Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 225(12): 2163-2166, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35137129

RESUMO

Clinical research to achieve antiretroviral therapy-free remission requires quantitative assays of the HIV-1 reservoir. Intact proviral DNA (IPD) measurement has greater throughput than the quantitative viral outgrowth assay (QVOA). In 25 individuals with well-documented long-term viral suppression, IPD levels and infectious units per million CD4+ T cells by QVOA strongly correlated (r = 0.59, P = .002), and IPD correlated with total cell-associated HIV-1 DNA and cell-associated HIV-1 RNA (r = 0.62 and r = 0.59, P ≤ .002). IPD may provide an accessible marker of inducible replication-competent virus, total numbers of infected cells, and cellular expression of HIV-1 RNA.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Provírus/genética , RNA , Carga Viral , Latência Viral
2.
Methods Mol Biol ; 2407: 333-356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985674

RESUMO

The role of CD4+ T cells in HIV infection and the latent reservoir, that is, latently infected cells that harbor replication competent virus, has been rigorously assessed. We have previously reported a quantitative viral outgrowth assay (QVOA) for SIV that demonstrated the frequency of latently infected CD4+ T cells is approximately 1 in a million cells, similar to that of HIV infected individuals on ART. However, the frequency of productively infected monocytes in blood and macrophages in tissues has not been similarly studied. Myeloid cells are infected during acute HIV and SIV infection; however, unlike lymphocytes, they are resistant to the cytopathic effects of the virus. Moreover, tissue-resident macrophages have the ability to self-renew and persist in the body for months to years. Thus, tissue macrophages, once infected, have the characteristics of a stable viral reservoir. A better understanding of the number of productively infected macrophages is critical to understanding the role of infected myeloid cells as a viral reservoir. In order to assess the functional latent reservoir. we have developed specific QVOAs for monocytes in blood, and macrophages in spleen, BAL and brain, which are described in detail in this chapter.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Humanos , Macaca mulatta , Células Mieloides , Carga Viral , Latência Viral , Replicação Viral
3.
J Virus Erad ; 7(2): 100043, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136266

RESUMO

The quantitative viral outgrowth assay (qVOA) is the gold standard for measuring inducible, replication-competent HIV-1. Using MOLT4-R5 and SupT1-R5 cell lines instead of allogeneic blasts and HIV-1 RNA detection rather than p24 enzyme-immunoassay (EIA) has been proposed to improve the sensitivity of the qVOA. It is unclear, however, how these alternative approaches affect qVOA performance. We compared three qVOAs methods across 15 persons with HIV-1 on suppressive antiretroviral therapy and found that the MOLT4-R5 method yielded a significantly higher proportion of p24-positive wells (42%) than both the allogeneic blast (29%) and SupT1-R5 (32%) assays. Additionally, 5 of 7 qVOAs that were negative by p24 EIA showed viral outgrowth by HIV-1 RNA quantification (>10-fold increase within 7 days). These findings reveal the potential for underestimation of the latent, inducible reservoir by qVOA depending on the target cells used and the measure of viral outgrowth. Use of MOLT4-R5 cells with both p24 EIA and HIV-1 RNA to detect viral outgrowth was the most sensitive method.

4.
J Infect Dis ; 223(12 Suppl 2): 13-21, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586775

RESUMO

The latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting CD4+ T cells is a major barrier to cure. The dimensions of the reservoir problem can be defined with 2 assays. A definitive minimal estimate of the frequency of latently infected cells is provided by the quantitative viral outgrowth assay (QVOA), which detects cells that can be induced by T-cell activation to release infectious virus. In contrast, the intact proviral DNA assay (IPDA) detects all genetically intact proviruses and provides a more accurate upper limit on reservoir size than standard single-amplicon polymerase chain reaction assays which mainly detect defective proviruses. The frequency of cells capable of initiating viral rebound on interruption of antiretroviral therapy lies between the values produced by the QVOA and the IPDA. We argue here that the 1-2-log difference between QVOA and IPDA values in part reflects that the fact that many replication-competent proviruses are not readily induced by T-cell activation. Findings of earlier studies suggest that latently infected cells can be activated to proliferate in vivo without expressing viral genes. The proliferating cells nevertheless retain the ability to produce virus on subsequent stimulation. The low inducibility of latent proviruses is a major problem for the shock-and-kill strategy for curing HIV-1 infection, which uses latency-reversing agents to induce viral gene expression and render infected cells susceptible to immune clearance. The latency-reversing agents developed to date are much less effective at reversing latency than T-cell activation. Taken together, these results indicate that HIV-1 eradication will require the discovery of much more effective ways to induce viral gene expression.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Provírus/fisiologia , Latência Viral , Animais , Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Ativação Linfocitária , Provírus/efeitos dos fármacos , Provírus/genética , Replicação Viral
5.
J Infect Dis ; 224(1): 92-100, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33216132

RESUMO

BACKGROUND: The replication-competent human immunodeficiency virus (HIV) reservoir is the major barrier to cure. The quantitative viral outgrowth assay (QVOA), the gold-standard method to quantify replication-competent HIV, is resource intensive, which limits its application in large clinical trials. The intact proviral DNA assay (IPDA) requires minimal cell input relative to QVOA and quantifies both defective and intact proviral HIV DNA, the latter potentially serving as a surrogate marker for replication-competent provirus. However, there are limited cross-sectional and longitudinal data on the relationship between IPDA and QVOA measurements. METHODS: QVOA and IPDA measurements were performed on 156 resting CD4 T-cell (rCD4) samples from 83 antiretroviral therapy-suppressed HIV-positive participants. Longitudinal QVOA and IPDA measurements were performed on rCD4 from 29 of these participants. RESULTS: Frequencies of intact, defective, and total proviruses were positively associated with frequencies of replication-competent HIV. Longitudinally, decreases in intact proviral frequencies were strikingly similar to that of replication-competent virus in most participants. In contrast, defective proviral DNA frequencies appeared relatively stable over time in most individuals. CONCLUSIONS: Changes in frequencies of IPDA-derived intact proviral DNA and replication-competent HIV measured by QVOA are similar. IPDA is a promising high-throughput approach to estimate changes in the frequency of the replication-competent reservoir.


Assuntos
Antirretrovirais/uso terapêutico , DNA Viral/análise , HIV/isolamento & purificação , Provírus/isolamento & purificação , Adulto , Estudos Transversais , Feminino , HIV/efeitos dos fármacos , HIV/crescimento & desenvolvimento , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Provírus/crescimento & desenvolvimento , Estudos Retrospectivos
6.
J Infect Dis ; 224(7): 1209-1218, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32147687

RESUMO

BACKGROUND: Evaluations of human immunodeficiency virus (HIV) curative interventions require reliable and efficient quantification of replication-competent latent reservoirs. The "classic" quantitative viral outgrowth assay (QVOA) has been regarded as the reference standard, although prohibitively resource and labor intensive. We compared 6 "next-generation" viral outgrowth assays, using polymerase chain reaction or ultrasensitive p24 to assess their suitability as scalable proxies for QVOA. METHODS: Next-generation QVOAs were compared with classic QVOA using single leukapheresis-derived samples from 5 antiretroviral therapy-suppressed HIV-infected participants and 1 HIV-uninfected control; each laboratory tested blinded batches of 3 frozen and 1 fresh sample. Markov chain Monte Carlo methods estimated extra-Poisson variation at aliquot, batch, and laboratory levels. Models also estimated the effect of testing frozen versus fresh samples. RESULTS: Next-generation QVOAs had similar estimates of variation to QVOA. Assays with ultrasensitive readout reported higher infectious units per million values than classic QVOA. Within-batch testing had 2.5-fold extra-Poisson variation (95% credible interval [CI], 2.1-3.5-fold) for next-generation assays. Between-laboratory variation increased extra-Poisson variation to 3.4-fold (95% CI, 2.6-5.4-fold). Frozen storage did not substantially alter infectious units per million values (-18%; 95% CI, -52% to 39%). CONCLUSIONS: The data offer cautious support for use of next-generation QVOAs as proxies for more laborious QVOA, while providing greater sensitivities and dynamic ranges. Measurement of latent reservoirs in eradication strategies would benefit from high throughput and scalable assays.


Assuntos
Infecções por HIV , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Latência Viral , Replicação Viral , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos , Estudos de Casos e Controles , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV , HIV-1/isolamento & purificação , Humanos , Leucaférese , Carga Viral , Replicação Viral/fisiologia
7.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33239444

RESUMO

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Replicação Viral/imunologia , Adulto , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Transfusão de Sangue Autóloga/métodos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Terapia Combinada/métodos , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/isolamento & purificação , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/uso terapêutico , Leucaférese , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
8.
Front Immunol ; 11: 1971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849659

RESUMO

Quantifying the inducible HIV reservoir provides an estimate of the frequency of quiescent HIV-infected cells in humans as well as in animal models, and can help ascertain the efficacy of latency reversing agents (LRAs). The quantitative viral outgrowth assay (QVOA) is used to measure inducible, replication competent HIV and generate estimations of reservoir size. However, traditional QVOA is time and labor intensive and requires large amounts of lymphocytes. Given the importance of reproducible and accurate assessment of both reservoir size and LRA activity in cure strategies, efforts to streamline the QVOA are of high priority. We developed a modified QVOA, the Digital ELISA Viral Outgrowth or DEVO assay, with ultra-sensitive p24 readout, capable of femtogram detection of HIV p24 protein in contrast to the picogram limitations of traditional ELISA. For each DEVO assay, 8-12 × 106 resting CD4 + T cells from aviremic, ART-treated HIV + participants are plated in limiting dilution and maximally stimulated with PHA, IL-2 and uninfected allogeneic irradiated PBMC. CD8-depleted PHA blasts from an uninfected donor or HIV-permissive cells (e.g., Molt4/CCR5) are added to the cultures and virus allowed to amplify for 8-12 days. HIV p24 from culture supernatant is measured at day 8 by Simoa (single molecule array, ultra-sensitive p24 assay) confirmed at day 12, and infectious units per million CD4 + T cells (IUPM) are calculated using the maximum likelihood method. In all DEVO assays performed, HIV p24 was detected in the supernatant of cultures as early as 8 days post stimulation. Importantly, DEVO IUPM values at day 8 were comparable or higher than traditional QVOA IUPM values obtained at day 15. Interestingly, DEVO IUPM values were similar with or without the addition of allogeneic CD8-depleted target PHA blasts or HIV permissive cells traditionally used to expand virus. The DEVO assay uses fewer resting CD4 + T cells and provides an assessment of reservoir size in less time than standard QVOA. This assay offers a new platform to quantify replication competent HIV during limited cell availability. Other potential applications include evaluating LRA activity, and measuring clearance of infected cells during latency clearance assays.


Assuntos
Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/fisiologia , Carga Viral , Replicação Viral , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/imunologia , Humanos , Sensibilidade e Especificidade
9.
Front Microbiol ; 10: 2878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921056

RESUMO

A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.

10.
Curr Protoc Cell Biol ; 82(1): e64, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30265439

RESUMO

The major barrier to eradicating human immunodeficiency virus-1 (HIV) infection is the generation and extended survival of HIV reservoirs. In order to eradicate HIV infection, it is essential to detect, quantify, and characterize circulating and tissue-associated viral reservoirs in infected individuals. Currently, PCR-based technologies and Quantitative Viral Outgrowth Assays (Q-VOA) are the gold standards to detect viral reservoirs. However, these methods are limited to detecting circulating viral reservoirs, and it has been shown that they misrepresent the size of the reservoirs, largely because they detect only one component of the HIV life cycle and are unable to detect viral reservoirs in tissues. Here, we described the use of multiple detection systems to identify integrated HIV DNA or viral mRNA and several HIV proteins in circulating and tissue reservoirs using improved staining and microscopy techniques. We believe that this imaging-based approach for detecting HIV reservoirs will lead to breakthroughs necessary to eradicate these reservoirs. © 2018 by John Wiley & Sons, Inc.


Assuntos
Reservatórios de Doenças/virologia , HIV/isolamento & purificação , Microscopia , Animais , DNA Viral/análise , Proteína do Núcleo p24 do HIV/análise , Haplorrinos , Proteínas do Vírus da Imunodeficiência Humana/análise , Humanos , Camundongos , RNA Mensageiro/análise
11.
J Neuroimmune Pharmacol ; 14(1): 23-32, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30167896

RESUMO

Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies. Graphical Abstract.


Assuntos
Encéfalo/virologia , Infecções por HIV/virologia , Macrófagos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Latência Viral/fisiologia , Animais , HIV/fisiologia , Humanos , Vírus da Imunodeficiência Símia/fisiologia
12.
Adv Exp Med Biol ; 1075: 265-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30030797

RESUMO

In order to determine if an eradication strategy for HIV is effective, it will be important to measure persistent replication-competent virus, the current barrier to a cure. Various assays are available that measure persistent virus, each with advantages and disadvantages that must be balanced in order to select the best assay for the experimental aim. Assays of free virus do not measure the latent form of the virus but can be utilised in conjunction with other assays in order to better understand HIV persistence on ART. The quantitative viral outgrowth assay (QVOA) is the gold standard assay for measuring persistent replication-competent virus, but it, along with assays that vary the classical QVOA method, underestimates the frequency of latently infected cells in blood due to the presence of non-induced yet intact and replication-competent proviruses. Assays that quantify or sequence specific genomic regions of HIV overestimate the size of the reservoir as they are unable to distinguish between intact and defective virus. As an alternative, sequencing the full-length integrated genome can better distinguish replication-competent provirus, but these methods may be expensive and time-consuming. Novel assays, and the application of these assays to novel questions, will be key to the development of future curative therapies for HIV.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Viremia/tratamento farmacológico , Virologia/métodos , Latência Viral , Fármacos Anti-HIV/farmacologia , Células Sanguíneas/virologia , Linfócitos T CD4-Positivos/virologia , Líquido Cefalorraquidiano/virologia , DNA Complementar/análise , DNA Viral/análise , Farmacorresistência Viral , Previsões , Genoma Viral , Infecções por HIV/sangue , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , HIV-1/fisiologia , Humanos , Células Mieloides/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de DNA , Análise de Sequência de RNA , Carga Viral , Viremia/virologia , Replicação Viral
13.
J Neurovirol ; 24(2): 204-212, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28975505

RESUMO

Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.


Assuntos
Antivirais/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/imunologia , Complexo AIDS Demência/fisiopatologia , Complexo AIDS Demência/virologia , Animais , Terapia Antirretroviral de Alta Atividade , Sistema Nervoso Central/virologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/virologia , Humanos , Macaca nemestrina , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia , Carga Viral/efeitos dos fármacos , Latência Viral/fisiologia
14.
Retrovirology ; 14(1): 52, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157283

RESUMO

Sensitive assays are needed for the detection of residual viral reservoirs in HIV-1-infected subjects on suppressive combination antiretroviral therapy regimens to determine whether eradication strategies are effective. Mouse viral outgrowth assays have recently been developed and have the potential to be more sensitive than traditional in vitro quantitative viral outgrowth assays. In this article we describe these assays and review several studies that have used them to measure the latent reservoir.


Assuntos
Linfócitos T CD4-Positivos/virologia , Reservatórios de Doenças/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Latência Viral , Animais , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , HIV-1/isolamento & purificação , Humanos , Plasma/virologia
15.
Virology ; 507: 135-139, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28432928

RESUMO

Assays that can verify full viral eradication are essential in the context of achieving a cure for HIV/AIDS. In vitro quantitative viral out growth assays (qVOA) are currently the gold standard for measuring latent HIV-1 but these assays often fail to detect very low levels of replication-competent virus. Here we investigated an alternative in vivo approach for sensitive viral detection using humanized mice (hmVOA). Peripheral blood CD4+ T cell samples from HIV subjects on stable ART with undetectable viral loads by RT-PCR were first assayed by in vitro qVOA. Corresponding patient samples in which no virus was detected by qVOA were injected into humanized mice to allow viral outgrowth. Of the five qVOA virus negative samples, four gave positive viral outgrowth in the hmVOA assay suggesting that it is more sensitive in detecting latent HIV-1.


Assuntos
Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Carga Viral , Latência Viral , Animais , Fármacos Anti-HIV/administração & dosagem , Linfócitos T CD4-Positivos/virologia , Modelos Animais de Doenças , Feminino , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Carga Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
16.
Curr HIV/AIDS Rep ; 14(2): 72-81, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28401492

RESUMO

PURPOSE OF REVIEW: Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. RECENT FINDINGS: The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.


Assuntos
Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/fisiologia , Latência Viral , Animais , Fármacos Anti-HIV/uso terapêutico , Antivirais/uso terapêutico , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Camundongos , Replicação Viral
17.
Methods Mol Biol ; 1354: 265-79, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26714718

RESUMO

Persistence of latent virus represents a major barrier to eradicating HIV even in the current antiretroviral therapy era. A critical limitation to eliminating these viral reservoirs is the lack of reliable methods to detect, quantify, and characterize cells harboring low levels of virus. However, recent work of several laboratories indicates that PCR and viral amplification based technologies underestimate or overestimate the size of the reservoirs. Thus, new technologies and methodologies to detect, quantify, and characterize these viral reservoirs are necessary to monitor and eradicate HIV. Recent developments in imaging technologies have enabled the development or improvement of detection protocols and have facilitated the identification and quantification of several markers with exquisite resolution. In the context of HIV, we developed new protocols for the detection of low amounts of viral proteins. In this chapter, we describe several antibody-based technologies for signal amplification to improve and detect low amounts of HIV proteins in cells, tissues, and other biological samples. The improvement in these techniques is essential to detect viral reservoirs and to design strategies to eliminate them.


Assuntos
Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Proteínas Virais/análise , Latência Viral , Biotinilação , Ensaio de Imunoadsorção Enzimática/métodos , Corantes Fluorescentes/química , HIV-1/fisiologia , Técnicas de Preparação Histocitológica/métodos , Humanos , Imunoconjugados/química , Microscopia Confocal/métodos
18.
J Infect Dis ; 212(9): 1387-96, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25883388

RESUMO

BACKGROUND: Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. METHODS: Peripheral blood mononuclear cells or purified CD4(+) T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8(+) T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody. RESULTS: With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA. CONCLUSIONS: Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads.


Assuntos
Infecções por HIV/diagnóstico , HIV-1/isolamento & purificação , Carga Viral , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , HIV-1/crescimento & desenvolvimento , Humanos , Interleucina-2/sangue , Leucócitos Mononucleares/virologia , Macaca , Masculino , Camundongos , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/isolamento & purificação , Viremia/veterinária
19.
J Infect Dis ; 212(9): 1361-5, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25877550

RESUMO

The quantitative viral outgrowth assay (QVOA) provides a precise minimal estimate of the reservoir of resting CD4(+) T-cell infection (resting cell infection [RCI]). However, the variability of RCI over time during antiretroviral therapy (ART), relevant to assess potential effects of latency-reversing agents or other interventions, has not been fully described. We performed QVOA on resting CD4(+) T cells obtained via leukapheresis from 37 human immunodeficiency virus (HIV)-infected patients receiving stable suppressive ART for a period of 6 years. Patients who started ART during acute (n = 17) or chronic (n = 20) HIV infection were studied once HIV RNA levels were <50 copies/mL for ≥ 6 months. Using random effects analysis of 160 RCI measurements, we found that RCI declined significantly over time (P < .001), with an estimated mean half-life of 3.6 years (95% confidence interval, 2.3-8.1 years), remarkably consistent with findings of prior studies. There was no evidence of more rapid decay in acute versus chronic HIV infection (P = .99) for patients suppressed ≥ 6 months. RCI was reliably estimated with longitudinal measurements generally showing < 2-fold variation from the previous measure. When QVOA is performed in this format, RCI decreases of >6-fold were rare. We suggest that a 6-fold decline is a relevant threshold to reliably identify effects of antilatency interventions on RCI.


Assuntos
HIV-1/isolamento & purificação , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Doença Aguda , Adulto , Idoso , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/virologia , Doença Crônica , Estudos de Avaliação como Assunto , Infecções por HIV/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Viremia/tratamento farmacológico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA