Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39078692

RESUMO

A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump-probe measurements and in investigations of propagation effects and other nonlinear phenomena.

2.
Chemistry ; 30(46): e202400755, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860741

RESUMO

Historically, cerium has been attractive for pharmaceutical and industrial applications. The cerium atom has the unique ability to cycle between two chemical states (Ce(III) and Ce(IV)) and drastically adjust its electronic configuration: [Xe] 4f15d16s2 in response to a chemical reaction. Understanding how electrons drive chemical reactions is an important topic. The most direct way of probing the chemical and electronic structure of materials is by X-ray absorption spectroscopy (XAS) or X-ray absorption near-edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode. Such measurements at the Ce L3 edge have the advantage of a high penetration depth, enabling in-situ reaction studies in a time-resolved manner and investigation of material production or material performance under specific conditions. But how much do we understand Ce L3 XANES? This article provides an overview of the information that can be extracted from experimental Ce L3 XAS/XANES/HERFD data. A collection of XANES data recorded on various cerium systems in HERFD mode is presented here together with detailed discussions on data analysis and the current status of spectral interpretation, including electronic structure calculations.

3.
PNAS Nexus ; 3(4): pgae100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38736471

RESUMO

Heterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high-Tc cuprates and manganites. A key role is played here by the interfacial CuO2 layer whose distinct properties remain to be fully understood. Here, we study with resonant inelastic X-ray scattering the magnon excitations of this interfacial CuO2 layer. In particular, we show that the underlying antiferromagnetic exchange interaction at the interface is strongly suppressed to J≈70 meV, when compared with J≈130 meV for the CuO2 layers away from the interface. Moreover, we observe an anomalous momentum dependence of the intensity of the interfacial magnon mode and show that it suggests that the antiferromagnetic order is accompanied by a particular kind of orbital order that yields a so-called altermagnetic state. Such a 2D altermagnet has recently been predicted to enable new spintronic applications and superconducting proximity effects.

4.
ACS Nano ; 18(5): 4077-4088, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271616

RESUMO

The metal-hydride-based "topochemical reduction" process has produced several thermodynamically unstable phases across various transition metal oxide series with unusual crystal structures and nontrivial ground states. Here, by such an oxygen (de-)intercalation method we synthesis a samarium nickelate with ordered nickel valences associated with tri-component coordination configurations. This structure, with a formula of Sm9Ni9O22 as revealed by four-dimensional scanning transmission electron microscopy (4D-STEM), emerges from the intricate planes of {303}pc ordered apical oxygen vacancies. X-ray spectroscopy measurements and ab initio calculations show the coexistence of square planar, pyramidal, and octahedral Ni sites with mono-, bi-, and tri-valences. It leads to an intense orbital polarization, charge-ordering, and a ground state with a strong electron localization marked by the disappearance of ligand-hole configuration at low temperature. This nickelate compound provides another example of previously inaccessible materials enabled by topotactic transformations and presents an interesting platform where mixed Ni valence can give rise to exotic phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA