Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.222
Filtrar
1.
J Med Imaging (Bellingham) ; 12(Suppl 1): S13003, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39055549

RESUMO

Purpose: Use of mechanical imaging (MI) as complementary to digital mammography (DM), or in simultaneous digital breast tomosynthesis (DBT) and MI - DBTMI, has demonstrated the potential to increase the specificity of breast cancer screening and reduce unnecessary biopsies compared with DM. The aim of this study is to investigate the increase in the radiation dose due to the presence of an MI sensor during simultaneous image acquisition when automatic exposure control is used. Approach: A radiation dose study was conducted on clinically available breast imaging systems with and without an MI sensor present. Our estimations were based on three approaches. In the first approach, exposure values were compared in paired clinical DBT and DBTMI acquisitions in 97 women. In the second approach polymethyl methacrylate (PMMA) phantoms of various thicknesses were used, and the average glandular dose (AGD) values were compared. Finally, a rectangular PMMA phantom with a 45 mm thickness was used, and the AGD values were estimated based on air kerma measurements with an electronic dosemeter. Results: The relative increase in exposure estimated from digital imaging and communications in medicine headers when using an MI sensor in clinical DBTMI was 11.9 % ± 10.4 . For the phantom measurements of various thicknesses of PMMA, the relative increases in the AGD for DM and DBT measurements were, on average, 10.7 % ± 3.1 and 11.4 % ± 3.0 , respectively. The relative increase in the AGD using the electronic dosemeter was 11.2 % ± < 0.001 in DM and 12.2 % ± < 0.001 in DBT. The average difference in dose between the methods was 11.5 % ± 3.3 . Conclusions: Our measurements suggest that the use of simultaneous breast radiography and MI increases the AGD by an average of 11.5 % ± 3.3 . The increase in dose is within the acceptable values for mammography screening recommended by European guidelines.

2.
Quant Imaging Med Surg ; 14(9): 6260-6272, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39281124

RESUMO

Background: Colorectal cancer (CRC) is commonly assessed by computed tomography (CT), but the associated radiation exposure is a major concern. This study aimed to quantitatively and qualitatively compare the image quality of virtual non-contrast (VNC) images reconstructed from arterial and portal venous phases with that of true non-contrast (TNC) images in patients with CRC to assess the potential of TNC images to replace VNC images, thereby reducing the radiation dose. Methods: A total of 69 patients with postoperative pathologically confirmed CRC at the West China Hospital of Sichuan University between May 2022 and April 2023 were enrolled in this cross-sectional study. The CT protocol included the acquisition of TNC images, arterial and portal venous phase images; the VNC images were reconstructed from the two postcontrast phase images. Several parameters, including the CT attenuation value, absolute attenuation error, imaging noise [standard deviation (SD)], signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR), were measured in multiple abdominal structures for both the TNC and VNC images. Two blinded readers assessed the subjective image quality using a five-point scale. Interobserver agreement was evaluated using interclass correlation coefficients (ICCs). The paired t-test and Wilcoxon signed-rank test were used to compare the objective and subjective results between the TNC and VNC images. Individual measurements of radiation doses for the TNC scan and contrast scan protocols were recorded. Results: A total of 2,070 regions of interest (ROIs) of the 69 patients were analyzed. Overall, the VNC images exhibited significantly lower attenuation values and SD values than the TNC images in all tissues, except for the abdominal aorta, portal vein, and spleen. The mean absolute attenuation errors between the VNC and TNC images were all less than 10 Hounsfield units (HU). The percentages of absolute attenuation errors less than 5 and 10 HU in the VNC images from the arterial phase (VNCa) were 78.99% and 97.97%, respectively, while those from the portal venous phase (VNCp) were 81.59% and 96.96%, respectively. The absolute attenuation errors between the TNC and VNCa images were smaller than those between the TNC and VNCp images for tumors [VNCaerror: 2.77, interquartile range (IQR) 1.77-4.22; VNCperror: 3.27, IQR 2.68-4.30; P=0.002]. The SNR values and CNR values in the VNC images were significantly higher than those in the TNC images for all tissues, except for the portal vein and spleen. The image quality was rated as excellent (represented by a score of 5) in the majority of the TNC and VNC images; however, the VNC images scored lower than the TNC images. Eliminating the TNC phase resulted in a reduction of approximately 37.99% in the effective dose (ED). Conclusions: The VNC images provided accurate CT attenuation, good image quality, and lower radiation doses than the TNC images in CRC, and the VNCa images showed minimal differences in the CT attenuation of the tumors.

3.
Heliyon ; 10(17): e37043, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39295996

RESUMO

Objectives: Medical devices based on X-ray imaging, such as computed tomography, are considered notable sources of artificial radiation. The aim of this study was to compare the computed tomography dose volume index, the dose length product, and the effective dose of the brain non-contrast enhanced examination on two CT scanners to determine the current state in terms of radiation doses, compare doses to the reference values, and possibly optimize the examination. Materials and methods: Data from January 2020 to the second half of 2021 were retrospectively obtained by accessing dose reports from the Picture Archiving and Communication System (PACS). Data were collected and analyzed in Microsoft Excel. The effective dose was estimated using the dose-length product parameter and the normalized conversion factor for a given anatomical region. For statistical analysis, a two-sample t-test was used. Results: The first data set consists of 200 patients (100 and 100 for older and newer CT scanners) regardless of the scan technique; the average CTDIvol and DLP for the older CT scanner were 57.61 ± 2.89 mGy and 993.28 ± 146.18 mGy cm, and for the newer CT scanner, 43.66 ± 11.15 mGy and 828.14 ± 130.06 mGy cm. The second data set consists of 100 patients (50 for the older CT scanner and 50 for the newer CT scanner) for a sequential scan; the average CTDIvol and DLP for the older CT scanner were 58.63 ± 3.33 mGy and 949.42 ± 80.87 mGy.cm, and for the newer CT, 57.25 ± 3.4 mGy and 942.13 ± 73.05 mGy cm. The third data set consists of 40 patients (20 and 20 for older and newer CT scanners) for the helical scan - the average CTDIvol and DLP for the older CT scanner were 54.6 ± 0 mGy and 1252.2 ± 52.11 mGy.cm, and for the newer CT, 37.18 ± 2.52 mGy and 859.66 ± 72.04 mGy cm. The difference between the older and newer CT scanners in terms of dose reduction was approximately 30 % in favor of the newer scanner for noncontrast enhanced brain examinations performed using the helical scan technique. Conclusion: A non-contrast enhanced brain examination scanned with newer CT equipment was associated with a lower radiation burden on the patient.

4.
Acad Radiol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39294053

RESUMO

RATIONALE AND OBJECTIVES: Traumatic neuroradiological emergencies necessitate rapid and accurate diagnosis, often relying on computed tomography (CT). However, the associated ionizing radiation poses long-term risks. Modern artificial intelligence reconstruction algorithms have shown promise in reducing radiation dose while maintaining image quality. Therefore, we aimed to evaluate the dose reduction capabilities of a deep learning-based denoising (DLD) algorithm in traumatic neuroradiological emergency CT scans. MATERIALS AND METHODS: This retrospective single-center study included 100 patients with neuroradiological trauma CT scans. Full-dose (100%) and low-dose (25%) simulated scans were processed using iterative reconstruction (IR2) and DLD. Subjective and objective image quality assessments were performed by four neuroradiologists alongside clinical endpoint analysis. Bayesian sensitivity and specificity were computed with 95% credible intervals. RESULTS: Subjective analysis showed superior scores for 100% DLD compared to 100% IR2 and 25% IR2 (p < 0.001). No significant differences were observed between 25% DLD and 100% IR2. Objective analysis revealed no significant CT value differences but higher noise at 25% dose for DLD and IR2 compared to 100% (p < 0.001). DLD exhibited lower noise than IR2 at both dose levels (p < 0.001). Clinical endpoint analysis indicated equivalence to 100% IR2 in fracture detection for all datasets, with sensitivity losses in hemorrhage detection at 25% IR2. DLD (25% and 100%) maintained comparable sensitivity to 100% IR2. All comparisons demonstrated robust specificity. CONCLUSIONS: The evaluated algorithm enables high-quality, fully diagnostic CT scans at 25% of the initial radiation dose and improves patient care by reducing unnecessary radiation exposure.

5.
Neuroradiology ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243294

RESUMO

INTRODUCTION: The establishment of diagnostic reference levels (DRLs) is challenge for interventional neuroradiology (INR) due to the complexity and variability of its procedures. OBJECTIVE: The main objective of this systematic review is to analyse and compare DRLs in fluoroscopy-guided procedures in INR. METHODS: An observational study reporting DRLs in INR procedures, specifically cerebral arteriography, cerebral aneurysm embolisation, cerebral thrombectomy, embolisation of arteriovenous malformations (AVM), arteriovenous fistulas (AVF), retinoblastoma embolisation, and spinal cord arteriography. Comprehensive literature searches for relevant studies published between 2017 and 2023 were conducted using the Scopus, PubMed, and Web of Science databases. RESULTS: A total of 303 articles were identified through an extensive literature search, with 159 removed due to duplication. The title and abstract of 144 studies were assessed and excluded if they did not meet the inclusion criteria. Thirty-one out of the 144 articles were selected for a thorough full-text screening. Twenty-one articles were included in the review after the complete text screening. CONCLUSION: The different conditions of patients undergoing INR procedures pose a barrier to the standardization of DRLs; nevertheless, they are extremely important for monitoring and optimising radiological practices.

6.
Environ Monit Assess ; 196(10): 940, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287839

RESUMO

In this work, radioactivity investigations of soil samples from neutral and agricultural sites in Punjab (India) have been carried out to study the impact of land use patterns. Analyzing soil samples radiological, mineralogical, and physicochemical attributes has employed state-of-the-art techniques. The mean activity concentration of 238U/226Ra, 232Th, 40K, 235U, and 137Cs, measured using a carbon fiber endcap p-type HPGe detector, in neutral land was observed as 58.03, 83.95, 445.18, 2.83, and 1.16 Bq kg-1, respectively. However, in vegetation land, it was found to be 40.07, 64.68, 596.74, 2.26, and 1.90 Bq kg-1, respectively. In the detailed activity analysis, radium equivalent (Raeq) radioactivity is in the safe prescribed limit of 370 Bq kg-1 for all investigated soil samples. However, the dosimetric investigations revealed that the outdoor absorbed gamma dose rate (96.08 nGy h-1) and consequent annual effective dose rate (0.12 mSv y-1) for neutral land and the gamma dose rate (82.46 nGy h-1) and subsequent annual effective dose rate (0.10 mSv y-1) for vegetation land marginally exceeded the global average. The soil's physicochemical parameters (pH, EC, and porosity) from both sites were measured, and their correlations with radionuclides were analyzed. Various heavy metals of health concern, namely, chromium (Cr), arsenic (As), copper (Cu), cobalt (Co), cadmium (Cd), lead (Pb), mercury (Hg), selenium (Se), and zinc (Zn), were also evaluated in soil samples using Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Pollution Load Index (PLI) and Ecological Risk Index (RI) revealed that vegetation land was more anthropogenically contaminated than neutral land, with maximum contamination from Hg and As.


Assuntos
Metais Pesados , Monitoramento de Radiação , Poluentes Radioativos do Solo , Solo , Índia , Metais Pesados/análise , Solo/química , Poluentes Radioativos do Solo/análise , Poluentes do Solo/análise , Rádio (Elemento)/análise , Tório/análise , Urânio/análise
7.
Strahlenther Onkol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283341

RESUMO

OBJECTIVE: Radiation therapy is applied in the treatment of head and neck cancer patients. However, oral-health-related side effects like hyposalivation and a higher prevalence of caries have been shown. This study aims to assess the influence of different radiotherapy doses on the mechanical properties, roughness, superficial microstructure, and crystallinity of the enamel and dentin of human premolar teeth. METHODS: Specimens (n = 25) were categorized into five groups based on the radiation dose received (0, 10, 30, 50, and 70 Gy). The enamel and dentin of these specimens were subjected to a microhardness tester, profilometer, atomic force microscopy (AFM), scanning electron microscopy (SEM), and X­ray diffraction (XRD) before and after different irradiation doses and compared to hydroxylapatite in each group. The data were analyzed using repeated-measures analysis of variance (ANOVA). RESULTS: Therapeutic radiation doses of 30, 50, and 70 Gy led to a decrease in the microhardness and an increase in the average roughness of the enamel, and rougher surfaces were observed in the mixed three-dimensional images. Moreover, in the dentin, a similar outcome could be observed for more than 10 Gy. The main crystalline phase structure remained hydroxylapatite, but the crystallinity decreased and the crystalline size increased above 10 Gy. The superficial micromorphology revealed granulation, fissures, and cracks in a dose-dependent manner. Radiation below 70 Gy had little effect on the hydroxylapatite concentration during the whole experiment. CONCLUSION: Above a radiation dose of 30 Gy, the micromorphology of the tooth enamel changed. This occurred for dentin above 10 Gy, which indicates that dentin is more sensitive to radiotherapy than enamel. The radiation dose had an effect on the micromorphology of the hard tissues of the teeth. These results illustrate the possible mechanism of radiation-related caries and have guiding significance for clinical radiotherapy.

8.
Diagnostics (Basel) ; 14(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39272773

RESUMO

Purpose: This study evaluates a deep learning-based denoising algorithm to improve the trade-off between radiation dose, image noise, and motion artifacts in TIPSS procedures, aiming for shorter acquisition times and reduced radiation with maintained diagnostic quality. Methods: In this retrospective study, TIPSS patients were divided based on CBCT acquisition times of 6 s and 3 s. Traditional weighted filtered back projection (Original) and an AI denoising algorithm (AID) were used for image reconstructions. Objective assessments of image quality included contrast, noise levels, and contrast-to-noise ratios (CNRs) through place-consistent region-of-interest (ROI) measurements across various critical areas pertinent to the TIPSS procedure. Subjective assessments were conducted by two blinded radiologists who evaluated the overall image quality, sharpness, contrast, and motion artifacts for each dataset combination. Statistical significance was determined using a mixed-effects model (p ≤ 0.05). Results: From an initial cohort of 60 TIPSS patients, 44 were selected and paired. The mean dose-area product (DAP) for the 6 s acquisitions was 5138.50 ± 1325.57 µGy·m2, significantly higher than the 2514.06 ± 691.59 µGym2 obtained for the 3 s series. CNR was highest in the 6 s-AID series (p < 0.05). Both denoised and original series showed consistent contrast for 6 s and 3 s acquisitions, with no significant noise differences between the 6 s Original and 3 s AID images (p > 0.9). Subjective assessments indicated superior quality in 6 s-AID images, with no significant overall quality difference between the 6 s-Original and 3 s-AID series (p > 0.9). Conclusions: The AI denoising algorithm enhances CBCT image quality in TIPSS procedures, allowing for shorter scans that reduce radiation exposure and minimize motion artifacts.

9.
Pediatr Radiol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259301

RESUMO

BACKGROUND: Increased positron emission tomography (PET) scanner z-axis coverage provides an opportunity in pediatrics to reduce dose, anesthesia, or repeat scans due to motion. OBJECTIVE: Recently, our digital PET scanner was upgraded from a 25-cm to a 30-cm z-axis coverage. We compare the two systems through National Electrical Manufacturing Association (NEMA) testing and evaluation of paired images from patients scanned on both systems. MATERIALS AND METHODS: NEMA testing and a retrospective review of pediatric patients who underwent clinically indicated 18F-fluorodeoxyglucose (FDG) PET computed tomography (PET/CT) on both systems with unchanged acquisition parameters were performed. Image quality was assessed with liver signal to noise ratio (SNR-liver) and contrast to noise ratio (CNR) in the thigh muscle and liver with results compared with an unpaired t-test. Three readers independently reviewed paired (25 cm and 30 cm) images from the same patient, blinded to scanner configuration. RESULTS: Expansion to 30 cm increased system sensitivity to 29.8% (23.4 cps/kBq to 30.4 cps/kBq). Seventeen patients (6 male/11 female, median age 12.5 (IQR 8.3-15.0) years, median weight 53.7 (IQR 34.2-68.7) kg) were included. SNR-liver and CNR increased by 35.1% (IQR 19.0-48.4%) and 43.1% (IQR 6.2-50.2%) (P-value <0.001), respectively. All readers preferred images from the 30-cm configuration. A median of 1 (IQR 1-1) for fewer bed positions was required with the 30-cm configuration allowing a median of 91 (IQR 47-136) s for shorter scans. CONCLUSION: Increasing z-axis coverage from 25 to 30 cm on a current-generation digital PET scanner significantly improved PET system performance and patient image quality, and reduced scan duration.

10.
Clin Transl Radiat Oncol ; 48: 100846, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39258243

RESUMO

Background: The benefit of prophylactic whole pelvis radiation therapy (WPRT) in prostate cancer has been debated for decades, with evidence based mainly on conventional fractionation targeting pelvic nodes. Aim: This retrospective cohort study aimed to explore the impact of adding moderately hypofractionated pelvic radiotherapy to prostate-only irradiation (PORT) on prognosis, toxicity, and quality of life in real-world settings. Materials and methods: Patients with high-risk and conventionally staged prostate cancer (cT1-3N0M0) treated with moderately hypofractionated WPRT or PORT, using external beam radiotherapy alone or combined with high-dose-rate brachytherapy, at Örebro University Hospital between 2008 and 2021 were identified. Biochemical failure-free survival (BFFS), metastasis-free survival (MFS), prostate cancer-specific survival (PCSS), and overall survival (OS) were compared using Kaplan-Meier method and Cox proportional hazards. Toxicity and quality of life measures were also analysed. Results: Among 516 patients (227 PORT, 289 WPRT), 5-year BFFS rates were 77 % (PORT) and 74 % (WPRT), adjusted HR=1.50 (95 % CI=0.88-2.55). No significant differences were found in MFS, PCSS, or OS in main analyses. WPRT was associated with a higher risk of acute grade ≥ 2 and 3 genitourinary toxicities whereas no differences in late toxicities or quality of life between PORT and WPRT were observed. Conclusion: We found no significant differences in oncological outcomes or quality of life when comparing moderately hypofractionated PORT to WPRT. Some differences in toxicity patterns were observed. Despite caveats related to study design, our findings support the need for further research on WPRT's impact on treatment-related and patient-reported outcomes.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39222266

RESUMO

During the first half of the 20th century, it was commonly assumed that radiation-induced health effects occur only when the dose exceeds a certain threshold. This idea was discarded for stochastic effects when more knowledge was gained about the mechanisms of radiation-induced cancer. Currently, a key tenet of the international system of radiological protection is the linear no-threshold (LNT) model where the risk of radiation-induced cancer is believed to be directly proportional to the dose received, even at dose levels where the effects cannot be proven directly. The validity of the LNT approach has been questioned on the basis of a claim that only conclusions that can be verified experimentally or epidemiologically are scientific and LNT should, thus, be discarded because the system of radiological protection must be based on solid science. The aim of this publication is to demonstrate that the LNT concept can be tested in principle and fulfils the criteria of a scientific hypothesis. The fact that the system of radiological protection is also based on ethics does not render it unscientific either. One of the fundamental ethical concepts underlying the LNT model is the precautionary principle. We explain why it is the best approach, based on science and ethics (as well as practical experience), in situations of prevailing uncertainty.

12.
Acta Radiol ; : 2841851241269918, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39161325

RESUMO

BACKGROUND: High-resolution computed tomography (HRCT) is dependent on detailed morphology in diagnostic assessment of interstitial lung diseases. Photon-counting CT (PCCT) enables improved resolution while reducing radiation. PURPOSE: To compare if the image quality, detailed morphology, and radiation dose in HRCT of the lung improves with PCCT compared to energy-integrated CT (EICT). MATERIAL AND METHODS: HRCT with PCCT in patients with body mass index (BMI) from normal to obese, previously examined with different EICT were included. They were evaluated in a five-step scale for image quality according to Quality Criteria for CT (Diagnostic Requirement of the ImPACT group-European standardization). In addition, ground-glass opacities, bronchiectasis, emphysema, nodules, and subpleural detailed morphology (≤1 cm from the pleural border) were evaluated by three independent thoracic and/or pediatric radiologists. Visual grading characteristics (VGC) were used for comparison of image quality and detailed morphology and Fleiss kappa for intra-observer variability. Dose-length product (DLP) and CT dose index-volume (CTDIvol) were collected to calculate effective radiation dose. RESULTS: HRCT with PCCT in 52 women and 48 men (mean age=67.2 ± 13.6 years; age range=27-87 years; BMI=26.9 kg/m2; range=18.6-45 kg/m2) previously examined with EICT (mean age=65.3 ± 13.6 years; age range=27-85 years; BMI=27 kg/m2; range=18.9-45 kg/m2) were included. There were significant differences in image quality for all entities in favor of PCCT. The radiation dose was reduced with PCCT by 47% in all, particularly pronounced in obese with 48.5%. CONCLUSION: Image quality, detailed morphology, and radiation dose, particularly in obese patients, were significantly improved in HRCT with PCCT compared to conventional EICT. The new technique enables visualization of subpleural structures.

13.
J Radiol Prot ; 44(3)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39121874

RESUMO

In computed tomography (CT), organ dose modulation (ODM) reduces radiation exposure from the anterior side to reduce radiation dose received by the radiosensitive organs located anteriorly. We investigated the effects of ODM applied to a part of the scan range on radiation dose in body CT. The thorax and thoraco-abdominopelvic region of an anthropomorphic whole-body phantom were imaged with and without ODM. ODM was applied to various regions, and the tube current modulation curves were compared. Additionally, the dose indices were compared with and without ODM in thoracic and thoraco-abdominopelvic CTs in 800 patients. ODM was applied to the thyroid in male patients and to the thyroid and breast in female patients. In phantom imaging of the thorax, the application of ODM below the scan range decreased the tube current, and that to the breast showed a further decrease. Decreased tube current was also observed in phantom imaging of the thoraco-abdominopelvic regions with ODM below the scan range, and the application of ODM to the whole scan range, thyroid, breast, and both thyroid and breast further reduced the tube current in the region to which ODM was applied. In patient imaging, the dose indices were significantly lower with ODM than without ODM, regardless of the scan range or sex. The absolute reduction in dose-length product was larger for thoraco-abdominopelvic CT (male, 43.2 mGy cm; female, 59.7 mGy cm) than for thoracic CT (male, 30.8 mGy cm; female, 37.6 mGy cm) in both sexes, indicating dose reduction in the abdominopelvic region to which ODM was not applied. In conclusion, The application of ODM in body CT reduces radiation dose not only in the region to which ODM is applied but also outside the region. In radiation dose management, it should be considered that even ODM applied to a limited region affects the dose indices.


Assuntos
Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Adulto , Proteção Radiológica , Glândula Tireoide/efeitos da radiação , Glândula Tireoide/diagnóstico por imagem , Pessoa de Meia-Idade , Mama/diagnóstico por imagem , Mama/efeitos da radiação , Idoso , Imagem Corporal Total
14.
Appl Radiat Isot ; 212: 111472, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142226

RESUMO

This research focused on the determination of scatter radiation levels in x-ray rooms during chest radiography. 108 patients were examined. Four x-ray machines (A, B, C, and D) were used during the research from three centers. Three positions were considered in this study; position Q just beside the (Bucky stand), position R, which is 150 cm from the left of the Bucky stand towards the door and position T, 200 cm from the Bucky stand to the radiographer's protective screen respectively. Two machines (A and B) from center 1 and one machine from center 2 (C) and one machine from center 3 (D). The body mass index (BMI) of the participants ranged from 20 to 25 kgm-2 with mean value of 23.97 kgm-2. The background radiation level was read using Radalert 100 m before any exposure, and the mean background level was 0.298 mR/h. The mean of the scatter radiation doses obtained from positions Q with respect to the four machines A, B, C, and D, were 0.109, 0.201, 0.204, 0.200 mR/h (9.166, 16.903, 17.156, 16.819 mSv/yr) and their standard deviations were ±0.052, ±0.053, ±0.064, and ±0.081 respectively. The results were comparable with previous studies. The study recommends staff education and training in determination of radiation levels for enhanced work safety.


Assuntos
Doses de Radiação , Radiografia Torácica , Espalhamento de Radiação , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Proteção Radiológica , Raios X , Idoso
15.
Heliyon ; 10(14): e34705, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130404

RESUMO

The activity concentration of natural radionuclides, radon activity concentration, mass and area exhalation rates have been studied in soils from gold mining communities in Atiwa West district. The natural radionuclides were determined by gamma ray spectrometry method while radon concentrations were measured using CR-39 detectors. The mean activity concentrations were found to be 26.9 ± 1.7 Bq/kg, 57.5 ± 3.6 Bq/kg, 237.5 ± 17.6 Bq/kg and 560.0 ± 54 Bq/m3 for Ra-226, Th-232, K-40 and Rn-222 respectively. The evaluated mass exhalation rates ranged from 2.8 ± 0.3 to 6.5 ± 0.7 × 10-5 Bq/kg/h while the area exhalation rates were from 0.8 ± 0.09 to 2.0 ± 0.21 × 10-3 Bq/m2/h. Some mining and farming areas recorded high exhalation rates indicating that the use of soils as building materials from such areas could pose a level of radiation hazard to the population. The evaluated radiological risks were below reference levels. A good linear correlation was observed between Ra-226 and Rn-222 activity concentrations and in the investigated soils. The Pearson correlation coefficient, cluster analysis and principal component analysis were used to study the relationship between the determined parameters of the study.

16.
Radiother Oncol ; 200: 110477, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153508

RESUMO

BACKGROUND AND PURPOSE: Chemoradiotherapy (CRT) for locally-advanced non-small cell lung cancer (LA-NSCLC) has undergone advances, including increased overall survival (OS) when combined with immune checkpoint blockade (ICB), and using cardiac-sparing techniques to reduce the radiotoxicity. This research investigated 1) how radiotherapy schedules can be optimised with CRT-ICB schemes, and 2) how cardiac-sparing might change the OS for concurrent CRT (cCRT). METHODS AND MATERIALS: Survival data and dosimetric indices were sourced from published studies, with 2-year OS standardised and the hazard ratio of mean heart dose (MHD) against radiotoxicity tabulated in purpose. A published CRT dose-response model was selected, then modified with ICB and cardiac-sparing hypotheses. Models were maximum likelihood fitted, then visualised the prediction outcomes after bootstrapping. RESULTS: The modelled 2-year OS rate of cCRT-ICB reached 71 % (95 % confidence intervals, CI 62 %, 84 %) and 66 % (95 % CI: 53 %, 81 %) for stage IIIA and IIIB/C, respectively, given 60 Gy in 2 Gy-per-fraction. 60 Gy in 30 fractions remained the best schedule for cCRT-ICB, whereas modest dose de-escalation to 55 Gy only reduced the OS in 2 %. Sequential CRT (sCRT)-ICB provided 6 % OS increases versus the best OS rate achieved by sCRT alone. Photon MHD-sparing achieved a 5-10 % increase in modelled 2-year OS, with protons providing a further roughly 5-10 % increase. CONCLUSION: Neither dose-escalation nor de-escalation relative to 60 Gy in 30 fractions influenced the survival with cCRT-ICB, while 5 Gy dose de-escalation might benefit patients with heavily irradiated organs at risk. Cardiac-sparing improved OS, and protons provided advantages for tumours anatomically overlapped or lay below the heart.

17.
Acad Radiol ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39155157

RESUMO

RATIONALE AND OBJECTIVES: This study investigates the dose burden of photon-counting detector (PCD) lung CT with ultra-high-resolution (UHR) and standard mode using organ-based tube current modulation (OBTCM). MATERIALS AND METHODS: An anthropomorphic Alderson-Rando phantom was scanned in UHR and standard mode with and without OBTCM on three dose levels (IQ 5, 20, 50). Effective radiation dose was determined by thermoluminescent dosimetry in 13 measurement sites and compared with the calculated effective dose derived from the dose-length product. Image quality was evaluated subjectively by six radiologists using an equidistant 7-point scale and objectively by means of modulation transfer function analysis. RESULTS: Measured effective radiation exposure was lower in UHR and OBTCM studies than in standard mode (IQ 5: 0.34-0.36, IQ 20: 1.57-1.70, IQ 50: 3.76-3.99 mSv). Compared with the calculated effective dose, the radiation exposure measured with thermoluminescence dosimetry was 131-170% higher. Noise in UHR mode was rated lower than in standard (all p ≤ 0.042) and OBTCM images (all p ≤ 0.028) for all dose levels, while image sharpness was deemed highest for UHR protocols (all p ≤ 0.042). The use of OBTCM had no significant effect on either dimension of subjective image quality (all p ≥ 0.999). Modulation transfer function analysis confirmed the highest spatial frequency in UHR datasets (all p ≤ 0.016). CONCLUSION: In PCD-CT of the lung, full field-of-view UHR imaging entails no dose disadvantage over standard mode despite superior image quality. OBTCM possesses moderate dose saving potential. Thermoluminescence dosimetry yielded considerably higher effective doses than those calculated from dose-length products.

18.
Can Assoc Radiol J ; 75(3): 609-619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086146

RESUMO

Purpose: To compare image quality and radiation exposure between super- and ultra-high-resolution helical and super-high-resolution volumetric CT of the temporal bone. Methods: Six cadaveric temporal bone specimens were used to evaluate key temporal bone structures using the following CT reconstruction and acquisition modes: helical and single-volume acquisition modes in super-high resolution (0.25-mm slice thickness, 10242 matrix), and helical mode in ultra-high resolution (0.25-mm slice thickness, 20482 matrix). Two observers performed 5 previously described preoperative measurements, measured noise and signal-to-noise ratios for air, and noise for bone, and rated the visualization of 5 anatomical structures on a 4-point scale, for each reconstruction mode. Radiation dose exposure was recorded for each examination. Results: There was no significant difference between any of the quantitative or qualitative measurements in any of the reconstruction and acquisition modes. There was a slight increase in noise and a decrease in signal-to-noise ratio in the air using the single-volume mode (115 ± 13.1 HU and 8.37 ± 0.91, respectively) compared to the helicoidal super-high-resolution (92.4 ± 11.8 HU and 10.8 ± 1.26, respectively) and helicoidal ultra-high-resolution (91.1 ± 10.7 HU and 10.9 ± 1.39, respectively) modes (P < .002). The volumic CT dose index was 50.9 mGy with helical acquisition and 29.8 mGy with single-volume acquisition mode (P < .0001). Conclusion: The single-volume super-high-resolution acquisition mode allows a reduction in radiation dose exposure without compromising image quality compared to helical scanning, but with a slightly lower signal-to-noise ratio in air with the single-volume mode, while there was no difference in image quality between the helical super- and ultra-high-resolution modes.


Assuntos
Cadáver , Doses de Radiação , Razão Sinal-Ruído , Osso Temporal , Humanos , Osso Temporal/diagnóstico por imagem , Osso Temporal/anatomia & histologia , Tomografia Computadorizada Espiral/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-39110320

RESUMO

To validate the accuracy of coronary artery calcium score (CACS) using photon-counting detector (PCD) CT under various scanning settings and explore the optimized scanning settings considering both the accuracy and the radiation dose. A CACS phantom containing six hollow cylindrical hydroxyapatite calcifications of two sizes with three densities and 12 patients underwent CACS scans. For PCD-CT, two scanning modes (sequence and flash [high-pitch spiral mode]) and five tube voltages (90kV, 120kV, 140kV, Sn100kV, and Sn140kV) at different image quality (IQ) levels were set for phantom, and patients were scanned with 120kV at IQ19 using flash mode. All acquisitions from PCD-CT were reconstructed at 70keV. Acquisitions in sequence mode at 120kV on an energy-integrating detector CT (EID-CT) was used as the reference. Agatston, mass, and volume scores were calculated. The CACS from PCD-CT exhibited excellent agreements with the reference (all intraclass correlation coefficient [ICC] > 0.99). The root mean square error (RMSE) between the Agatston score acquired from PCD-CT and the reference (5.4-11.5) was small. A radiation dose reduction (16-75%) from PCD-CT compared with the reference was obtained in all protocols using flash mode, albeit with IQ20 only at sequence mode (22-44%). For the patients, ICC ( all ICC > 0.98) and Bland-Altman analysis of CACS all showed high agreements between PCD-CT and the reference, without reclassifying CACS categories(P = 0.317). PCD-CT yields repeatable and accurate CACS across diverse scanning protocols according to our pilot study. Sn100kV, 90kV, and 120kV using flash mode at IQ20 are recommended for clinical applications considering both accuracy and radiation dose.

20.
Artigo em Japonês | MEDLINE | ID: mdl-39143019

RESUMO

PURPOSE: In this study, we aimed to develop an application that computes dose values resembling diagnostic reference level (DRL) conditions when disparity prevents direct dose comparisons between the national diagnostic reference levels in Japan 2020 (Japan DRLs_2020) and facility-specific computed tomography (CT) protocols. METHODS: We developed an application using the R programming language and RStudio software that computes dose values and median values based on Japan DRLs_2020 imaging conditions following extraction of necessary information for dose calculations from the Radiation Dose Structured Report (RDSR) and Digital Imaging and Communications in Medicine (DICOM) tags. To ensure a user-friendly experience, we used the Shiny package to develop a graphical user interface that enables the application to operate seamlessly in web browsers. RESULTS: The developed application successfully facilitated the calculation of dose and median values that aligned with the Japan DRLs_2020 for protocols whose imaging range and acquisition timing differed from those of the Japan DRLs_2020. CONCLUSION: By calculating dose values that align with DRL conditions, our application contributes to the implementation and optimization of dose management in CT for facilities that use diverse imaging protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA