Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14610, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918594

RESUMO

Extracellular vesicles (EVs) are promising natural nanocarriers for the delivery of therapeutic agents. As with any other kind of cell, red blood cells (RBCs) produce a limited number of EVs under physiological and pathological conditions. Thus, RBC-derived extracellular vesicles (RBCEVs) have been recently suggested as next-generation delivery systems for therapeutic purposes. In this paper, we show that thanks to their unique biological and physicochemical features, RBCs can be efficiently pre-loaded with several kinds of molecules and further used to generate RBCEVs. A physical vesiculation method, based on "soft extrusion", was developed, producing an extremely high yield of cargo-loaded RBCEV mimetics. The RBCEVs population has been deeply characterized according to the new guidelines MISEV2023, showing great homogeneity in terms of size, biological features, membrane architecture and cargo. In vitro preliminary results demonstrated that RBCEVs are abundantly internalized by cells and exert peculiar biological effects. Indeed, efficient loading and delivery of miR-210 by RBCEVs to HUVEC has been proven, as well as the inhibition of a known mRNA target. Of note, the bench-scale process can be scaled-up and translated into clinics. In conclusion, this investigation could open the way to a new biomimetic platform for RNA-based therapies and/or other therapeutic cargoes useful in several diseases.


Assuntos
Eritrócitos , Vesículas Extracelulares , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , Eritrócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sistemas de Liberação de Medicamentos , Biomimética/métodos , RNA/metabolismo
2.
Expert Opin Drug Deliv ; 20(7): 921-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249524

RESUMO

INTRODUCTION: We have previously described the preclinical developments in enzyme-loaded red blood cells to be used in the treatment of several rare diseases, as well as in chronic conditions. AREA COVERED: Since our previous publication we have seen further progress in the previously discussed approaches and, interestingly enough, in additional new studies that further strengthen the idea that red blood cell-based therapeutics may have unique advantages over conventional enzyme replacement therapies in terms of efficacy and safety. Here we highlight these investigations and compare, when possible, the reported results versus the current therapeutic approaches. EXPERT OPINION: The continuous increase in the number of new potential applications and the progress from the encapsulation of a single enzyme to the engineering of an entire metabolic pathway open the field to unexpected developments and confirm the role of red blood cells as cellular bioreactors that can be conveniently manipulated to acquire useful therapeutic metabolic abilities. Positioning of these new approaches versus newly approved drugs is essential for the successful transition of this technology from the preclinical to the clinical stage and hopefully to final approval.


Assuntos
Sistemas de Liberação de Medicamentos , Eritrócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA