Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.059
Filtrar
1.
Physiol Mol Biol Plants ; 30(7): 1185-1208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39100874

RESUMO

Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.

2.
Methods Mol Biol ; 2835: 277-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105923

RESUMO

Photodynamic therapy (PDT), a noninvasive cancer treatment, relies on three components: light source, oxygen, and photosensitizer (PS). When PS is excited by a specific wavelength of light in the presence of oxygen, it leads to the generation of reactive oxygen species (ROS), which results in targeted destruction of cancer cells. The success of PDT mainly depends on the properties of the chosen PS, emphasizing selectivity, high absorbance, drug conjugation, controlled biodistribution, and low toxicity. Nanomaterials not only play an important role in photochemical activity by maximizing the absorption of photons from the light source but can also adjust the pharmacokinetics and tumor selectivity of photoactive molecules. Therefore, they can be used as a PS on their own and conjugated with other PS molecules. When combined with selectivity, high targeting capacity, and finally, light of the appropriate wavelength, the scenario results in localized ROS formation and cell death. However, the signaling pathways of PDT-induced cell death may differ depending on the cell type or nanomaterial properties. For this reason, omics analyses are needed to clarify the mechanisms underlying photodynamic reactions. Proteomics, crucial in molecular sciences, sheds light on cancer mechanisms, identifying biomarkers and therapeutic targets. Examining nanoparticle-based PDT in cancer cell lines in vitro, this chapter aims to molecularly evaluate efficacy, utilizing proteomic analysis to understand the underlying mechanisms.


Assuntos
Nanoestruturas , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanoestruturas/química , Linhagem Celular Tumoral , Proteômica/métodos , Nanopartículas/química
3.
Meat Sci ; 217: 109618, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39096797

RESUMO

Recent advances in "omics" technologies have enabled the identification of new beef quality biomarkers and have also allowed for the early detection of quality defects such as dark-cutting beef, also known as DFD (dark, firm, and dry) beef. However, most of the studies conducted were carried out on a small number of animals and mostly applied gel-based proteomics. The present study proposes for the first time a Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) proteomics approach to characterize and comprehensively quantify the post-mortem muscle proteome of DFD (pH24 ≥ 6.2) and CONTROL (5.4 ≤ pH24 ≤ 5.6) beef samples within the largest database of DFD/CONTROL beef samples to date (26 pairs of the Longissimus thoracis muscle samples of young bulls from Asturiana de los Valles breed, n = 52). The pairwise comparison yielded 35 proteins that significantly differed in their abundances between the DFD and CONTROL samples. Chemometrics methods using both PLS-DA and OPLS-DA revealed 31 and 36 proteins with VIP > 2.0, respectively. The combination of different statistical methods these being Volcano plot, PLS-DA and OPLS-DA allowed us to propose 16 proteins as good candidate biomarkers of DFD beef. These proteins are associated with interconnected biochemical pathways related to energy metabolism (DHRS7B and CYB5R3), binding and signaling (RABGGTA, MIA3, BPIFA2B, CAP2, APOBEC2, UBE2V1, KIR2DL1), muscle contraction, structure and associated proteins (DMD, PFN2), proteolysis, hydrolases, and activity regulation (AGT, C4A, GLB1, CAND2), and calcium homeostasis (ANXA6). These results evidenced the potential of SWATH-MS and chemometrics to accurately identify novel biomarkers for meat quality defects, providing a deeper understanding of the molecular mechanisms underlying dark-cutting beef condition.

4.
J Proteomics ; 307: 105267, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089615

RESUMO

Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.

5.
J Proteome Res ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091241

RESUMO

Liver oncogenesis is accompanied by discernible protein changes in the bloodstream. By employing plasma proteomic profiling, we can delve into the molecular mechanisms of liver cancer and pinpoint potential biomarkers. In this nested case-control study, we applied liquid chromatography-tandem mass spectrometry for proteome profiling in baseline plasma samples. Differential protein expression was determined and was subjected to functional enrichment, network, and Mendelian randomization (MR) analyses. We identified 193 proteins with notable differential levels between the groups. Of these proteins, MR analysis offered a compelling negative association between apolipoprotein B (APOB) and liver cancer. This association was further corroborated in the UK Biobank cohort: genetically predicted APOB levels were associated with a 31% (95% CI 19-42%) decreased risk of liver cancer; and phenotypic analysis indicated an 11% (95% CI 8-14%) decreased liver cancer risk for every 0.1 g/L increase of circulating APOB levels. Multivariable MR analysis suggested that the hepatic fat content might fully mediate the APOB-liver cancer connection. In summary, we identified some plasma proteins, particularly APOB, as potential biomarkers of liver cancer. Our findings underscore the intricate link between lipid metabolism and liver cancer, offering hints for targeted prophylactic strategies and early detection.

6.
Neurochem Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088164

RESUMO

Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.

7.
Front Vet Sci ; 11: 1415594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104547

RESUMO

We utilized plasma proteomics profiling to explore metabolic pathways and key proteins associated with divergent residual body weight gain (RADG) phenotype in crossbred (Angus × Hereford) beef steers. A group of 108 crossbred growing beef steers (average BW = 282.87 ± 30 kg; age = 253 ± 28 days) were fed a high-forage total mixed ration for 49 days in five dry lot pens (20-22 beef steers per pen), each equipped with two GrowSafe8000 intake nodes to determine their RADG phenotype. After RADG identification, blood samples were collected from the beef steers with the highest RADG (most efficient; n = 15; 0.76 kg/d) and lowest RADG (least efficient; n = 15; -0.65 kg/d). Plasma proteomics analysis was conducted on all plasma samples using a nano LC-MS/MS platform. Proteins with FC ≥ 1.2 and false-discovery rate-adjusted p-values (FDR) ≤ 0.05 were considered significantly differentially abundant. The analysis identified 435 proteins, with 59 differentially abundant proteins (DAPs) between positive and negative-RADG beef steers. Plasma abundance of 38 proteins, such as macrophage stimulating 1 and peptidase D was upregulated (FC ≥ 1.2, FDR ≤ 0.05) in positive-RADG beef steers, while 21 proteins, including fibronectin and ALB protein were greater (FC < 1.2, FDR ≤ 0.05) in negative-RADG beef steers. The results of the Gene Ontology (GO) analysis of all the DAPs showed enrichment of pathways such as metabolic processes, biological regulation, and catalytic activity in positive-RADG beef steers. Results of the EuKaryotic Orthologous Groups (KOG) analysis revealed increased abundance of DAPs involved in energy production and conversion, amino acid transport and metabolism, and lipid transport and metabolism in positive-RADG beef steers. The results of this study revealed key metabolic pathways and proteins associated with divergent RADG phenotype in beef cattle which give more insight into the biological basis of feed efficiency in crossbred beef cattle.

8.
J Proteome Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121348

RESUMO

In myocardial infarction, ischemia-reperfusion injury (IRI) poses a significant challenge due to a lack of effective treatments. Bilirubin, a natural compound known for its anti-inflammatory and antioxidant properties, has been identified as a potential therapeutic agent for IRI. Currently, there are no reports about proteomic studies related to IRI and bilirubin treatment. In this study, we explored the effects of bilirubin nanoparticles in a rat model of myocardial IRI. A total of 3616 protein groups comprising 76,681 distinct peptides were identified using LC-MS/MS, where we distinguished two kinds of protein groups: those showing increased expression in IRI and decreased expression in IRI with bilirubin treatment, and vice versa, accounting for 202 and 35 proteins, respectively. Our proteomic analysis identified significant upregulation in the Wnt and insulin signaling pathways and increased Golgi markers, indicating their role in mediating bilirubin nanoparticle's protective effects. This research contributes to the proteomic understanding of myocardial IRI and suggests bilirubin nanoparticles as a promising strategy for cardiac protection, warranting further investigation in human models.

9.
RNA Biol ; 21(1): 32-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39115224

RESUMO

Interactions between double-stranded RNA (dsRNA) and proteins play an important role in cellular homeostasis by regulating the editing, stability, and splicing of intracellular RNA. The identification of dsRNA-binding proteins (dsRBPs) is key; however, it has long been challenging to purify dsRBPs from cells. In this study, we developed a novel method, dsRBPC (dsRNA-binding protein capture), to purify cellular dsRBPs based on classic phase separation purification procedures. A global dsRNA-binding proteome of LLC-PK1 cells was obtained, and we identified 1326 dsRBPs, including 1303 putative novel dsRBPs. Functional analyses suggested that these enriched dsRBPs are mainly associated with rRNA processing, RNA splicing, transcriptional regulation, and nucleocytoplasmic transport. We also found that the ARM (armadillo/beta-catenin-like repeats) motif is a previously unknown dsRNA-binding domain, as demonstrated by biochemical experiments. Collectively, this study provides a useful approach for dsRBP identification and the discovery of a global dsRNA-binding proteome to comprehensively map the dsRNA - protein interaction network.


Assuntos
RNA de Cadeia Dupla , Proteínas de Ligação a RNA , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Animais , Proteoma/metabolismo , Ligação Proteica , Suínos , Linhagem Celular , Splicing de RNA , Separação de Fases
10.
Environ Pollut ; 360: 124665, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39116928

RESUMO

The biological response to nanomaterials exposure depends on their properties, route of exposure, or model organism. Titanium dioxide nanoparticles (TiO2 NPs) are among the most used nanomaterials; however, concerns related to oxidative stress and metabolic effects resulting from their ingestion are rising. Therefore, in the present work, we addressed the metabolic effects of citrate-coated 45 nm TiO2 NPs combining bioaccumulation, tissue ultrastructure, and proteomics approaches on gilthead seabream, Sparus aurata and Japanese carpet shell, Ruditapes philippinarum. Sparus aurata was exposed through artificially contaminated feeds, while R. philippinarum was exposed using TiO2 NPs-doped microalgae solutions. The accumulation of titanium and TiO2 NPs in fish liver is associated with alterations in hepatic tissue structure, and alteration to the expression of proteins related to lipid and fatty acid metabolism, lipid breakdown for energy, lipid transport, and homeostasis. While cellular structure alterations and the expression of proteins were less affected than in gilthead seabream, atypical gill cilia and microvilli and alterations in metabolic-related proteins were also observed in the bivalve. Overall, the effects of TiO2 NPs exposure through feeding appear to stem from various interactions with cells, involving alterations in key metabolic proteins, and changes in cell membranes, their structures, and organelles. The possible appearance of metabolic disorders and the environmental risks to aquatic organisms posed by TiO2 NPs deserve further study.

11.
Rice (N Y) ; 17(1): 50, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136854

RESUMO

Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.

12.
J Proteome Res ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150348

RESUMO

Leptospirosis, a notifiable endemic disease in Malaysia, has higher mortality rates than regional dengue fever. Diverse clinical symptoms and limited diagnostic methods complicate leptospirosis diagnosis. The demand for accurate biomarker-based diagnostics is increasing. This study investigated the plasma proteome of leptospirosis patients with leptospiraemia and seroconversion compared with dengue patients and healthy subjects using isobaric tags for relative and absolute quantitation (iTRAQ)-mass spectrometry (MS). The iTRAQ analysis identified a total of 450 proteins, which were refined to a list of 290 proteins through a series of exclusion criteria. Differential expression in the plasma proteome of leptospirosis patients compared to the control groups identified 11 proteins, which are apolipoprotein A-II (APOA2), C-reactive protein (CRP), fermitin family homolog 3 (FERMT3), leucine-rich alpha-2-glycoprotein 1 (LRG1), lipopolysaccharide-binding protein (LBP), myosin-9 (MYH9), platelet basic protein (PPBP), platelet factor 4 (PF4), profilin-1 (PFN1), serum amyloid A-1 protein (SAA1), and thrombospondin-1 (THBS1). Following a study on a verification cohort, a panel of eight plasma protein biomarkers was identified for potential leptospirosis diagnosis: CRP, LRG1, LBP, MYH9, PPBP, PF4, SAA1, and THBS1. In conclusion, a panel of eight protein biomarkers offers a promising approach for leptospirosis diagnosis, addressing the limitations of the "one disease, one biomarker" concept.

13.
ESC Heart Fail ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145416

RESUMO

AIMS: Heart failure (HF) is a global health issue, with lipid metabolism and inflammation critically implicated in its progression. This study harnesses cutting-edge, expanded genetic information for lipid and inflammatory protein profiles, employing Mendelian randomization (MR) to uncover genetic risk factors for HF. METHODS: We assessed genetic susceptibility to HF across 179 lipidomes and 91 inflammatory proteins using instrumental variables (IVs) from recent genome-wide association studies (GWASs) and proteome-wide quantitative trait loci (pQTL) studies. GWASs involving 47 309 HF cases and 930 014 controls were obtained from the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) Consortium. Data on 179 lipids from 7174 individuals in a Finnish cohort and 91 inflammatory proteins from a European pQTL study involving 14 824 individuals are available in the HGRI-EBI catalogue. A two-sample MR approach evaluated the associations, and a two-step mediation analysis explored the mediation role of inflammatory proteins in the lipid-HF pathway. Sensitivity analyses, including MR-RAPS (robust adjusted profile score) and MR-Egger, ensured result robustness. RESULTS: Genetic IVs for 162 lipids and 74 inflammatory proteins were successfully identified. MR analysis revealed a genetic association between HF and 31 lipids. Among them, 18 lipids, including sterol ester (27:1/18:0), cholesterol, 9 phosphatidylcholines, phosphatidylinositol (16:0_20:4) and 6 triacylglycerols, were identified as HF risk factors [odds ratio (OR) = 1.037-1.368]. Cholesterol exhibited the most significant association with elevated HF risk [OR = 1.368, 95% confidence interval (CI) = 1.044-1.794, P = 0.023]. In the inflammatory proteome, leukaemia inhibitory factor receptor (OR = 0.841, 95% CI = 0.789-0.897, P = 1.08E-07), fibroblast growth factor 19 (OR = 0.905, 95% CI = 0.830-0.988, P = 0.025) and urokinase-type plasminogen activator (OR = 0.938, 95% CI = 0.886-0.994, P = 0.030) were causally negatively correlated with HF, whereas interleukin-20 receptor subunit alpha (OR = 1.333, 95% CI = 1.094-1.625, P = 0.004) was causally positively correlated with HF. Mediation analysis revealed leukaemia inhibitory factor receptor (mediation proportion: 23.5%-25.2%) and urokinase-type plasminogen activator (mediation proportion: 9.5%-10.7%) as intermediaries in the lipid-inflammation-HF pathway. No evidence of directional horizontal pleiotropy was observed (P > 0.05). CONCLUSIONS: This study identifies a genetic connection between certain lipids, particularly cholesterol, and HF, highlighting inflammatory proteins that influence HF risk and mediate this relationship, suggesting new therapeutic targets and insights into genetic drivers in HF.

14.
Methods Mol Biol ; 2841: 121-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115771

RESUMO

In the endomembrane system, multivesicular bodies (MVBs) play a crucial role in sorting ubiquitinated membrane proteins into intraluminal vesicles for degradation upon fusion with vacuoles or lysosomes. This process involves regulations by multiprotein complexes, including endosomal sorting complex required for transport (ESCRT) I-III, and accessory proteins. Although many organellar proteomes have been identified in plant cells, the information of specific proteomes associated with regulators engaged in MVB biogenesis remains limited. Here, using the ESCRT component FREE1 as an example, we describe a method to identify neighboring proteins of endosomal regulators by using an approach of TurboID-based proximity labeling.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Corpos Multivesiculares/metabolismo , Coloração e Rotulagem/métodos , Transporte Proteico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
15.
J Transl Med ; 22(1): 753, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135185

RESUMO

BACKGROUND: Omicron variant impacts populations with its rapid contagiousness, and part of patients suffered from persistent symptoms termed as long COVID. The molecular and immune mechanisms of this currently dominant global variant leading to long COVID remain unclear, due to long COVID heterogeneity across populations. METHODS: We recruited 66 participants in total, 22 out of 66 were healthy control without COVID-19 infection history, and 22 complaining about long COVID symptoms 6 months after first infection of Omicron, referred as long COVID (LC) Group. The left ones were defined as non-long COVID (NLC) Group. We profiled them via plasma neutralizing antibody titer, SARS-CoV-2 viral load, transcriptomic and proteomics screening, and machine learning. RESULTS: No serum residual SARS-CoV-2 was observed in the participants 6 months post COVID-19 infection. No significant difference in neutralizing antibody titers was found between the long COVID (LC) Group and the non-long COVID (NLC) Group. Transcriptomic and proteomic profiling allow the stratification of long COVID into neutrophil function upregulated (NU-LC) and downregulated types (ND-LC). The NU-LC, identifiable through a refined set of 5 blood gene markers (ABCA13, CEACAM6, CRISP3, CTSG and BPI), displays evidence of relatively higher neutrophil counts and function of degranulation than the ND-LC at 6 months after infection, while recovered at 12 months post COVID-19. CONCLUSION: The transcriptomic and proteomic profiling revealed heterogeneity among long COVID patients. We discovered a subgroup of long COVID population characterized by neutrophil activation, which might associate with the development of psychiatric symptoms and indicate a higher inflammatory state. Meanwhile, a cluster of 5 genes was manually curated as the most potent discriminators of NU-LC from long COVID population. This study can serve as a foundational exploration of the heterogeneity in the pathogenesis of long COVID and assist in therapeutic targeting and detailed epidemiological investigation of long COVID.


Assuntos
COVID-19 , Neutrófilos , Proteômica , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/sangue , Neutrófilos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Transcriptoma/genética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Adulto , Síndrome de COVID-19 Pós-Aguda , Carga Viral , Idoso , Perfilação da Expressão Gênica , Ativação de Neutrófilo , Multiômica
16.
Anim Biosci ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139081

RESUMO

Objective: This study aimed to find global mechanisms related to carnosine synthesis in slow-growing Korat chickens (KRC) using a proteomic approach. Methods: M. pectoralis major samples were collected from 10-week-old female KRC including low-carnosine (LC, 2,756.6±82.88 µg/g; n = 5) and high-carnosine (HC, 4,212.5±82.88 µg/g; n = 5). Results: We identified 152 common proteins, and 8 of these proteins showed differential expression between the LC and HC groups (P < 0.05). Heat shock 70 kDa protein 8, Heat shock 70 kDa protein 2, Protein disulfide isomerase family A, member 6, and Endoplasmic reticulum resident protein 29 were significantly involved in protein processing in the endoplasmic reticulum pathway (FDR < 0.05), suggesting that the pathway is related to differential carnosine concentration in the M. pectoralis major of KRC. A high concentration of carnosine in the meat is mainly involved in low abundances of Titin isoform Ch12 and Connectin and high abundances of M-protein to maintain homeostasis during muscle contraction, consequences to improve meat characteristics, which were confirmed by the principal component analysis. Conclusion: Carnosine synthesis may occur when muscle cells need to recover homeostasis after being interfered with carnosine synthesis precursors, leading to improved muscle function. To the best of our knowledge, this is the first study to describe in detail the global molecular mechanisms in divergent carnosine contents in meat based on the proteomic approach.

17.
Proteomics ; : e2300591, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126128

RESUMO

INSC94Y transgenic pigs represent a model for mutant insulin gene-induced diabetes of youth, with impaired insulin secretion and beta cell loss, leading to elevated fasting blood glucose levels. A key complication of diabetes mellitus is diabetic retinopathy (DR), characterized by hyperglycemia-induced abnormalities in the retina. Adjacent to the retina lies the vitreous, a gelatinous matrix vital for ocular function. It harbors proteins and signaling molecules, offering insights into vitreous biology and ocular health. Moreover, as a reservoir for secreted molecules, the vitreous illuminates molecular processes within intraocular structures, especially under pathological conditions. To uncover the proteomic profile of porcine vitreous and explore its relevance to DR, we employed discovery proteomics to compare vitreous samples from INSC94Y transgenic pigs and wild-type controls. Our analysis identified 1404 proteins, with 266 showing differential abundance in INSC94Y vitreous. Notably, the abundances of ITGB1, COX2, and GRIFIN were significantly elevated in INSC94Y vitreous. Gene Set Enrichment Analysis unveiled heightened MYC and mTORC1 signaling in INSC94Y vitreous, shedding light on its biological significance in diabetes-associated ocular pathophysiology. These findings deepen our understanding of vitreous involvement in DR and provide valuable insights into potential therapeutic targets. Raw data are accessible via ProteomeXchange (PXD038198).

18.
Plant Physiol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39133896

RESUMO

Hydrogen sulphide (H2S) is required for optimal establishment of soybean (Glycine max)-Sinorhizobium fredii symbiotic interaction, yet its role in regulating the nitrogen fixation-senescence transition remains poorly understood. A S. fredii cystathionine γ-lyase (CSE) mutant deficient in H2S synthesis showed early nodule senescence characterized by reduced nitrogenase activity, structural changes in nodule cells, and accelerated bacteroid death. In parallel, the CSE mutant facilitated the generation of reactive oxygen species (ROS) and elicited antioxidant responses. We observed that H2S-mediated persulfidation of cysteine C31/C80 in ascorbate peroxidase (APX) and C32 in APX2 modulated enzyme activity, thereby participating in hydrogen peroxide (H2O2) detoxification and delaying nodule senescence. Comparative transcriptomic analysis revealed a significant up-regulation of GmMYB128, an MYB transcription factor (TF), in the CSE mutant nodules. Functional analysis through overexpression and RNAi lines of GmMYB128 demonstrated its role as a positive regulator in nodule senescence. MYB128-OE inoculated with the CSE mutant strain exhibited a reduction in nitrogenase activity and a significant increase in DD15 expression, both of which were mitigated by NaHS addition. Changes at the protein level encompassed the activation of plant defenses alongside turnover in carbohydrates and amino acids. Our results suggest that H2S plays an important role in maintaining efficient symbiosis and preventing premature senescence of soybean nodules.

19.
Front Endocrinol (Lausanne) ; 15: 1417530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109077

RESUMO

The Booroola fecundity mutation (FecB) in Small Tail Han sheep has been shown to enhance ovulation rates and litter sizes by affecting the hypothalamic-pituitary-gonadal (HPG) axis. Despite the pituitary's role in reproductive regulation, its involvement in FecB-induced ovulation remains understudied. Our study aimed to fill this gap by analyzing pituitary tissues from FecB homozygous (BB) and wild-type (WW) ewes during luteal and follicular phases using tandem mass tag-based protein quantification and the DIABLO framework for proteomic and transcriptomic data integration. Significant differences in 277 proteins were observed across estrus periods, with network analysis highlighting the voltage-dependent calcium channel L-type alpha-1C as a key convergence point in oxytocin signaling and GnRH secretion pathways. The DIABLO method revealed a strong correlation (0.98) between proteomic and transcriptomic datasets, indicating a coordinated response in FecB ewes. Notably, higher expression levels of Follicle Stimulating Hormone Subunit Beta (FSHB) and Luteinizing Hormone Subunit Beta (LHB) were found in BB ewes during the follicular phase, potentially due to elevated E2 concentrations. Furthermore, our analysis identified genes related to the Gamma-aminobutyric acid type A receptor family (GABRA2, GABRG1, GABRB1) in the pituitary, with GABRB1 showing higher expression in BB ewes. This suggests a role for GABA in modulating GnRH and gonadotropin feedback loops, potentially contributing to the FecB mutation's effect on ovulation. This study provides novel insights into the pituitary's role in fertility among FecB sheep, identifying GABA as a potential regulatory factor within the HPG axis. The findings also open avenues for discovering new biomarkers in pituitary endocrinology for sheep breeding purposes.


Assuntos
Biomarcadores , Fertilidade , Mutação , Hipófise , Proteoma , Transcriptoma , Animais , Feminino , Ovinos/genética , Fertilidade/genética , Hipófise/metabolismo , Proteoma/metabolismo , Biomarcadores/metabolismo , Proteômica/métodos
20.
Arch Dermatol Res ; 316(8): 521, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136778

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory disease with a complex and heterogeneous clinical presentation, leading to treatment limitations. Therefore, there is an urgent demand for new therapeutic drug targets. This study utilized Summary-data-based Mendelian randomization (SMR) to identify potential drug targets for AD. Summary statistics for 2,940 human plasma proteins were obtained from the UK Biobank, while AD statistics came from the Early Genetics and Epidemiology of Life Processes consortium and the FinnGen consortium. Furthermore, subsequent colocalization analyses confirmed the causal roles of candidate proteins. Moreover, Phenome-Wide Association Studies (PheWAS), protein-protein interaction (PPI), enrichment analysis, and single cell-type expression analysis provided additional insights. Additionally, drug prediction, druggability prediction, and molecular docking informed the discovery of novel drug targets. SMR analysis showed that eight plasma proteins were causally associated with AD: PVALB and TST were associated with a reduced risk of AD, while CA14, ECM1, IL22, IL6R, IL18R1, and MMP12 were associated with an increased risk of AD. Colocalization analysis confirmed significant associations for TST, IL22, and CA14. PheWAS further revealed that candidate drug targets were mainly linked to other allergic diseases. The corresponding protein-coding genes are predominantly expressed in melanocytes, T cells, and macrophages in skin tissue. Importantly, these proteins were identified to be involved in cytokine-cytokine receptor interaction, Th17 cell differentiation, and the JAK-STAT signaling pathway. All of these proteins are druggable, and six of them show great potential as drug targets. In conclusion, this study identified eight plasma proteins causally associated with AD and provided new insights into the etiology and potential drug targets for AD.


Assuntos
Proteínas Sanguíneas , Dermatite Atópica , Proteoma , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/sangue , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Terapia de Alvo Molecular/métodos , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA