Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.021
Filtrar
1.
Int J Biometeorol ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356329

RESUMO

Extreme climate events have increased in terms of their amplitudes, frequency and severity, greatly affecting ecosystem functions and the balance of the global carbon cycle. However, there are still uncertainties about how extreme climate change will affect tree growth. This study characterized the responses of tree growth to extreme climate on the northeastern Tibetan Plateau from 2000 to 2020. Meanwhile, a back propagation neural network was used to predict tree growth trends under two future emission scenarios from 2020 to 2050. This study revealed that: (1) the tree-ring width index (RWI) showed a decreasing trend (- 0.04/decade) in the eastern region, but the enhanced vegetation index (EVI) showed an increasing trend (0.05/decade) from 2000 to 2020. While both RWI and EVI in the middle and western regions showed increasing trends. (2) The responses of RWI and EVI to extreme climate were regionally asymmetric. In the eastern region, extreme precipitation inhibited tree radial growth, while extreme warm nights promoted tree canopy growth. In two other regions, both extreme precipitation and extreme warm nights promoted tree growth. (3) The model predicts that there was no significant change in RWI and EVI in the western region, but both RWI and EVI showed an increasing trend in the middle and eastern regions under the low emission scenario. Under the high emission scenario, the growth of tree stem and canopy in all three regions shows a general decreasing trend. The results of this study both improved the understanding of the differences in carbon allocation between tree stem (RWI) and canopy (EVI) and identified vulnerability thresholds for tree populations.

2.
Microbiol Immunol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360386

RESUMO

Avian metaavulavirus 8 (AMAV-8), formerly known as avian paramyxovirus 8 (APMV-8), has been detected sporadically in wild birds worldwide since it was first identified in a Canadian goose in 1976. However, the presence of AMAV-8 in birds has never been reported in China. To understand the epidemiological situation of AMAV-8 and its ability to infect chickens, we conducted a surveillance study and in vivo analysis of the AMAV-8 isolate identified in total of 14,909 clinical samples collected from wild and domestic birds from 2014 to 2022 in China. However, in 2017, only one AMAV-8 virus (Y7) was successful isolated from the fresh droppings of a migratory swan goose in Qinghai Lake in Northwest China. Thereafter, we report the complete genome sequence of the Y7 strain with a genome length of 15,342 nucleotides and the Y7 isolate was genetically closely-related to wild bird-origin AMAV-8 viruses previously circulated in the United States, Japan, and Kazakhstan. Furthermore, AMAV-8 infections of one-day-old specific pathogen-free (SPF) chicks did not induce any clinical signs over the entire observation period but was associated with viral shedding for up to 8 days. Interestingly, although all birds infected with the Y7 strain seroconverted within the first week of infection, virus replication was only detected in the trachea but not in other tissues such as the brain, lung, or heart. Here, we report the complete genome, genetic and biological characterization, replication and pathogenicity analysis in vivo and first detection of AMAV-8 in China.

3.
Sci Rep ; 14(1): 21945, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304656

RESUMO

The establishment of soil geochemical baseline and heavy metal pollution assessment in the Qinghai-Tibet Plateau is of great significance for guiding environmental management in the high-cold and high-altitude regions. A total of 126 topsoil samples (0-20 cm) were collected and the contents of Cu, Pb, Zn, Ni, Cr, Cd, As and Hg were determined in the Sabaochaqu basin of the Tuotuo River, the source of the Yangtze River, in the Tibetan Plateau. The baseline values of 8 heavy metals were determined by mathematical statistics, iterative 2times standard deviation method, cumulative frequency and reference element standardization, and the soil heavy metal pollution in the study area was assessed by enrichment factor method and pollution index method. The results showed that the average contents of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were 31.84, 0.29, 66.07, 17.35, 0.021, 27.86, 49.35 and 88.56 mg/kg, respectively. Baseline values were 22.24, 0.217, 64.16, 15.69, 0.0191, 26.46, 34.91, and 68.62 mg/kg, respectively. There is a great difference between the baseline value of soil heavy metals in study area and the Xizang soil background value, especially the baseline value of Cd was 2.68 times of its background value. The results of the pollution evaluation based on the baseline values showed that the 8 heavy metals were slightly enriched, and the overall pollution status was light pollution, and measures should be taken to control and manage them. The research results can provide a reference value for the evaluation of soil heavy metal pollution in the source region of the Yangtze River, and also provide a theoretical basis for the construction of soil heavy metal baseline values in similar high-cold and high-altitude regions.

4.
MycoKeys ; 108: 351-369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318423

RESUMO

Two new species; Lobothalliacrenulata Lun Wang & Y. Y. Zhang, L.lobulata Lun Wang & Y. Y. Zhang and one new variety; L.subdiffractavar.rimosa Lun Wang & Y. Y. Zhang, are reported from China and described, based on morphological, chemical and molecular characters. Phylogenetic analyses showed that these new taxa form monophyletic groups. Lobothalliacrenulata and L.lobulata, together with L.hydrocharis, L.radiosa and L.recedens, form a well-supported clade, whereas L.subdiffractavar.rimosa is nested within the samples of L.subdiffracta. Lobothalliacrenulata is characterised by its placodioid thallus, thickly pruinose upper surface with a rimose appearance, aspicilioid to lecanorine apothecia with a crenate thalline margin and concave, black and pruinose discs. Lobothallialobulata is characterised by its placodioid thallus, pruinose upper surface with lobules, aspicilioid when immature, lecanorine to zeorine apothecia at maturity and concave to plane, dark brown, shiny and epruinose discs. Lobothalliasubdiffractavar.rimosa is characterised by its areolate thallus, rimose and pruinose upper surface, lecanorine apothecia and slightly concave to plane, black and pruinose discs. Secondary metabolites were not detected in the two new species nor the new variety. A key is provided for the species of Lobothallia in China.

5.
Sci Total Environ ; 954: 176404, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306133

RESUMO

There is increasing evidence that forage nutrition quality is becoming more unstable over time due to climate change and/or human activities. However, there are limited numbers of studies at the regional scale exploring the spatiotemporal patterns and driving mechanisms of temporal stability of nutrition quality. Therefore, this study quantified the spatiotemporal patterns of temporal stability of forage nutrition quality in alpine grasslands of the Qinghai-Tibet Plateau under the singular or combined influences of climate change and human activities in 2000-2020. Temporal stability of forage nutrition quality displayed obvious spatiotemporal patterns, with human activities altering the impact of climate change on these spatiotemporal patterns. Under combined effects of climate change and human activities, spatial average values of temporal stability of crude protein (CP), ash (Ash), ether extract (EE), water-soluble carbohydrates (WSC), acid detergent fiber (ADF), and neutral detergent fiber (NDF) decreased by 13.54 %, 7.40 %, 9.02 %, 17.78 %, 9.20 %, and 7.28 % across the whole grasslands, respectively. However, 39.43 %, 45.72 %, 42.98 %, 37.82 %, 42.27 %, and 43.50 % areas showed increasing trends for the temporal stability of CP, Ash, EE, WSC, ADF and NDF, respectively. Climate change predominated 46.15 %, 44.46 %, 44.22 %, 47.32 %, 28.68 %, and 45.31 % of the relative change of temporal stability of CP, Ash, EE, WSC, ADF, and NDF, but human activities had higher influence for 53.82 %, 55.53 %, 55.77 %, 52.55 %, 71.30 %, and 54.68 % of grasslands, respectively. Therefore, the spatial patterns of temporal stability of forage nutrition quality were shifting towards homogeneity, with an overall decrease in temporal stability but localized increases in alpine grasslands of the Qinghai-Tibet Plateau. The effects of climate change and human activities on forage nutrition quality were not always synergistic. The trade-off between nutrition quality and its temporal stability did not always exist, but varied with geographic position.

6.
Heliyon ; 10(16): e35860, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224369

RESUMO

Amphibian populations are declining globally due to climate change. However, the impacts on the geographic distribution of amphibians on the Qinghai-Tibetan Plateau (QTP), a global biodiversity hotspot with 112 species of amphibians that is sensitive to global climate change, remains unclear. In this study, MaxEnt and barycentre shift analyses were performed to reveal the impact of climate change on the potential future habitats of amphibians on the QTP using the BCC-CSM2-MR global climate model of the Coupled Model Intercomparison Projects Phase 6 (CMIP6) climate pattern with three shared socioeconomic pathways (SSP). In contrast to the widespread decline in the amphibian population, the future scenarios projected an increase in most amphibian habitats on the QTP, accompanied by migration to higher elevations or latitudes under three climatic projections (SSP 1-2.6, 3-7.0, and 5-8.5). Average annual precipitation was the most crucial environmental variable impacting the future distribution of amphibians. The findings indicate that amphibians would flourish under climate change on the QTP, which is of great significance for the protection of amphibians and biodiversity on the QTP.

7.
Front Cell Dev Biol ; 12: 1431173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224435

RESUMO

During the metamorphosis of anuran amphibians, the tail resorption process is a necessary and crucial change. One subject that has received relatively little or no attention is the expression patterns of proteins and metabolites in the different tail portions during metamorphosis, especially in highland amphibians. The mechanisms of tail resorption in three portions (the tip, middle and root) of the tail were investigated in N. pleskei G43 tadpole based on two omics (proteomic and metabolomic). Integrin αVß3 was found to be high expressed in the distal portion of the tail, which could improve the sensitiveness to thyroid hormones in the distal portion of the tail. Muscle regression displayed a spatial pattern with stronger regression in distal and weaker one in proximal portion. Probably, this stronger regression was mainly performed by the proteases of proteasome from the active translation by ribosomes. The suicide model and murder model coexisted in the tail resorption. Meanwhile, fatty acids, amino acids, pyrimidine, and purine which derived from the breakdown of tissues can be used as building blocks or energy source for successful metamorphosis. Our data improved a better comprehension of the tail resorption mechanisms underlying the metamorphism of N. pleskei tadpole through identifying important participating proteins and metabolites.

8.
Environ Sci Technol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327447

RESUMO

Aerosol particles originating from the Qinghai-Tibet Plateau (QTP) readily reach the free troposphere, potentially affecting global radiation and climate. Although new particle formation (NPF) is frequently observed at such high altitudes, its precursors and their underlying chemistry remain poorly understood. This study presents direct observational evidence of anthropogenic influences on biogenic NPF on the southeastern QTP, near the Himalayas. The mean particle nucleation rate (J1.7) is 2.6 cm-3 s-1, exceeding the kinetic limit of sulfuric acid (SA) nucleation (mean SA: 2.4 × 105 cm-3). NPF is predominantly driven by highly oxygenated organic molecules (HOMs), possibly facilitated by low SA levels. We identified 1538 ultralow-volatility HOMs driving particle nucleation and 764 extremely low-volatility HOMs powering initial particle growth, with mean total concentrations of 1.5 × 106 and 3.7 × 106 cm-3, respectively. These HOMs are formed by atmospheric oxidation of biogenic precursors, unexpectedly including sesquiterpenes and diterpenes alongside the commonly recognized monoterpenes. Counterintuitively, over half of HOMs are organic nitrates, mainly produced by interacting with anthropogenic NOx via RO2+NO terminations or NO3-initiated oxidations. These findings advance our understanding of NPF mechanisms in this climate-sensitive region and underscore the importance of heavy terpene and NOx-influenced chemistry in assessing anthropogenic-biogenic interactions with climate feedbacks.

9.
Animals (Basel) ; 14(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39335268

RESUMO

In recent years, there has been growing concern about the condition of snow leopards. The snow leopard (Panthera uncia), an apex predator of alpine ecosystems, is essential for the structural and functional stability of ecosystems. Monitoring of snow leopards' activity patterns based on camera traps in the Qilian Mountain National Park (Qinghai area) between August 2020 to October 2023 was performed. The results showed that autumn is the peak period of snow leopard activity, especially in September when the frequency of activity is the highest, and there is one peak in the frequency of snow leopard daily activity in the time period of 18:00-22:00, while the highest overlap of the daily activity curves of snow leopards in different months was from spring to autumn (Δ = 0.97), and there were significant differences in diurnal activity rhythm between spring and autumn (p = 0.002). Snow leopards prefer sunny days, and they tend to be active at temperatures of -10-9 °C. Our research aimed to uncover the activity patterns of snow leopards at different scales within the study area and provide data for further studies on snow leopards and other wildlife by researchers. This study can be used to gain a comprehensive understanding of the ecological characteristics of snow leopards and to assess their habitats, and it will also serve as a reference for the local wildlife management authorities in formulating snow leopard conservation measures.

10.
Ecol Evol ; 14(9): e70270, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279803

RESUMO

Grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) are the most damaging pests to alpine meadows in the Qinghai-Tibetan Plateau (QTP). Here, we conducted extensive sampling from 39 geographic populations covering almost the entire distribution of the eight QTP Gynaephora (Hübner) species to investigate phylogeographic patterns and speciation based on two mitochondrial genes (COI and ND5). A total of 40 haplotypes were detected in the 39 populations, with >70% of all haplotypes not shared between populations. The monophyletic QTP Gynaephora migrated from non-QTP regions during the Pliocene, corresponding to the uplift of the QTP, suggesting a mode of transport into the QTP. Among the eight QTP Gynaephora species described by morphological characteristics, two species (G. alpherakii and G. menyuanensis) were recovered as monophyletic groups (Clades B and C), while the remaining six formed two monophyletic clades: Clade A (G. qinghaiensis, G. jiuzhiensis, and G. qumalaiensis) and Clade D (G. aureata, G. ruoergensis, and G. minora). These results suggested that the number of the QTP Gynaephora species may be overestimated and further studies based on both morphological and nuclear gene data are needed. Genetic differentiation and speciation of the QTP Gynaephora were likely driven by the QTP uplifts and associated climate fluctuations during the Pleistocene, indicated by divergence time estimation, suggesting that isolation and subsequent divergence was the dominant mode of speciation. The Sanjiangyuan region (i.e., Clade A, characterized by high genetic diversity) may have been a glacial refugium of the QTP Gynaephora, as supported by analyses of gene flow and biogeography. High levels of genetic diversity were found in QTP Gynaephora, without population expansion, which may explain the high-altitude adaptation and outbreaks of grassland caterpillars in alpine meadows of the QTP. This study provides the largest phylogeographic analysis of QTP Gynaephora and improves our understanding of the diversity and speciation of QTP insects.

11.
Sci Total Environ ; 951: 175667, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168329

RESUMO

The Heihe River Basin, located in the northeastern part of the Qinghai-Tibetan Plateau, is part of the perennial permafrost belt of the Qilian Mountains. Recent observations indicate ongoing permafrost degradation in this region. This study utilizes data from 255 observations provided by Sentinel-1 satellites, MODIS Land Surface Temperature, SMAP-L4 soil moisture data, GNSS measurements, and in situ measurement. We introduced Variational Bayesian independent Component Analysis (VB-ICA) in multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) processing to investigate the spatial-temporal characteristics of surface deformation and permafrost active layer thickness (ALT) variations. The analysis demonstrates strong agreement with borehole data and offers improvements over traditional methodologies. The maximum value of ALT in the basin is found to be 5.7 m. VB-ICA effectively delineates seasonal deformations related to the freeze-thaw cycles, with a peak seasonal deformation amplitude of 60 mm. Moreover, the seasonal permafrost's lower boundary reaches an elevation of 3700 m, revealing that permafrost is experiencing widespread degradation and associated soil erosion in the high elevation region of The Heihe River Basin. The paper also explores the efficacy of reference point selection and baseline network establishment for employing the InSAR method in monitoring freeze-thaw deformations. The study underscores the InSAR method's adaptability and its importance for interpreting permafrost deformation and related parameters.

12.
Environ Geochem Health ; 46(10): 406, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212763

RESUMO

The Qinghai-Tibet Plateau is particularly vulnerable to the effects of climate change and disturbances caused by human activity. To better understand the interactions between soil nitrogen and sulfur cycles and human activities on the plateau, the distribution characteristics of soil nitrogen and sulfur density and their influencing factors for three soil layers in Machin County at depths of 0-20 cm, 0-100 cm, and 0-180 cm are discussed in this paper. The results indicated that at depths of 0-180 cm, soil nitrogen density in Machin County varied between 1.36 and 16.85 kg/m2, while sulfur density ranged from 0.37 to 4.61 kg/m2. The effects of three factors-geological background, land use status, and soil type-on soil nitrogen and sulfur density were all highly significant (p < 0.01). Specifically, natural factors such as soil type and geological background, along with anthropogenic factors including land use practices and grazing intensity, were identified as decisive in causing spatial variations in soil nitrogen and sulfur density. Machin County on the Tibetan Plateau exhibits natural nitrogen and sulfur sinks; However, it is crucial to monitor the emissions of N2O and SO2 into the atmosphere from areas with high external nitrogen and sulfur inputs and low fertility retention capacities, such as bare land. On this basis, changes in the spatial and temporal scales of the nitrogen and sulfur cycles in soils and their source-sink relationships remain the focus of future research.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Solo , Enxofre , Solo/química , Nitrogênio/análise , Gases de Efeito Estufa/análise , Enxofre/análise , Tibet , Monitoramento Ambiental , Mudança Climática
13.
Biology (Basel) ; 13(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39194534

RESUMO

The nitrogen cycling process in alpine wetlands is profoundly affected by precipitation changes, yet the dynamic response mechanism of denitrifiers to long-term precipitation shifts in the alpine wetland of the Qinghai-Tibet Plateau remains enigmatic. Utilizing high-throughput sequencing analysis of nirS-type functional genes, this study delved into the dynamic response mechanism of nirS-type denitrifiers to precipitation changes in the alpine wetland of Qinghai Lake. The findings revealed that nirS-type denitrifiers in the alpine wetland of Qinghai Lake were primarily Proteobacteria, and Alpha diversity exhibited a negative correlation with the precipitation gradient, with deterministic processes predominating in the community assembly of denitrifying microbes. A 50% increase in rainfall shifted the community assembly process of denitrifiers from deterministic to stochastic. Dominant microflora at the genus level responded significantly to precipitation changes, with aerobic bacteria comprising the majority of differentially abundant taxa (55.56%). As precipitation increased, the complexity of the microbial interaction network decreased, and a 25% reduction in precipitation notably elevated the relative abundance of three key functional groups: chemoheterotrophic, aerobic chemoheterotrophic, and nitrogen fixation. Precipitation notably emerged as the primary regulator of nirS-type denitrifiers in the alpine wetland of Qinghai Lake, accounting for 51% of the variation in community composition. In summary, this study offers a fresh perspective for investigating the ecological processes of nitrogen cycling in alpine ecosystems by examining the diversity and community composition of nirS-type denitrifiers in response to precipitation changes.

14.
Biology (Basel) ; 13(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39194553

RESUMO

Reservoirs are a hotspot for methane emissions, a potent greenhouse gas. However, the microbial basis for methane production in the Qinghai Plateau reservoirs remains unclear. To explore the characteristics of methanogenic communities in reservoir sediments on the northeastern Qinghai Plateau, sediment samples were collected from 18 reservoirs in the Yellow River basin during May 2023 (dry season) and August 2023 (wet season). High-throughput sequencing technology was employed to analyze the community composition, diversity, and co-occurrence network of methanogens. Furthermore, FAPROTAX and Mantel analysis were used to assess the metabolic functions of methanogens and their influencing factors. The results showed that (1) the predominant genera of methanogens were Methanobacterium (28.87%) and Methanosarcina (21.67%). Hydrogenotrophic methanogenesis was the main pathway in the sediments. (2) Significant spatiotemporal differences were observed in the diversity of methanogenic communities (p < 0.05). The composition and diversity of these communities were found to be significantly influenced by temperature, pH, altitude, organic carbon, and total nitrogen (p < 0.05). (3) Methanosarcina, Methanobacterium, and Methanospirillum play crucial roles in maintaining the stability of methanogenic community networks. The co-occurrence network nodes are predominantly positively correlated (99.82%). These results provide data for further studies on carbon cycling in the Qinghai Plateau reservoirs.

15.
Mitochondrial DNA B Resour ; 9(8): 1127-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175481

RESUMO

Thalictrum elegans Wall. ex Royle, a species within the family Ranunculaceae, is mainly distributed along forest margins and grassy slopes at altitudes 2700-4000 m on the Qinghai-Tibetan Plateau. Despite its wide distribution in alpine ecosystems, its genetic diversity remains poorly understood. In this study, we assembled and characterized the complete chloroplast genome of T. elegans, addressing a significant gap in our understanding of its genetic composition. The chloroplast genome is 155,864 base pairs long and contains 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis of 15 representative Thalictrum species revealed that the genus can be classified into three clades. T. elegans along with another nine other species formed the largest monophyletic clade and is most closely related to T. petaloideum and T. foliosum. These findings enhance our understanding of the genetic diversity of T. elegans and contribute to its conservation and utilization.

16.
Emerg Infect Dis ; 30(10): 2135-2139, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39190545

RESUMO

In July 2022, an outbreak of highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b occurred among migratory birds at Qinghai Lake in China. The virus circulated in June, and reassortants emerged after its introduction into the area. Surveillance in 2023 showed that the virus did not establish a stable presence in wild waterfowl.


Assuntos
Migração Animal , Animais Selvagens , Aves , Influenza Aviária , Lagos , Filogenia , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , China/epidemiologia , Aves/virologia , Animais Selvagens/virologia , Lagos/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Surtos de Doenças/veterinária
17.
Appl Environ Microbiol ; 90(9): e0045724, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39150266

RESUMO

The cell size of phytoplankton is an important defining functional trait that can serve as a driver and sentinel of phytoplankton community structure and function. However, the study of the assembly patterns and drivers of phytoplankton metacommunities with different cell sizes has not been widely carried out. In this study, we systematically investigated the biodiversity patterns, drivers, and assembly processes of the three phytoplankton cell sizes (micro: 20-200 µm; nano: 2-20 µm; pico: 0.2-2 µm) in the Za'gya Zangbo River from the source to the estuary using 18S rDNA amplicon sequencing. The results demonstrated that the alpha diversity and co-occurrence network complexity for all three sizes of phytoplankton increased to a peak downstream of the glacier sources and then decreased to the estuary. The nanophytoplankton subcommunity consistently had the highest alpha diversity and co-occurrence network complexity. On the other hand, total beta diversity followed a unimodal trend of decreasing and then increasing from source to estuary, and was dominated by species replacement components. In addition, deterministic processes driven mainly by physiochemical indices (PCIs) and biogenic elements (BGEs) dominated the assembly of micro- and nanophytoplankton subcommunities, whereas stochastic processes driven by geographical factors (GGFs) dominated the assembly of picophytoplankton subcommunities. The results explained the contradictions in previous studies of phytoplankton community assembly processes in highland aquatic ecosystems, elucidating the different contributions of deterministic and stochastic processes, and the complexity of compositional mechanisms in shaping the assembly of micro-, nano-, and picophytoplankton in this highland glacial river. IMPORTANCE: The cell size of phytoplankton is a key life-history trait and key determinant, and phytoplankton of different cell sizes are differentially affected by ecological processes. However, the study of the assembly patterns and drivers of phytoplankton metacommunities with different cell sizes has not been widely carried out. We provide an in-depth analysis of phytoplankton community diversity across three cell sizes in the glacier-fed river, describing how the pattern of phytoplankton communities differs across cell sizes in response to geochemical gradients. The results show that the smaller phytoplankton (picophytoplankton) are relatively more influenced by dispersal-based stochastic processes, whereas larger ones (microphytoplankton and nanophytoplankton) are more structured by selection-based deterministic processes.


Assuntos
Biodiversidade , Fitoplâncton , Rios , Fitoplâncton/fisiologia , Fitoplâncton/classificação , Fitoplâncton/citologia , China , Tamanho Celular , RNA Ribossômico 18S/genética
18.
Front Microbiol ; 15: 1424368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132143

RESUMO

The nitrogen (N) cycle is the foundation of the biogeochemistry on Earth and plays a crucial role in global climate stability. It is one of the most important nutrient cycles in high-altitude lakes. The biogeochemistry of nitrogen is almost entirely dependent on redox reactions mediated by microorganisms. However, the nitrogen cycling of microbial communities in the high-altitude saline lakes of the Qinghai-Tibet Plateau (QTP), the world's "third pole" has not been investigated extensively. In this study, we used a metagenomic approach to investigate the microbial communities in four high-altitude pristine saline lakes in the Altun mountain on the QTP. We observed that Proteobacteria, Bacteroidota, and Actinobacteriota were dominant in these lakes. We reconstructed 1,593 bacterial MAGs and 8 archaeal MAGs, 1,060 of which were found to contain nitrogen cycle related genes. Our analysis revealed that nitrite reduction, nitrogen fixation, and assimilatory nitrate reduction processes might be active in the lakes. Denitrification might be a major mechanism driving the potential nitrogen loss, while nitrification might be inactive. A wide variety of microorganisms in the lake, dominated by Proteobacteria, participate together in the nitrogen cycle. The prevalence of the dominant taxon Yoonia in these lakes may be attributed to its well-established nitrogen functions and the coupled proton dynamics. This study is the first to systematically investigate the structure and nitrogen function of the microbial community in the high-altitude pristine saline lakes in the Altun mountain on the QTP. As such, it contributes to a better comprehension of biogeochemistry of high-altitude saline lakes.

19.
J Environ Manage ; 367: 122055, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111008

RESUMO

With the development of desertification in the Qinghai-Tibet Plateau (QTP), aeolian sand becomes the remarkable local factor affecting the thermal state of permafrost along the Qinghai-Tibet Engineering Corridor (QTEC). In this study, a model experiment was conducted to analyze the impact of thickness and water content of aeolian sand on its thermal effect, and a hydro-thermo-vapor coupling model of frozen soil was carried out to reveal the heat transfer mechanism of the aeolian sand layer (ASL) with different thicknesses and its hydrothermal effect on permafrost. The results indicate that: (1) ASL with the thickness larger than 80 cm has the property of converting precipitation into soil water. The thicker the ASL, the more precipitation infiltrates and accumulates in the soil layer. (2) The cooling effect of ASL on permafrost results from the lower net surface radiation, causing the annual average surface heat flux shifting from heat inflow to heat outflow. The warming effect of ASL on permafrost results from the increasing convective heat accompanying the infiltrated precipitation. (3) As the ASL thickens, the thermal effect of ASL on permafrost gradually shifts from the cooling effect dominated by heat radiation and heat conduction to the warming effect dominated by precipitation infiltration and heat convection. The warming effect of thick ASL on permafrost requires a certain amount of years to manifest, and the critical thickness is suggested to be larger than 120 cm.


Assuntos
Pergelissolo , Tibet , Solo/química , Temperatura Alta
20.
Emerg Microbes Infect ; 13(1): 2392693, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39137298

RESUMO

The discovery of alphacoronaviruses and betacoronaviruses in plateau pikas (Ochotona curzoniae) expanded the host range of mammalian coronavirus (CoV) to a new order - Lagomorpha. However, the diversity and evolutionary relationships of CoVs in these plateau-region-specific animal population remains uncertain. We conducted a five-year longitudinal surveillance of CoVs harboured by pikas around Qinghai Lake, China. CoVs were identified in 33 of 236 plateau pikas and 2 of 6 Gansu pikas (Ochotona cansus), with a total positivity rate of 14.5%, and exhibiting a wide spatiotemporal distribution across seven sampling sites and six time points. Through meta-transcriptomic sequencing and RT-PCR, we recovered 16 near-complete viral genome sequences. Phylogenetic analyses classified the viruses as variants of either pika alphacoronaviruses or betacoronaviruses endemic to plateau pikas from the Qinghai-Tibet Plateau region. Of particular note, the pika-associated betacoronaviruses may represent a novel subgenus within the genus Betacoronavirus. Tissue tropism, evaluated using quantitative real-time PCR, revealed the presence of CoV in the rectal and/or lung tissues, with the highest viral loads at 103.55 or 102.80 RNA copies/µL. Surface plasmon resonance (SPR) assays indicated that the newly identified betacoronavirus did not bind to human or pika Angiotensin-converting enzyme 2 (ACE2) or Dipeptidyl peptidase 4 (DPP4). The findings highlight the ongoing circulation and broadening host spectrum of CoVs among pikas, emphasizing the necessity for further investigation to evaluate their potential public health risks.


Assuntos
Genoma Viral , Lagomorpha , Filogenia , Lagomorpha/virologia , Animais , China/epidemiologia , Estudos Longitudinais , Alphacoronavirus/genética , Alphacoronavirus/isolamento & purificação , Alphacoronavirus/classificação , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Lagos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA