Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Carbohydr Polym ; 345: 122565, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227120

RESUMO

A green protocol to extract chitin from crab shells using water soluble ionic liquids (ILs) is here reported. Compared to conventional multistep acid-base extraction methods, this one-pot procedure achieves pulping of recalcitrant crustacean waste shells by employing ammonium acetate, ammonium formate and hydroxylammonium acetate as water-soluble, low-cost and easy to prepare ILs. An extensive parametric analysis of the pulping process has been carried out with different ILs, different ratios, temperature and time. The optimized protocol provides a high-quality chitin comparable, if not better, to commercial chitin. The best results were obtained at 150 °C with ammonium formate prepared in-situ from aqueous ammonia and formic acid: chitin was isolated in a 17 wt% yield (based on dried crab shells as starting biowaste), a degree of acetylation (DA) > 94 %, a crystallinity index of 39-46 %, a molecular weight up to 6.6 × 105 g/mol and a polydispersity of ca 2.0.


Assuntos
Exoesqueleto , Braquiúros , Quitina , Animais , Quitina/química , Quitina/isolamento & purificação , Exoesqueleto/química , Braquiúros/química , Líquidos Iônicos/química , Química Verde/métodos , Acetilação , Temperatura , Formiatos/química , Aranhas/química
2.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201730

RESUMO

The natural aromatic polymer lignin and its lignin-like oligomeric fragments have attracted attention for their antioxidant capacity and free radical scavenging activities. In this study, a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was employed to assess the antioxidant capacity of fractionated and partially depolymerized organosolv lignin by electron paramagnetic resonance (EPR) and UV-Vis spectroscopy. The results show significant antioxidant activity for both the lignin and oligomeric fragments, with the EPR measurements demonstrating their efficiency in quenching the free radicals. The EPR data were analyzed to derive the kinetic rate constants. The radical scavenging activity (RSA) of lignins was then determined by UV-Vis spectroscopy and the results were compared with the EPR method. This two-method approach improves the reliability and understanding of the antioxidant potential of lignin and its derivatives and provides valuable insights for their potential applications in various industries, including pharmaceuticals, food preservation, and cosmetics.


Assuntos
Antioxidantes , Compostos de Bifenilo , Lignina , Picratos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lignina/química , Compostos de Bifenilo/química , Picratos/química , Antioxidantes/química , Antioxidantes/farmacologia , Espectrofotometria Ultravioleta , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia
3.
Int J Biol Macromol ; 277(Pt 4): 134619, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127272

RESUMO

The separation and utilization of cellulose, hemicellulose, and lignin in lignocellulosic biorefineries present significant challenges. This study proposes a pretreatment method for biomass refining by combining acid and kraft pulping. Firstly, the biomass was pretreated by malic acid, resulting in the isolation of xylo-oligosaccharides (XOS) with a yield of 86.26 % with optimized conditions of 180 °C, 1 wt% concentration, 40 min. Secondly, a mixture of 12.98 wt% NaOH and 1.043 wt% Na2S is employed to achieve lignin removal efficiency up to 63.42 %. Physical refinement techniques are then applied to enhance the enzyme digestion efficiency of cellulose, resulting in an increase from 55.03 % to 91.4 % for efficient cellulose conversion. The reacted samples exhibit a lignin composition rich in ß-O-4 ether bonds, facilitating their high-value utilization. The results indicated that the combined pretreatment approach demonstrates high efficiency in separating cellulose, hemicellulose, and lignin while obtaining XOS, highly active lignin, and enzyme-digested substrates.


Assuntos
Fermentação , Lignina , Malatos , Lignina/química , Malatos/química , Biomassa , Celulose/química , Açúcares/metabolismo , Hidrólise , Oligossacarídeos/química , Polissacarídeos
4.
Int J Biol Macromol ; 279(Pt 2): 135174, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214196

RESUMO

This study focuses on optimizing the pulping by-product to produce effective hydrogels for controlling the release of salicylic acid (SA). In this regard, two routes are achieved: the first involves preparing black liquor (BL) composite hydrogels with various polymer macromolecules [polyacrylamide (PAM), polyvinyl alcohol (PVA), and chitosan (Cs), and the second involves carboxymethylation of BL and grafting with acrylamide. Hydrogels are evaluated using spectral analysis (ATR-FTIR), thermal analysis (TGA and DTG), and swelling measures. Encapsulation, release profile, SA release kinetics, as well as ATR-FTIR and SEM measurements, were used to evaluate the behavior of loaded hydrogels. According to the results, grafted carboxymethylated BL-gel had the maximum SA release (98.7 %), followed by PAM-BL (51.7 %) and PAM/PVA-BL (43.1 %). Over a 48-hour period, the hydrogels demonstrated a prolonged SA release pattern. The Ritger-Peppas and Higuchi models fitted to all examined hydrogels showed that SA release followed both Fickian and non-Fickian diffusion pathways.

5.
Heliyon ; 10(14): e33504, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100435

RESUMO

Processing of berries usually degrades anthocyanin and non-anthocyanin phenolics and diminishes antioxidant activity. In Colombia, jelly produced from the fruit of Vaccinium meridionale Swartz is a popular product among consumers. The aim of this study was to determine the effect of jelly processing steps on bioactive components. Analysis of anthocyanins (ACNs) and non-anthocyanin phenolics was performed via HPLC-PDA. Antioxidant activity was assessed by the ORACFL method. The pulping step had the highest impact on ACNs, whose total content was significantly higher in the pomace (747.6 ± 59.2 mg cyanidin 3-glucoside (cyn 3-glu)/100 g) than in the pulp (102.7 ± 8.3 mg cyn 3-glu/100 g). Similarly, pulping caused a significant decrease in flavonols, procyanidins (PACs) and ORACFL values. Despite the effects of processing, Colombian bilberry jelly can be considered a good source of phenolic compounds with high antioxidant activity. The final concentration of ACNs, hydroxycinnamic acids (HCAs) and flavonols, as well as the ORACFL values in this product were comparable to those of fresh cranberry (Vaccinium oxycoccos) and black currant (Ribes nigrum). The results also suggest that the pomace of V. meridionale can be recovered as an excellent source of bioactive compounds.

6.
Nord Pulp Paper Res J ; 39(3): 313-323, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39211428

RESUMO

In pulp mills, lags obscure the effect of upstream operations on downstream measurements. Here, we estimate lags in a Canadian pulp mill using autoregressive exogenous (ARX) models. First, we show that ARX models can approximate lags in a process simulation that resembles the liquor storage tanks in pulp mills, a major source of lag in the kraft recovery cycle. Then, we use ARX models to estimate the lagged effect of a change in species pulped on as-fired liquor heating value, viscosity, and boiling point rise. Additionally, we compare the predictions of the ARX models to autoregressive (AR) models and a persistence model. The estimated lags between a change in species and heating value (49 h) and boiling point rise (41 h) agree with a detailed simulation of the mill and are close to estimated hydraulic residence times, suggesting that the liquor tanks exhibit imperfect mixing. A lagged effect of species change on viscosity could not be identified. ARX and AR models produce similar predictions that are slightly better than those of a persistence model. Finally, we show that process measurements upstream of units characterized by large residence times will likely provide little benefit to prediction accuracy.

7.
Curr Res Microb Sci ; 7: 100262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148722

RESUMO

The paper industry faces two critical challenges: the scarcity of raw materials and the environmental impact of chemical waste pollution. Addressing the first challenge involves harnessing alternative, sustainable raw materials, while the second challenge can be mitigated through the adoption of bio-bleaching processes, which significantly reduce chemical consumption while enhancing paper brightness and quality. This study proposes a solution to both challenges by using non-woody Calotropis procera (Ankara) and a xylanase-producing microbial consortium for sustainable handmade paper production, a combination not extensively explored in prior research. To evaluate this approach, the process was divided into three stages. In stage I, Ankara fibre was pulped through open hot digestion. In stage II, the pulp was subjected to bio-bleaching in two experimental setups: Set I (without sucrose) and Set II (with sucrose) for 5 days. In stage III, chemical bleaching was used to improve the final brightness of the treated pulps. A novel comparison was made between the bio-bleaching efficiency of an individual isolate g5 (BI) and a bacterial consortium (BC). This research highlighted that bio-bleaching with the consortium effectively removed lignin (140±60 mg/l) and colour (1830±50 PCU), especially in the presence of sucrose, compared to using a single xylanase isolate. Pulp residue/filtrate collected at each stage was estimated based on parameters such as colour and lignin content. After stage III (chemical bleaching), the release of colour and lignin in pulp filtrate was higher in BI compared to BC, indicating the consortium's effectiveness during bio-bleaching, which leaves fewer degradable lignin structures for the chemical bleaching stage. Papers crafted from consortium-treated pulp also exhibited higher brightness than those treated with the isolate. This study reveals the synergistic effect of microbial consortia, leading to more efficient lignin degradation and enhanced bio-bleaching capabilities, supporting the development of greener industrial processes. Ultimately, this study demonstrates a unique and eco-friendly approach to papermaking, combining C. procera and enzymatic bio-bleaching to reduce dependency on hazardous chemicals and support sustainable industry practices.

8.
J Colloid Interface Sci ; 675: 569-579, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38986330

RESUMO

Affinity and storage capacity for zinc ions of the electrode materials are crucial factors on the properties of zinc ion hybrid capacitors (ZHICs). Wasted pulping liquor with abundant carbohydrates, lignin and inorganic matter served as a unique precursor to produce embedded oxygen-doped hierarchical porous carbon directly through a one-step carbonization process in this investigation. In carbonization process, lignin can serve effectively as the carbon framework, carbohydrates not only act as sacrificial templates but also offer a plentiful oxygen source which can increase the affinity for Zn2+, and sodium-containing inorganic substances plays a role as hard templates to optimize the pore structure. The resulting porous carbon under carbonization temperature of 800 °C shows a high specifical area of 2186 m2g-1 with oxygen content of 4.8 %, which can reduce the adsorption energy of Zn2+ from -0.16 eV to -0.32 eV through electrochemical techniques and density functional theory (DFT) calculations, the incorporation of oxygen was demonstrated to enhance the adsorption and desorption kinetics of Zn2+, suggesting a bright future for application in the domain of energy storage. The resulting ZIHC assembly showcases a notable energy density of 84.6 Wh kg-1 at a power density of 359 W kg-1. Remarkably, even after 10,000 charge and discharge cycles, it exhibits exceptional cycle stability with retaining 86.56 % of its capacity. Consequently, this approach provides fresh insights for exploring the facile and commercial fabrication of biomass-derived cathodes for ZIHCs, thereby propelling the progress of eco-friendly energy storage devices.

9.
Sci Rep ; 14(1): 15236, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956097

RESUMO

This work deals with promoting the efficiency of removing the cationic and ionic dyes by new aerogel-carbon nanostructures. For cleaner production the rice straw-pulping black liquors, which regards serious environmental risk during routine disposing, is used in preparing the aerogel precursors. These aerogels (AGBs) depend on using pulping black liquor in hybrid with resorcinol and the less carcinogenic formaldehyde butyraldehyde. Black liquors from five pulping processes are used, Elemental, thermogravimetric (TGA and DTG), and FTIR-ATR analyses are used to characterize the carbon precursors. While their adsorption behavior toward cationic and anionic dyes are accessed via iodine-value, adsorption capacity and kinetic models, textural characterization, and SEM. The TGA measurements reveal that AGBs from BLs of neutral sulfite and soda-borohydride pulping reagents have higher activation and degradation energies than other aerogels. In terms of cationic and anionic dyes adsorption as well as textural characterization, the AGB-CNSs surpass that made from BLs. The discarded KOH/NH4OH black liquor is used to synthesize the best aerogel precursor for producing cationic methylene blue dye (MB) adsorbent, where it provides an adsorption capacity 242.1 mg/g. The maximum anionic brilliant blue dye (BB) adsorption capacity, 162.6 mg/g, is noticed by Kraft BL-aerogel-CNSs. These finding data overcome the literature carbon adsorbents based on lignin precursors. All examined CNSs toward MB dye follow the Langmuir adsorption equilibrium; while primarily the Freundlich model for BB dye. The pseudo-second-order kinetic model well fits the adsorption kinetics of investigated AGB-CNSs. The textural characterization and SEM revealed a mixture of mesoporous and micro porous features in the CNSs.

10.
Environ Res ; 259: 119527, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977155

RESUMO

The wastewater produced during coffee cherry pulping is known for containing harmful pollutants, particularly organic compounds containing carbon, which pose significant risks to the environment and human health. This research aimed to evaluate the effectiveness of Tamarindus indica L. seed polysaccharides in treating coffee effluent. Varying doses (ranging from 0.05 to 0.30 g) of the isolated polysaccharides were added to samples of the effluent to determine their ability to remove contaminants, especially those of organic carbon origin. Notably, a dosage of 0.10 g demonstrated optimal efficacy, resulting in a 55% decrease in total dissolved solids and an 80% decrease in chemical oxygen demand. Additionally, Fourier-transform infrared and zeta potential analysis of both the polysaccharides and the treated effluent samples revealed the presence of functional groups potentially pivotal for the pollutant removal activity of the isolated polysaccharides. This provides insights into the coagulation mechanism of Tamarindus indica L. seed polysaccharides in eliminating organic carbon-based pollutants. These findings highlight the potential of Tamarindus polysaccharides as a sustainable alternative to chemical agents for removing pollutants, thus promoting environmental sustainability and human well-being.


Assuntos
Polissacarídeos , Sementes , Tamarindus , Águas Residuárias , Tamarindus/química , Polissacarídeos/química , Sementes/química , Águas Residuárias/química , Carbono/química , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Café/química , Eliminação de Resíduos Líquidos/métodos
11.
World J Microbiol Biotechnol ; 40(7): 207, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767733

RESUMO

Biological pretreatment of wood chips by fungi is a well-known approach prior to mechanical- or chemical pulp production. For this biological approach, a limited number of white-rot fungi with an ability to colonize and selectively degrade lignin are used to pretreat wood chips allowing the remaining cellulose to be processed for further applications. Biopulping is an environmentally friendly technology that can reduce the energy consumption of traditional pulping processes. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness, strength, and bleachability. The bleached biopulps are easier to refine compared to pulps produced by conventional methodology. In the last decades, biopulping has been scaled up with pilot trials towards industrial level, with optimization of several intermediate steps and improvement of economic feasibility. Nevertheless, fundamental knowledge on the biochemical mechanisms involved in biopulping is still lacking. Overall, biopulping technology has advanced rapidly during recent decades and pilot mill trials have been implemented. The use of fungi as pretreatment for pulp production is in line with modern circular economy strategies and can be implemented in existing production plants. In this review, we discuss some recent advances in biopulping technology, which can improve mechanical-, chemical-, and organosolv pulping processes along with their mechanisms.


Assuntos
Celulose , Fungos , Lignina , Madeira , Lignina/metabolismo , Fungos/metabolismo , Madeira/microbiologia , Celulose/metabolismo , Biotecnologia/métodos
12.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543453

RESUMO

Herein, wheat straw residue and pulping waste liquid were collected from pulping mill and mixed to prepare bio-based granular fuels by using compression molding technology, and to explore the comprehensive utilization of the industrial waste of pulping and papermaking. The effects of pulping waste liquid on granular fuel properties were analyzed systemically. Further study of the function of pulping waste liquid, cellulose and hemicellulose was used to replace wheat straw residue and avoid the interference factors. Therefore, the prediction models of granular fuels were established with influencing factors that included cellulose, hemicellulose and pulping waste liquid. The granular fuels had the best performance with 18.30% solid content of pulping waste liquid. The highest transverse compressive strength of granular fuel was 102.61 MPa, and the activation energy was 81.71 KJ·mol-1. A series of curve fitting prediction models were established to clarify the forming process of granular fuel, and it turned out that the pulping waste liquid could improve the adhesion between solid particles and increase their compression resistance.

13.
Heliyon ; 10(3): e25353, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333817

RESUMO

The objective of this study was to investigate the morphological and chemical properties of hemp bast RPF1 variety fiber to be used as a potential raw material for filter paper production. Experimental handsheet samples with basis weight of 20 g/m2 were manufactured using mixture of hemp and softwood pulp at various beating levels. The average fiber length and width of hemp bast fiber were determined as 5.76 mm and 32.53 µm, respectively. It was also found that the hemp bast fiber had rigid thick cell wall with small size of lumen. The overall chemical properties of hemp bast were similar to those fibers from other bast sources as well as softwood fibers. It seems that hemp bast was easily pulped under various soda process conditions yielding pulp ranging from 51.36 % to 52.56 % and Kappa numbers ranging from 2.89 to 8.18. Based on the findings in this study hemp bast fiber could be considered as a potential to manufacture filter paper with accepted characteristics.

14.
Int J Biol Macromol ; 262(Pt 2): 130239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367788

RESUMO

Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.


Assuntos
Clorofenóis , Nanopartículas , Celulose/química , Hidrogéis/química , Nanopartículas/química
15.
Carbohydr Polym ; 328: 121743, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220353

RESUMO

Sustainable composite foams based on rice starch and cellulosic long fibers were successfully fabricated using microwave irradiation. They were presented as a promising method to recycle some of the textile industry waste. A deep study of the processability and functionality of the composites revealed the performance improvement of starch with the addition of long cellulosic fibers, especially with 6 wt% of Arbocel®, in terms of foamability, water, and mechanical resistance features. Moreover, sodium bicarbonate, which acted as a blowing and pulping agent, led to a lower density and better fiber distribution that resulted in an improvement of the foams' functionalities. The range of the study is new in the domain of long fiber foam composites in terms of the foaming capability, and mechanical, thermal, and water resistance properties. Furthermore, all foams showed excellent biodegradability properties against a fungus commonly found in the environment; for example, values around 60 % weight loss after 33 days. Finally, the assessment of the CO2 emission during the process underlines the environmental benefits of the method employed.


Assuntos
Micro-Ondas , Amido , Amido/metabolismo , Têxteis , Biodegradação Ambiental , Água
16.
Trends Plant Sci ; 29(2): 111-113, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37838517

RESUMO

Wood is an abundant and renewable feedstock for pulping and biorefining, but the aromatic polymer lignin greatly limits its efficient use. Sulis et al. recently reported a multiplex CRISPR editing strategy targeting multiple lignin biosynthetic genes to achieve combined lignin modifications, improve wood properties, and make pulping more sustainable.


Assuntos
Edição de Genes , Lignina , Lignina/genética , Madeira/genética
17.
Int J Biol Macromol ; 256(Pt 1): 128205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979749

RESUMO

This work deals with avoiding the pollution risks from paper pulping liquors and rubber wastes that result from routine disposal tools; moreover, finding an approach to minimize the drawback of incorporating the rubber waste in weakening the strength of building materials. In this respect, pulping black liquors (BLs) is assessed as a treating agent for rubber waste and substituting the water in cement mortar formulation. The assessment was achieved by testing the mechanical properties, water resistance (reduction in water absorption and dimensional change against water), and morphology. The results showed that all BLs from different pulping agents, used in mixtures with water, provided improvements in both strength and water resistance properties. Kraft black liquor is most effective in providing improvements in compressive strength and flexural strength, as well as resistance to water absorption and change in dimension after exposure to water for 24 h, where the improvements were 688.2 %, 494.3 %, 27 %, and 65.3 %, respectively. It is interesting to note that this investigated route provided improvements in the impact resistance property of mortar. This last property is essential for minimizing accidents on the highway.


Assuntos
Poluição Ambiental , Borracha , Materiais de Construção , Força Compressiva , Água
18.
Bioprocess Biosyst Eng ; 47(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086976

RESUMO

In this study, the potential of ultrafiltered xylano-pectinolytic enzymatic bleaching approach was investigated, for manufacturing wheat straw-based paper. The enzymatic step was found to be most effective, with xylanase-pectinase dose of 4-1.7 IU/g pulp and time period of 180 min. The absorption spectra of the pulp free filtrate samples obtained after treatment of the pulp with ultrafiltered enzymes showed the removal of more impurities, in comparison to the treatment with crude enzymes. Microscopic analysis also showed the removal of lignin impurities in enzymatically bleached pulp samples. This bleaching approach using enzymes resulted in 27% reduction in ClO2 dose. Ultrafiltered enzymes treated pulp samples also showed improved quality-related parameters, and Gurley porosity, burst index, breaking length, double fold, tear index, and viscosity increased by 19.05, 13.70, 8.18, 29.27, 4.41, and 13.27%, respectively. The lignin content, TDS, TSS, BOD and COD values also decreased in the effluent samples obtained after enzymatic bleaching plus 73% chemical bleaching dose. The BOD and COD values of the effluent samples improved by 23.01 and 23.66%, respectively. Thus, indicating the potential of ultrafiltered xylano-pectinolytic enzymes in reducing pollution during bleaching of wheat straw. This is the first study, mentioning the efficacy of ultrafiltered enzymes in the bleaching of wheat straw-based paper with better optical-strength-related properties and effluent characteristics.


Assuntos
Lignina , Papel , Triticum/química , Endo-1,4-beta-Xilanases/química , Poligalacturonase
19.
Int J Biol Macromol ; 259(Pt 2): 128857, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143063

RESUMO

This study assesses the viability of an accelerated solvent extraction technique employing environmentally friendly solvents to extract ellagitannins while producing cellulose-rich fibers from rambutan peel. Two sequential extraction protocols were investigated: 1) water followed by acetone/water (4:1, v:v), and 2) acetone followed by acetone/water (4:1, v:v), both performed at 50 °C. The first protocol had a higher extraction yield of 51 %, and the obtained extractives featured a higher total phenolic (531.4 ± 22.0 mg-GAE/g) and flavonoid (487.3 ± 16.9 mg-QE/g) than the second protocol (495.4 ± 32.8 mg-GAE/g and 310.6 ± 31.4 mg-QE/g, respectively). The remaining extractive-free fibers were processed by bleaching using either 2 wt% sodium hydroxide with 3 wt% hydrogen peroxide or 4-5 wt% peracetic acid. Considering bleaching efficiency, yield, and process sustainability, the single bleaching treatment with 5 wt% of peracetic acid was selected as the most promising approach to yield cellulose-rich fibers. The samples were analyzed by methanolysis to determine the amount and type of poly- and oligosaccharides and studied by 13C solid-state nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The products obtained from the peels demonstrate significant potential for use in various sectors, including food, nutraceuticals, cosmetics, and paper production.


Assuntos
Celulose , Sapindaceae , Celulose/análise , Acetona , Taninos Hidrolisáveis , Sapindaceae/química , Ácido Peracético , Solventes/química , Frutas/química , Água/análise
20.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005215

RESUMO

To further our understanding of the change in association between lignin and carbohydrates after kraft pulping, isotope-labeled kraft pulp (KP) was prepared using 13C and D double-isotope-labeled wheat straw, and it was subjected to enzymatic hydrolysis and ionic liquid treatment to explore the linkages between lignin and carbohydrate complexes in wheat straw. Isotope abundance determination showed that 13C and D abundances in the experimental groups were substantially higher than those in the control group, indicating that the injected exogenous coniferin-[α-13C], coniferin-[γ-13C], and d-glucose-[6-D2] were effectively absorbed and metabolized during wheat internode growth. Solid-state CP/MAS 13C-NMR spectroscopy showed that lignin was mainly linked to polysaccharides via acetal, benzyl ether, and benzyl ester bonds. Kraft pulp (KP) from the labeled wheat straw was degraded by cellulase. The obtained residue was fractionated using the ionic liquid DMSO/TBAH to separate the cellulose-lignin complex (KP-CLC) and xylan-lignin complex (KP-XLC). X-ray diffractometer determination showed that the KP-CLC regenerated cellulose type II from type I after the ionic liquid conversion. The 13C-NMR spectrum of Ac-En-KP-CLC showed that the cellulose-lignin complex structure was chemically bonded between the lignin and cellulose through acetal and benzyl ether bonds. The 13C-NMR spectrum of En-KP-XLC showed a lignin-hemicellulose complex structure, wherein lignin and xylan were chemically bonded by benzyl ether and acetal bonds. These results indicate that the cross-linking between lignin and carbohydrates exists in lignocellulosic fibers even after kraft pulping.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Triticum/química , Xilanos , Acetais , Celulose/química , Isótopos , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA