Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412122, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136336

RESUMO

The oxidative cleavage of alkenes is a crucial step in synthesizing key organic molecules featuring carbonyl functional groups prevalent in natural products and pharmaceuticals. We introduce a photochemical method for heterogeneous C=C bond cleavage, employing photo-catalytically generated [(bTAML)FeIV-O-FeIV(bTAML)]- species (where bTAML stands for biuret-modified tetraamido macrocyclic ligand) in aqueous environments under gentle conditions. Leveraging the photosensitizing properties of Covalent Organic Frameworks (COFs) and their advantageous morphological traits as films, we enhance the reaction by closely associating the substrate with the catalyst. This study marks the inaugural demonstration of Fe2IV-µ-oxo radical cation and FeIV=O species facilitating alkene cleavage in water against a backdrop of a hydrophobic COF. Through comprehensive mechanistic studies, including control experiments, we confirm that these two high-valent iron oxo species collaborate to cleave alkenes, forming an intermediate epoxide. Our approach yields moderate to high success across various alkenes, displaying diverse functional groups (achieving up to 75% yield) with notable efficiency and selectivity towards aldehyde/ketone products. Moreover, the heterogeneous COF film, immobilizing (Et4N)2[FeIII(Cl)bTAML], exhibits exceptional recyclability, enduring up to four cycles.

2.
Beilstein J Org Chem ; 20: 1900-1905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135656

RESUMO

Electrochemical or photochemical single-electron oxidation of bench-stable substrates can generate radical cations that offer unique reactivities as intermediates in various bond-formation processes. Such intermediates can potentially take part in both radical and ionic bond formation; however, the mechanisms involved are complicated and not fully understood. Herein, we report electrochemical radical cation aza-Wacker cyclizations under acidic conditions, which are expected to proceed via radical cations generated by single-electron oxidation of alkenes.

3.
J Mass Spectrom ; 59(9): e5079, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39132903

RESUMO

Triphenylamine (TPA) and N-heterotriangulene (N-HTA) scaffolds with up to three oligophenyl extensions are investigated by electrospray ionization (tandem) mass spectrometry (ESI-[MS/]MS). Due to their low oxidation potentials, all molecules readily form radical cations in the electrospray process. The energy-resolved collision-induced dissociation behaviour of the molecular ions is contrasted to that of the silver(I) adducts. Complexation with Ag(I) leads to the expected [1:1] and [2:1] complexes (MAg+ and M2Ag+); however, even [1:2] complexes (MAg2 2+) can be detected for molecules with two and three large π-expansions to allow stabilization of two charges. The TPA scaffolds decompose only at high collision energies through the loss of peripheral tert-butyl groups. A general mechanism for this is proposed commencing with a methyl loss and followed by the release of isobutene and butyl radical moieties. The N-HTA-based scaffolds are considerably less stable and molecular ions fragment at low collision energies. This is caused by the facile loss of methyl radicals from the dimethylmethylene-bridged triangulene core. In contrast, complexation with Ag+ leads to a dramatic stabilization. Most interestingly, dissociation eventually proceeds via the loss of neutral AgCH3, which is indicative of strong bidentate, tweezer-like bonding of Ag+ to the molecules.

4.
Angew Chem Int Ed Engl ; 63(35): e202406927, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39011764

RESUMO

The mature synthetic methodologies enable us to rationally design and produce chiral nanographenes (NGs), most of which consist of multiple helical motifs. However, inherent chirality originating from twisted geometry has just emerged to be employed in chiral NGs. Herein, we report a red-emissive chiral NG constituted of orthogonally arranged two-fold twisted π-skeletons at a contorted pyrene core which contributes to optical transitions of S0→S1 and vice versa. The thus-obtained NG exhibited a robustness on its redox properties through 2e- uptake/release. The chemical oxidation generated stable radical cation whose absorption covers near-infrared I and II regions. Overall, the contorted pyrene core governs electronic nature of the chiral NG. The twist operation on NGs would be, therefore, a design strategy to alter conventional chirality induction on NGs.

5.
Sci Rep ; 14(1): 16729, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030395

RESUMO

The imaging reactions of resist materials used for nano-patterning have become radiation-chemical reactions, with the shortening of wavelengths of the exposure light sources in lithography systems. The most widely used patterning materials in industrial lithography are chemically amplified resists (CAR). Understanding the deprotonation mechanism of ionized polymers (radical cations) is important for acid generation in CARs. In this study, the dynamics of radical cations in poly(4-hydroxystyrene) (PHS)-type resist polymers, partially and totally protected by tert-butoxycarbonyl (t-BOC) groups, are investigated using a combination of electron pulse radiolysis experiments, acid yield measurements, and quantum chemical calculations. The t-BOC(oxy) group exhibits π-electron-donating behavior in the monomer cation but changes to electron-accepting behavior in the polymer cation, owing to the interaction between substituents. The destabilization of radical cations due to decreased intramolecular charge resonance may contribute to the high deprotonation efficiency of t-BOC-capped PHS polymers.

6.
Chemistry ; : e202401628, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031728

RESUMO

Unsymmetric boron (III) subphthalocyanines with a triselenole ring or a diselenete ring and eight fluoro groups were prepared by the reaction of 5,6-dicyano-4,7-diethylbenzo-[1,2,3]triselenole and tetrafluorophthalonitrile with trichloroborane in xylene. The reaction was accompanied by a contraction of the triselenole ring to the diselenete ring. The substrate, dicyanobenzo[1,2,3]triselenole, was prepared by a new procedure via a photolytic demethylenation reaction of 3,7-diethyl[1,3]diselenolophthalonitrile using a 10 W white LED light. While triselenolosubphthalocyanine was treated by triphenylphosphine to give the diselenete derivative, the reaction of diselenetosubphthalocyanine with Woolion's reagent produced the expanded triselenole ring. The diselenete derivative reacted with tetrakis(triphenylphosphine)platinum to yield the corresponding platinum complex with Se-Pt bonds. Q-band absorption for the products appeared at around λmax=590 nm in the UV-vis spectrum and weak emission was observed at about λe=620 nm. When diselenetosubphthalocyanine was treated with pentachloro antimonate in dichloromethane or sodium metal in hexane/tetrahydrofuran, the solution showed strong ESR signals. The structures of model compounds were optimized using the DFT method with the Gaussian 09 program at the B3LYP/6-31G (d, p) level.

7.
Photochem Photobiol Sci ; 23(7): 1417-1423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703275

RESUMO

Double difunctionalization of a vinyl ether tethered hydroxy or carbamoyl group with electron-deficient alkenes such as acrylonitrile or acrylic esters was achieved by visible-light irradiation in a two-molecule photoredox system. Use of anhydrous acetonitrile solution as a solvent promoted both dimerization of the radical cation of electron-rich alkene with electron-rich alkene and intramolecular nucleophilic addition to generate an electron-rich radical that was added to electron-deficient alkene to furnish the double difunctionalized product. A variety of electronically differentiated rich and deficient alkenes were used in the photoreaction; a simple construction of a complex carbon framework containing acetal from simple alkenes was successful under mild conditions.

8.
J Fluoresc ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441711

RESUMO

We report a unique radical cation formation-based fluorescent chemosensor (E)-N'-(4-(diphenylamino)benzylidene)thiophene-2-carbohydrazide (DBTC) that quantitatively determines Cu2+ based on the RGB model using a smartphone. DBTC exhibited a weak turquoise fluorescence due to fluorescence suppression by amide isomerization. When Cu2+ was added into DBTC, it showed strong light blue fluorescence with a high quantum yield ([Formula: see text] = 0.470). The detection limit of Cu2+ was determined to be 0.40 µM at the concentration range of 0-7.5 µM. In addition, the detection mechanism of DBTC for Cu2+ was demonstrated to be an oxidative cyclization reaction through 1H NMR titration, ESI-MS analysis, and DFT calculation. Remarkably, DBTC could be applied to the quantitative measurement of Cu2+ using a smartphone and RGB analysis. The detection limit was calculated to be 0.05 µM, which is the lowest detection limit among chemosensors that could detect Cu2+ through smartphone-based fluorescence measurements. Additionally, spike and recovery experiments conducted with different concentrations of Cu2+ showed good recovery values. DBTC exhibited its potential as a chemosensor for determining Cu2+ through the application of a smartphone-based platform capable of real-time monitoring.

9.
Chemistry ; 30(26): e202400879, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38437163

RESUMO

N-Heterocyclic carbene (NHC) analogues of Wittig hydrocarbon, [(NHC)(Stil)(NHC)] (3a-c) (NHC = SIPr (1a) = C[N(Dipp)CH2]2, Dipp = 2,6-iPr2C6H3; IPr (1b) = C[N(Dipp)CH]2; Me-IPr (1c) = C[N(Dipp)CMe]2 and Stil = C6H4CHCHC6H4) have been reported as crystalline solids. 3a-c are prepared by two-electron reductions of the corresponding bis-1,3-imidazoli(ni)um bromides [(NHC)(Stil)NHC)](Br)2 (2a-c) with KC8 in >94 % yields. 2a-c are accessible by the nickel catalyzed direct C-C coupling of NHCs (1a-c) with (E)-4,4'-dibromostilbene. One-electron oxidation of 3a,b yields the corresponding radical cations [(NHC)(Stil)NHC)]B(C6F5)4 4a,b. All compounds have been characterized by UV-Vis/NMR/EPR spectroscopy as well as 2a, 3a, and 3b by single crystal X-ray diffraction. The electronic structures of representative systems have been analyzed by quantum chemical calculations.

10.
Angew Chem Int Ed Engl ; 63(12): e202319587, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226832

RESUMO

Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.

11.
Braz. j. med. biol. res ; 41(6): 455-461, June 2008. graf
Artigo em Inglês | LILACS | ID: lil-485857

RESUMO

A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH) decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM) and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R²) ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS)-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays) and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.


Assuntos
Antioxidantes/análise , Benzotiazóis/química , Ácidos Sulfônicos/química , Trifluoperazina/química , Cátions , Indicadores e Reagentes , Reprodutibilidade dos Testes , Espectrofotometria/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA