly(vinyl alcohol) (PVA)-stabilized PPy nanoparticles of comparable size prepared using commercially available PVA. Spectroscopic measurements and Mie calculations indicate that both types of PPy nanoparticles strongly absorb NIR radiation above 1000 nm, suggesting their potential use as OCT contrast agents. In vitro OCT studies indicate that both types of PPy nanoparticles reduce NIR backscattering within homogeneous intralipid tissue phantoms, offering almost identical contrast performance in this medium. However, PVA-stabilized PPy nanoparticles became colloidally unstable when dispersed in physiological buffer and immersed in a solid biotissue phantom and hence failed to generate a strong contrast effect. In contrast, the poly(2TMOI-OEGMA)-stabilized PPy nanoparticles remained well-dispersed and hence exhibited a strong rapid onset contrast effect within the biotissue phantom under identical physiological conditions. Ex vivo studies performed on excised chicken and porcine skin tissue demonstrated that topical administration of a low concentration of poly(2TMOI-OEGMA)-stabilized PPy nanoparticles rapidly enhances OCT image contrast in both cases, allowing key tissue features to be readily identified.


Assuntos
Incrustação Biológica/prevenção & controle , Diagnóstico por Imagem/métodos , Nanopartículas/química , Polímeros/química , Animais , Galinhas , Meios de Contraste/química , Emulsões/química , Metacrilatos/síntese química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Imagens de Fantasmas , Fosfolipídeos/química , Espectroscopia Fotoeletrônica , Polietilenoglicóis/síntese química , Ácidos Polimetacrílicos , Pirróis/química , Pele/efeitos dos fármacos , Pele/metabolismo , Óleo de Soja/química , Espectrofotometria Infravermelho , Suínos , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA