Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 528(11): 1883-1902, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31960432

RESUMO

Some animals have evolved task differentiation among their eyes. A particular example is spiders, where most species have eight eyes, of which two (the principal eyes) are used for object discrimination, whereas the other three pairs (secondary eyes) detect movement. In the ctenid spider Cupiennius salei, these two eye types correspond to two visual pathways in the brain. Each eye is associated with its own first- and second-order visual neuropil. The second-order neuropils of the principal eyes are connected to the arcuate body, whereas the second-order neuropils of the secondary eyes are linked to the mushroom body. We explored the principal- and secondary eye visual pathways of the jumping spider Marpissa muscosa, in which size and visual fields of the two eye types are considerably different. We found that the connectivity of the principal eye pathway is the same as in C. salei, while there are differences in the secondary eye pathways. In M. muscosa, all secondary eyes are connected to their own first-order visual neuropils. The first-order visual neuropils of the anterior lateral and posterior lateral eyes are connected with a second-order visual neuropil each and an additional shared one (L2). In the posterior median eyes, the axons of their first-order visual neuropils project directly to the arcuate body, suggesting that the posterior median eyes do not detect movement. The L2 might function as an upstream integration center enabling faster movement decisions.


Assuntos
Encéfalo/anatomia & histologia , Neurópilo/citologia , Aranhas/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais , Encéfalo/fisiologia , Feminino , Neurópilo/fisiologia , Aranhas/fisiologia , Vias Visuais/fisiologia
2.
J Comp Neurol ; 528(2): 261-282, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376285

RESUMO

Brain centers possessing a suite of neuroanatomical characters that define mushroom bodies of dicondylic insects have been identified in mantis shrimps, which are basal malacostracan crustaceans. Recent studies of the caridean shrimp Lebbeus groenlandicus further demonstrate the existence of mushroom bodies in Malacostraca. Nevertheless, received opinion promulgates the hypothesis that domed centers called hemiellipsoid bodies typifying reptantian crustaceans, such as lobsters and crayfish, represent the malacostracan cerebral ground pattern. Here, we provide evidence from the marine hermit crab Pagurus hirsutiusculus that refutes this view. P. hirsutiusculus, which is a member of the infraorder Anomura, reveals a chimeric morphology that incorporates features of a domed hemiellipsoid body and a columnar mushroom body. These attributes indicate that a mushroom body morphology is the ancestral ground pattern, from which the domed hemiellipsoid body derives and that the "standard" reptantian hemiellipsoid bodies that typify Astacidea and Achelata are extreme examples of divergence from this ground pattern. This interpretation is underpinned by comparing the lateral protocerebrum of Pagurus with that of the crayfish Procambarus clarkii and Orconectes immunis, members of the reptantian infraorder Astacidea.


Assuntos
Anomuros/anatomia & histologia , Evolução Biológica , Encéfalo , Corpos Pedunculados/anatomia & histologia , Animais
3.
J Comp Neurol ; 528(7): 1079-1094, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31621907

RESUMO

Mantis shrimps (Stomatopoda) possess in common with other crustaceans, and with Hexapoda, specific neuroanatomical attributes of the protocerebrum, the most anterior part of the arthropod brain. These attributes include assemblages of interconnected centers called the central body complex and in the lateral protocerebra, situated in the eyestalks, paired mushroom bodies. The phenotypic homologues of these centers across Panarthropoda support the view that ancestral integrative circuits crucial to action selection and memory have persisted since the early Cambrian or late Ediacaran. However, the discovery of another prominent integrative neuropil in the stomatopod lateral protocerebrum raises the question whether it is unique to Stomatopoda or at least most developed in this lineage, which may have originated in the upper Ordovician or early Devonian. Here, we describe the neuroanatomical structure of this center, called the reniform body. Using confocal microscopy and classical silver staining, we demonstrate that the reniform body receives inputs from multiple sources, including the optic lobe's lobula. Although the mushroom body also receives projections from the lobula, it is entirely distinct from the reniform body, albeit connected to it by discrete tracts. We discuss the implications of their coexistence in Stomatopoda, the occurrence of the reniform body in another eumalacostracan lineage and what this may mean for our understanding of brain functionality in Pancrustacea.


Assuntos
Braquiúros/anatomia & histologia , Encéfalo/anatomia & histologia , Neurópilo/citologia , Animais
4.
J Comp Neurol ; 528(10): 1754-1774, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31860126

RESUMO

The compound eye of cockroaches is obligatory for entrainment of the Madeira cockroach's circadian clock, but the cellular nature of its entrainment pathways is enigmatic. Employing multiple-label immunocytochemistry, histochemistry, and backfills, we searched for photic entrainment pathways to the accessory medulla (AME), the circadian clock of the Madeira cockroach. We wanted to know whether photoreceptor terminals could directly contact pigment-dispersing factor-immunoreactive (PDF-ir) circadian pacemaker neurons with somata in the lamina (PDFLAs) or somata next to the AME (PDFMEs). Short green-sensitive photoreceptor neurons of the compound eye terminated in lamina layers LA1 and LA2, adjacent to PDFLAs and PDFMEs that branched in LA3. Long UV-sensitive compound eye photoreceptor neurons terminated in medulla layer ME2 without direct contact to ipsilateral PDFMEs that arborized in ME4. Multiple neuropeptide-ir interneurons branched in ME4, connecting the AME to ME2. Before, extraocular photoreceptors of the lamina organ were suggested to send terminals to accessory laminae. There, they overlapped with PDFLAs that mostly colocalized PDF, FMRFamide, and 5-HT immunoreactivities, and with terminals of ipsi- and contralateral PDFMEs. We hypothesize that during the day cholinergic activation of the largest PDFME via lamina organ photoreceptors maintains PDF release orchestrating phases of sleep-wake cycles. As ipsilateral PDFMEs express excitatory and contralateral PDFMEs inhibitory PDF autoreceptors, diurnal PDF release keeps both PDF-dependent clock circuits in antiphase. Future experiments will test whether ipsilateral PDFMEs are sleep-promoting morning cells, while contralateral PDFMEs are activity-promoting evening cells, maintaining stable antiphase via the largest PDFME entrained by extraocular photoreceptors of the lamina organ.


Assuntos
Relógios Circadianos , Vias Neurais/citologia , Neurópilo/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Células Fotorreceptoras de Invertebrados/citologia , Animais , Baratas
5.
J Comp Neurol ; 528(9): 1599-1615, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846077

RESUMO

The praying mantis is a good model for the study of motor control, especially for investigating the transformation from sensory signals into motor commands. In insects, thoracic ganglia (TG) play an important role in motor control. To understand the functional organization of TG, an atlas is useful. However, except for the fruitfly, no three-dimensional atlas of TG has not been reported for insects. In this study, we generated a three-dimensional atlas of prothoracic, mesothoracic, and metathoracic ganglia in the praying mantis (Tenodera aridifolia). First, we observed serial sections of the prothoracic ganglion stained with hematoxylin and eosin to identify longitudinal tracts and transverse commissures. We then visualized neuropil areas by immunostaining whole-mount TG with an anti-synapsin antibody. Before labeling each neuropil area, standardization using the iterative shape averaging method was applied to images to make neuropil contours distinct. Neuropil areas in TG were defined based on their shape and relative position to tracts and commissures. Finally, a three-dimensional atlas was reconstructed from standardized images of the TG. The standard TG are available at the Comparative Neuroscience Platform website (cns.neuroinf.jp/modules/xoonips/detail.php?item_id=11946) and can be used as a common reference map to combine the anatomical data obtained from different individuals.


Assuntos
Atlas como Assunto , Gânglios dos Invertebrados/anatomia & histologia , Mantódeos/anatomia & histologia , Anatomia Artística , Animais , Imageamento Tridimensional
6.
J Comp Neurol ; 527(14): 2371-2387, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30861118

RESUMO

Paired centers in the forebrain of insects, called the mushroom bodies, have become the most investigated brain region of any invertebrate due to novel genetic strategies that relate unique morphological attributes of these centers to their functional roles in learning and memory. Mushroom bodies possessing all the morphological attributes of those in dicondylic insects have been identified in mantis shrimps, basal hoplocarid crustaceans that are sister to Eumalacostraca, the most species-rich group of Crustacea. However, unless other examples of mushroom bodies can be identified in Eumalacostraca, the possibility is that mushroom body-like centers may have undergone convergent evolution in Hoplocarida and are unique to this crustacean lineage. Here, we provide evidence that speaks against convergent evolution, describing in detail the paired mushroom bodies in the lateral protocerebrum of a decapod crustacean, Lebbeus groenlandicus, a species belonging to the infraorder Caridea, an ancient lineage of Eumalacostraca.


Assuntos
Corpos Pedunculados/química , Corpos Pedunculados/citologia , Neurônios/química , Animais , Crustáceos , Decápodes , Complexo de Golgi/química , Complexo de Golgi/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia
7.
J Comp Neurol ; 527(8): 1348-1361, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458068

RESUMO

Jumping spiders have four pairs of eyes (ocelli) of which only the principal eyes (PEs) are used to detect features of objects. Photoreceptors in the retina of the PEs form four layers (PL1-4) and terminate in the first optic ganglion (FOG). Here, we focus on Hasarius adansoni because it has unique depth vision besides color vision and its FOG appears to contribute to the initial processing of these visual modalities. We first investigated the neuroanatomical organization of the FOG. The three-dimensional structure of the FOG revealed by synapsin immunostaining is horseshoe-shaped and consists of four terminal zones (TZ1-4). Then, we traced single photoreceptors through serial sections and found that green-sensitive receptors of PL1 and 2 terminate in TZ1 and 2, respectively, by keeping retinotopic organization. In contrast to TZ1 and 2, TZ3 receives terminals of ultraviolet-sensitive receptors from lateral regions of both PL3 and 4, while photoreceptors of the medial region of PL3 and 4 terminate in TZ4. We further studied details of photoreceptor terminals and the branching pattern of interneurons in the FOG in Golgi stained preparations. Photoreceptors have long lateral processes in each terminal zone. Some photoreceptors terminating in TZ3 have branches innervating TZ1, indicating that TZ1 receives different spectral information. A type of interneuron connects TZ1 and 2, while others have branches within a single terminal zone or in the entire FOG. These results suggest that TZ1 and 2 contribute to color, shape, and depth vision, while TZ3 and 4 have specific roles for UV vision.


Assuntos
Células Fotorreceptoras/citologia , Retina/citologia , Aranhas/citologia , Vias Visuais/citologia , Animais , Gânglios/citologia
8.
J Comp Neurol ; 527(6): 1027-1038, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30444529

RESUMO

In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.


Assuntos
Encéfalo/citologia , Gafanhotos/anatomia & histologia , Neurônios Eferentes/citologia , Octopamina , Tiramina , Animais , Encéfalo/fisiologia , Gânglios/citologia , Gânglios/fisiologia , Gafanhotos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Eferentes/fisiologia , Periplaneta/citologia , Periplaneta/fisiologia
9.
J Comp Neurol ; 527(4): 753-766, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318778

RESUMO

Spectrally opponent responses, that is, wavelength-dependent inversions of response polarity, have been observed at the level of photoreceptors in butterflies. As inter-photoreceptor connections have been found in the butterfly Papilio xuthus, and histamine is the only neurotransmitter so far identified in insect photoreceptors, we hypothesize that histaminergic sign-inverting synapses exist in the lamina between different spectral receptors as a mechanism for spectral opponency as in the medulla of Drosophila. Here, we localized two histamine-gated chloride channels, PxHCLA (Drosophila Ort homolog) and PxHCLB (Drosophila HisCl1 homolog), in the visual system of Papilio xuthus by using specific antisera. The antiPxHCLA labeling was associated with the membrane of nonphotoreceptor cells that are postsynaptic to photoreceptors, while the antiPxHCLB labeling overlapped with photoreceptor axons, indicating that PxHCLB is expressed at inter-photoreceptor synapses: PxHCLB is likely involved in producing spectral opponency at the first visual synapses. Color processing in Papilio may appear earlier than previously hypothesized in insect visual systems.


Assuntos
Canais de Cloreto/metabolismo , Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Borboletas , Histamina , Vias Visuais/fisiologia
10.
J Comp Neurol ; 526(7): 1148-1165, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377111

RESUMO

Stomatopods have an elaborate visual system served by a retina that is unique to this class of pancrustaceans. Its upper and lower eye hemispheres encode luminance and linear polarization while an equatorial band of photoreceptors termed the midband detects color, circularly polarized light and linear polarization in the ultraviolet. In common with many malacostracan crustaceans, stomatopods have stalked eyes, but they can move these independently within three degrees of rotational freedom. Both eyes separately use saccadic and scanning movements but they can also move in a coordinated fashion to track selected targets or maintain a forward eyestalk posture during swimming. Visual information is initially processed in the first two optic neuropils, the lamina and the medulla, where the eye's midband is represented by enlarged regions within each neuropil that contain populations of neurons, the axons of which are segregated from the neuropil regions subtending the hemispheres. Neuronal channels representing the midband extend from the medulla to the lobula where populations of putative inhibitory glutamic acid decarboxylase-positive neurons and tyrosine hydroxylase-positive neurons intrinsic to the lobula have specific associations with the midband. Here we investigate the organization of the midband representation in the medulla and the lobula in the context of their overall architecture. We discuss the implications of observed arrangements, in which midband inputs to the lobula send out collaterals that extend across the retinotopic mosaic pertaining to the hemispheres. This organization suggests an integrative design that diverges from the eumalacostracan ground pattern and, for the stomatopod, enables color and polarization information to be integrated with luminance information that presumably encodes shape and motion.


Assuntos
Percepção de Cores/fisiologia , Crustáceos/anatomia & histologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Retina/citologia , Animais , Dextranos/metabolismo , Microscopia Eletrônica , Neurônios/ultraestrutura , Neurópilo/fisiologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Células Fotorreceptoras , Coloração pela Prata , Sinapsinas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Visão Ocular
11.
J Comp Neurol ; 525(14): 3010-3030, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577301

RESUMO

Crustaceans and insects share many similarities of brain organization suggesting that their common ancestor possessed some components of those shared features. Stomatopods (mantis shrimps) are basal eumalacostracan crustaceans famous for their elaborate visual system, the most complex of which possesses 12 types of color photoreceptors and the ability to detect both linearly and circularly polarized light. Here, using a palette of histological methods we describe neurons and their neuropils most immediately associated with the stomatopod retina. We first provide a general overview of the major neuropil structures in the eyestalks lateral protocerebrum, with respect to the optical pathways originating from the six rows of specialized ommatidia in the stomatopod's eye, termed the midband. We then focus on the structure and neuronal types of the lamina, the first optic neuropil in the stomatopod visual system. Using Golgi impregnations to resolve single neurons we identify cells in different parts of the lamina corresponding to the three different regions of the stomatopod eye (midband and the upper and lower eye halves). While the optic cartridges relating to the spectral and polarization sensitive midband ommatidia show some specializations not found in the lamina serving the upper and lower eye halves, the general morphology of the midband lamina reflects cell types elsewhere in the lamina and cell types described for other species of Eumalacostraca.


Assuntos
Olho Composto de Artrópodes/citologia , Crustáceos/citologia , Animais , Olho Composto de Artrópodes/metabolismo , Crustáceos/metabolismo , Dextranos , Corantes Fluorescentes , Imageamento Tridimensional , Imuno-Histoquímica , Técnicas de Rastreamento Neuroanatômico , Marcadores do Trato Nervoso , Neurônios/citologia , Neurônios/metabolismo , Neurópilo/citologia , Neurópilo/metabolismo , Coloração pela Prata , Sinapsinas/metabolismo , Vias Visuais/citologia , Vias Visuais/metabolismo
12.
J Comp Neurol ; 525(1): 204-230, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27573362

RESUMO

Global inhibition is a fundamental physiological mechanism that has been proposed to shape odor representation in higher-order olfactory centers. A pair of mushroom bodies (MBs) in insect brains, an analog of the mammalian olfactory cortex, are implicated in multisensory integration and associative memory formation. With the use of single/multiple intracellular recording and staining in the cockroach Periplaneta americana, we succeeded in unambiguous identification of four tightly bundled GABA-immunoreactive giant interneurons that are presumably involved in global inhibitory control of the MB. These neurons, including three spiking neurons and one nonspiking neuron, possess dendrites in termination fields of MB output neurons and send axon terminals back to MB input sites, calyces, suggesting feedback roles onto the MB. The largest spiking neuron innervates almost exclusively the basal region of calyces, while the two smaller spiking neurons and the second-largest nonspiking neuron innervate more profusely the peripheral (lip) region of the calyces than the basal region. This subdivision corresponds well to the calycal zonation made by axon terminals of two populations of uniglomerular projection neurons with dendrites in distinct glomerular groups in the antennal lobe. The four giant neurons exhibited excitatory responses to every odor tested in a neuron-specific fashion, and two of the neurons also exhibited inhibitory responses in some recording sessions. Our results suggest that two parallel olfactory inputs to the MB undergo different forms of inhibitory control by the giant neurons, which may, in turn, be involved in different aspects of odor discrimination, plasticity, and state-dependent gain control. J. Comp. Neurol. 525:204-230, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Interneurônios/citologia , Interneurônios/fisiologia , Periplaneta/citologia , Periplaneta/fisiologia , Potenciais de Ação , Animais , Retroalimentação Fisiológica/fisiologia , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Microeletrodos , Microscopia Confocal , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Ácido gama-Aminobutírico/metabolismo
13.
J Comp Neurol ; 524(10): 2142-57, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26663197

RESUMO

Cephalopods have the largest and most complex nervous system of all invertebrates, and the brain-to-body weight ratio exceeds those of most fish and reptiles. The brain is composed of lobe units, the functions of which have been studied through surgical manipulation and electrical stimulation. However, how information is processed in each lobe for the animal to make a behavioral decision has rarely been investigated. To perform such functional analyses, it is necessary to precisely describe how brain lobes are spatially organized and mutually interconnected as a whole. We thus made three-dimensional digital brain atlases of both hatchling and juvenile pygmy squid, Idiosepius paradoxus. I. paradoxus is the smallest squid and has a brain small enough to scan as a whole region in the field-of-view of a low-magnification laser scan microscope objective. Precise analyses of the confocal images of the brains revealed one newly identified lobe and also that the relative volume of the vertical lobe system, the higher association center, in the pygmy squid represents the largest portion compared with the cephalopod species reported previously. In addition, principal component analyses of relative volumes of lobe complexes revealed that the organization of I. paradoxus brain is comparable to those of Decapodiformes species commonly used to analyze complex behaviors such as Sepia officinalis and Sepioteuthis sepioidea. These results suggest that the pygmy squid can be a good model to investigate the brain functions of coleoids utilizing physiological methods. J. Comp. Neurol. 524:2142-2157, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Cefalópodes/anatomia & histologia , Imageamento Tridimensional , Fatores Etários , Animais , Encéfalo/metabolismo , Masculino , Microscopia Confocal , Modelos Neurológicos , Sinapsinas/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA