Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179684

RESUMO

Perimenopausal depression is often accompanied by metabolic disorders, which have long-term harmful effects on women's physical and mental health. Quercetin, a kind of phytoestrogen, has anti-inflammatory, antioxidant, and nerve-protective effects, and can regulate various metabolic disorders. This study aims to investigate the effect of quercetin on hippocampal metabolic disorder in perimenopausal depression rat models based on untargeted metabolomics technology. The rat model of perimenopausal depression was established by ovariectomy combined with chronic unpredictable mild stress (OVX-CUMS). Rats with no difference in sucrose preference were randomly divided into four groups (n = 12): sham group, OVX-CUMS group (model group), model plus quercetin group, and model plus 17ß-estradiol group. At the end of the experiment, hippocampal tissues were collected for untargeted metabolomics analysis, morphological analysis, and detection of related indicators. Metabolomics identified 23 differential metabolites in the model group, and the pathway analysis discovered hippocampus metabolic abnormalities including the metabolism of arachidonic acid metabolism, glycerophospholipid metabolism, and ubiquinone biosynthesis, accompanied by an increase in oxidative stress, inflammation, and lipid peroxidation indicators. At the same time, the morphological characteristics of ferroptosis occurred in the hippocampus in the model group. These abnormal changes were reversed by treatment with quercetin or 17ß-estradiol. Quercetin can improve perimenopausal depression by regulating hippocampal metabolic disorders and reducing hippocampal ferroptosis in rats. These findings provide a new strategy for the use of quercetin in the prevention and treatment of perimenopausal depression.

2.
Front Neurosci ; 17: 1144480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795181

RESUMO

Objective: To investigate the after-effects of 25-Hz repetitive transcranial magnetic stimulation (rTMS) at 60, 100, and 120% resting motor threshold (rMT) on long-term potentiation (LTP) in the rat hippocampus, to clarify the intensity dependence of rTMS, and to determine whether it simultaneously affects learning and memory ability. Methods: Five rats were randomly selected from 70 male Wistar rats, and evoked rMT potentials were recorded in response to magnetic stimulation. The remaining 65 rats were randomly assigned to five groups (n = 13), including sham rTMS, 1 Hz 100% rMT, and 25 Hz rTMS groups with 3 subgroups of 60% rMT, 100% rMT, and 120% rMT. Five rats in each group were anesthetized and induced by a priming TMS-test design for population spike (PS) response of the perforant path-dentate gyrus in the hippocampus; the remaining eight rats in each group were evaluated for object recognition memory in the novel object recognition (NOR) task after the different rTMS protocols. Results: Forty-five percent (approximately 1.03 T) of the magnetic stimulator output was confirmed as rMT in the biceps femoris muscle. The PS ratio was ranked as follows: 25 Hz 100% rMT (267.78 ± 25.71%) > sham rTMS (182 ± 9.4%) >1 Hz 100% rMT (102.69 ± 6.64%) > 25 Hz 120% rMT (98 ± 11.3%) > 25 Hz 60% rMT (36 ± 8.5%). Significant differences were observed between the groups, except for the difference between the 25 Hz 120% rMT and the 1 Hz 100% rMT groups (p = 0.446). LTP was successfully induced over the 60-min recording period only in the sham rTMS and 25 Hz 100% rMT groups. Moreover, these two groups spent more time exploring a novel object than a familiar object during the NOR task (p < 0.001), suggesting long-term recognition memory retention. In the between-group analysis of the discrimination index, the following ranking was observed: 25 Hz 100% rMT (0.812 ± 0.158) > sham rTMS (0.653 ± 0.111) > 25 Hz 120% rMT (0.583 ± 0.216) >1 Hz 100% rMT (0.581 ± 0.145) > 25 Hz 60% rMT (0.532 ± 0.220). Conclusion: The after-effect of 25-Hz rTMS was dependent on stimulus intensity and provided an inverted (V-shaped) bidirectional modulation on hippocampal plasticity that involved two forms of metaplasticity. Furthermore, the effects on the recognition memory ability were positively correlated with those on LTP induction in the hippocampus in vivo.

3.
Brain Res ; 1813: 148428, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263551

RESUMO

Protracted opioid withdrawal is considered to be a traumatic event with many adverse effects. However, little attention is paid to its consequences on the protein expression in the rat brain. A better understanding of the changes at the molecular level is essential for designing future innovative drug therapies. Our previous proteomic data indicated that long-term morphine withdrawal is associated with altered proteins functionally involved in energy metabolism, cytoskeletal changes, oxidative stress, apoptosis, or signal transduction. In this study, we selected peroxiredoxin II (PRX II) as a marker of oxidative stress, 14-3-3 proteins as adaptors, and creatine kinase-B (CK-B) as a marker of energy metabolism to detect their amounts in the brain cortex and hippocampus isolated from rats after 3-month (3 MW) and 6-month morphine withdrawal (6 MW). Methodically, our work was based on immunoblotting accompanied by 2D resolution of PRX II and 14-3-3 proteins. Our results demonstrate significant upregulation of PRX II in the rat brain cortex (3-fold) and hippocampus (1.3-fold) after 3-month morphine abstinence, which returned to the baseline six months since the drug was withdrawn. Interestingly, the level of 14-3-3 proteins was downregulated in both brain areas in 3 MW samples and remained decreased only in the brain cortex of 6 MW. Our findings suggest that the rat brain cortex and hippocampus exhibit the oxidative stress-induced vulnerability represented by compensatory upregulation of PRX II after three months of morphine withdrawal.


Assuntos
Dependência de Morfina , Síndrome de Abstinência a Substâncias , Ratos , Animais , Morfina/metabolismo , Proteínas 14-3-3/metabolismo , Regulação para Cima , Proteômica , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacologia , Hipocampo/metabolismo , Encéfalo/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo
4.
Front Neurosci ; 17: 1069640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875640

RESUMO

Recent studies have suggested a role for N6-methyladenosine (m6A) modification in neurological diseases. Hypothermia, a commonly used treatment for traumatic brain injury, plays a neuroprotective role by altering m6A modifications. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was applied to conduct a genome-wide analysis of RNA m6A methylation in the rat hippocampus of Sham and traumatic brain injury (TBI) groups. In addition, we identified the expression of mRNA in the rat hippocampus after TBI with hypothermia treatment. Compared with the Sham group, the sequencing results of the TBI group showed that 951 different m6A peaks and 1226 differentially expressed mRNAs were found. We performed cross-linking analysis of the data of the two groups. The result showed that 92 hyper-methylated genes were upregulated, 13 hyper-methylated genes were downregulated, 25 hypo-methylated genes were upregulated, and 10 hypo-methylated genes were downregulated. Moreover, a total of 758 differential peaks were identified between TBI and hypothermia treatment groups. Among these differential peaks, 173 peaks were altered by TBI and reversed by hypothermia treatment, including Plat, Pdcd5, Rnd3, Sirt1, Plaur, Runx1, Ccr1, Marveld1, Lmnb2, and Chd7. We found that hypothermia treatment transformed some aspects of the TBI-induced m6A methylation landscape of the rat hippocampus.

5.
Neuropharmacology ; 227: 109423, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690323

RESUMO

It is widely acknowledged that ethanol (EtOH) can alter many neuronal functions, including synaptic signaling, firing discharge, and membrane excitability, through its interaction with multiple membrane proteins and intracellular pathways. Previous work has demonstrated that EtOH enhances the firing rate of hippocampal GABAergic interneurons and thus the presynaptic GABA release at CA1 and CA3 inhibitory synapses through a positive modulation of the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. Activation of HCN channels produce an inward current, commonly called Ih, which plays an essential role in generating/regulating specific neuronal activities in GABAergic interneurons and principal glutamatergic pyramidal neurons such as those in the CA3 subregion. Since the direct effect of EtOH on HCN channels expressed in CA3 pyramidal neurons was not thoroughly elucidated, we investigated the possible interaction between EtOH and HCN channels and the impact on excitability and postsynaptic integration of these neurons. Patch-clamp recordings were performed in single CA3 pyramidal neurons from acute male rat coronal hippocampal slices. Our results show that EtOH modulates HCN-mediated Ih in a concentration-dependent and bi-directional manner, with a positive modulation at lower (20 mM) and an inhibitory action at higher (60-80 mM) concentrations. The modulation of Ih by EtOH was mimicked by forskolin, antagonized by different drugs that selectively interfere with the AC/cAMP/PKA intracellular pathway, as well as by the selective HCN inhibitor ZD7288. Altogether, these data further support the evidence that HCN channels may represent an important molecular target through which EtOH may regulate neuronal activity.


Assuntos
Etanol , Células Piramidais , Ratos , Masculino , Animais , Etanol/farmacologia , Neurônios/metabolismo , Hipocampo/metabolismo , Interneurônios , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499675

RESUMO

Chronic social isolation (CSIS)-induced alternation in synaptic and mitochondrial function of specific brain regions is associated with major depressive disorder (MDD). Despite the wide number of available medications, treating MDD remains an important challenge. Although fluoxetine (Flx) is the most frequently prescribed antidepressant, its mode of action is still unknown. To delineate affected molecular pathways of depressive-like behavior and identify potential targets upon Flx treatment, we performed a comparative proteomic analysis of hippocampal purified synaptic terminals (synaptosomes) of rats exposed to six weeks of CSIS, an animal model of depression, and/or followed by Flx treatment (lasting three weeks of six-week CSIS) to explore synaptic protein profile changes. Results showed that Flx in controls mainly induced decreased expression of proteins involved in energy metabolism and the redox system. CSIS led to increased expression of proteins that mainly participate in Ca2+/calmodulin-dependent protein kinase II (Camk2)-related neurotransmission, vesicle transport, and ubiquitination. Flx treatment of CSIS rats predominantly increased expression of proteins involved in synaptic vesicle trafficking (exocytosis and endocytosis), and energy metabolism (glycolytic and mitochondrial respiration). Overall, these Flx-regulated changes in synaptic and mitochondrial proteins of CSIS rats might be critical targets for new therapeutic development for the treatment of MDD.


Assuntos
Transtorno Depressivo Maior , Fluoxetina , Ratos , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Vesículas Sinápticas/metabolismo , Proteômica , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Metabolismo Energético
7.
J Food Biochem ; 46(9): e14217, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35543175

RESUMO

This study aimed to evaluate the potential neuroprotective effects of ketogenic diet (KD) against the neuronal disruptions induced by SE in lithium-pilocarpine rat model of status epilepticus (SE). Four groups of female rats include; groups I and III received standard diet and groups II and IV received KD for 3 weeks. Groups I and II were left untreated, while groups III and IV were injected with LiCl (127 mg/kg, i.p.) followed by pilocarpine HCl (10 mg/kg, i.p.) 18-24 h later, repeatedly, till induction of SE. 72 h post-SE, KD effectively ameliorated the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters and the oxidative stress indices, increased adenine nucleotides and decreased immunoreactivity of iNOS, TNFα, glial fibrillary acidic protein, and synaptophysin. Thiswas in association with improvement in inflammatory response and neuronal tissue characteristics in hippocampus of SE rats. Histological changes showed preservation of neuronal integrity. These findings highlight the protective effects of KD in the acute phase post-SE via ameliorating biochemical and histological changes involved. PRACTICAL APPLICATIONS: Epilepsy is the fourth most common neurological disorder that requires lifelong treatment. It stigmatizes patients and their families. The use of the ketogenic diet (KD) as a therapy for epilepsy developed from observations that fasting could reduce seizures. From 1920s, the KD was a common epilepsy treatment until it was gradually superseded by anticonvulsant drugs so that by the 1980s it was rarely used. However, there has been a resurgence of interest and usage of the KD for epilepsy since the turn of the century. Despite its long history, the mechanisms by which KD exhibits its anti-seizure action are not fully understood. Our study aims to identify the mechanism of KD which may help further studies to achieve the same benefits with a drug or supplement to overcome its unpalatability and gastrointestinal side effects.


Assuntos
Dieta Cetogênica , Epilepsia , Estado Epiléptico , Animais , Epilepsia/induzido quimicamente , Feminino , Hipocampo , Pilocarpina/efeitos adversos , Ratos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
8.
J Biophotonics ; 15(7): e202100377, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333440

RESUMO

The structural effects of vitamin A-deficiency were examined on the molecular profiles of biomolecules of male rat hippocampus during prolonged ethanol intake/withdrawal using FT-IR spectroscopy coupled with chemometrics. Liquid ethanol diet with/without vitamin A was maintained to adult rats for 3-months. The rats were decapitated at different ethanol withdrawal times and FT-IR spectra were obtained. Ethanol consumption/withdrawal produced significant changes in proteins' conformations, while having insignificant structural effects on lipids. In vitamin A deficiency, ethanol produced structural changes in lipids by lipid ordering especially in the early-ethanol withdrawal. Furthermore, an increase in lipid and protein content, saturated/unsaturated lipid ratio, a decrease in nucleic acids content and decrease in membrane fluidity were observed. These changes were less severe in the presence of Vitamin A. This study is clinically important for individuals with vitamin A deficiency because they have to be more cautious when consuming alcohol to protect themselves from cognitive dysfunctions.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Deficiência de Vitamina A , Alcoolismo/metabolismo , Animais , Quimiometria , Etanol/efeitos adversos , Lipídeos , Masculino , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Síndrome de Abstinência a Substâncias/metabolismo , Vitamina A
9.
ACS Nano ; 15(8): 12869-12879, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34339180

RESUMO

Fluorescence imaging is a critical tool to understand the spatial distribution of biomacromolecules in cells and in vivo, providing information on molecular dynamics and interactions. Numerous valuable insights into biological systems have been provided by the specific detection of various molecular species. However, molecule-selective detection is often hampered by background fluorescence, such as cell autofluorescence and fluorescence leakage from molecules stained by other dyes. Here we describe a method for all-optical selective imaging of fluorescent nanodiamonds containing nitrogen-vacancy centers (NVCs) for wide-field fluorescence bioimaging. The method is based on the fact that the fluorescence intensity of NVCs strictly depends on the configuration of ground-state electron spins, which can be controlled by changing the pulse recurrence intervals of microsecond excitation laser pulses. Therefore, by using regulated laser pulses, we can oscillate the fluorescence from NVCs in a nanodiamond, while oscillating other optical signals in the opposite phase to NVCs. As a result, we can reconstruct a selective image of a nanodiamond by using a series of oscillated fluorescence images. We demonstrate application of the method to the selective imaging of nanodiamonds in live cells, in microanimals, and on a hippocampal slice culture obtained from a rat. Our approach potentially enables us to achieve high-contrast images of nanodiamond-labeled biomolecules with a signal-to-background ratio improved by up to 100-fold over the standard fluorescence image, thereby providing a more powerful tool for the investigation of molecular dynamics in cells and in vivo.


Assuntos
Nanodiamantes , Ratos , Animais , Imagem Óptica , Nitrogênio , Corantes , Corantes Fluorescentes
10.
Cell Calcium ; 96: 102399, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812310

RESUMO

Neuronal Ca2+ signals are fundamental for synaptic transmission and activity-dependent changes in gene expression. Voltage-gated Ca2+ channels and N-methyl-d-aspartate receptors play major roles in mediating external Ca2+ entry during action potential firing and glutamatergic activity. Additionally, the inositol-1,4,5-trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) channels expressed in the endoplasmic reticulum (ER) also contribute to the generation of Ca2+ signals in response to neuronal activity. The ER forms a network that pervades the entire neuronal volume, allowing intracellular Ca2+ release in dendrites, soma and presynaptic boutons. Despite its unique morphological features, the contributions of ER structure and of ER-shaping proteins such as atlastin - an ER enriched GTPase that mediates homotypic ER tubule fusion - to the generation of Ca2+ signals in dendrites remains unreported. Here, we investigated the contribution of RyR-mediated Ca2+ release to IP3-generated Ca2+ signals in dendrites of cultured hippocampal neurons. We also employed GTPase activity-deficient atlastin-2 (ATL2) mutants to evaluate the potential role of atlastin on Ca2+ signaling and ER-resident Ca2+ channel distribution. We found that pharmacological suppression of RyR channel activity increased the rising time and reduced the magnitude and propagation of IP3-induced Ca2+ signals. Additionally, ATL2 mutants induced specific ER morphological alterations, delayed the onset and increased the rising time of IP3-evoked Ca2+ signals, and caused RyR2 and IP3R1 aggregation and RyR2 redistribution. These results indicate that both RyR and ATL2 activity regulate IP3-induced Ca2+ signal dynamics through RyR-mediated Ca2+-induced Ca2+ release, ER shaping and RyR2 distribution.


Assuntos
Sinalização do Cálcio/fisiologia , Dendritos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Environ Sci Pollut Res Int ; 28(19): 23958-23974, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33398734

RESUMO

Contaminants of emerging concern (CECs) are released daily into surface water, and their recalcitrant properties often require tertiary treatment. Electrochemical oxidation (EO) is often used as an alternative way to eliminate these compounds from water, although the literature barely addresses the neurotoxic effects of residual by-products. Therefore, this study investigated the performance of EO in the removal of five CECs (alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine) and performed neurotoxicity evaluations of residual EO by-products in Wistar rat brain hippocampal slices. Platinum-coated titanium (Ti/Pt) and boron-doped diamond (BDD) electrodes were studied as anodes. Different current densities (13-75 A m-2), pH values (3-10), electrolyte dosages (NaCl), and matrix effects were assessed using municipal wastewater (MWW). The drugs were successfully degraded after 5 min of reaction for both the Ti/Pt and BDD electrodes when a current density of 75 A m-2 was applied. For Ti/Pt and BDD, neutral and acidic pH demonstrated better CEC removal performance, respectively. Compound degradation using MWW achieved 40% removal after 120 min for Ti/Pt and ranged between 33 and 52% for the BDD anode. For Ti/Pt, neurotoxicity studies using MWW indicated a decrease in reactive oxygen species (ROS) signals. However, when an artificial cerebrospinal fluid (ACSF) medium was reapplied, the signal recovered and increased to a value above the baseline, indicating that cells recovered part of their normal activity but remained in a different condition. For the BDD anode, the treated MWW did not cause significant ROS production variations, suggesting that he EO was effective in eliminating the toxicity of the treated solution.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Diamante , Eletrodos , Oxirredução , Ratos , Ratos Wistar , Águas Residuárias , Poluentes Químicos da Água/análise
12.
Biomedicines ; 10(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052759

RESUMO

The knowledge about proteome changes proceeding during protracted opioid withdrawal is lacking. Therefore, the aim of this work was to analyze the spectrum of altered proteins in the rat hippocampus in comparison with the forebrain cortex after 6-month morphine withdrawal. We utilized 2D electrophoretic workflow (Pro-Q® Diamond staining and Colloidal Coomassie Blue staining) which was preceded by label-free quantification (MaxLFQ). The phosphoproteomic analysis revealed six significantly altered hippocampal (Calm1, Ywhaz, Tuba1b, Stip1, Pgk1, and Aldoa) and three cortical proteins (Tubb2a, Tuba1a, and Actb). The impact of 6-month morphine withdrawal on the changes in the proteomic profiles was higher in the hippocampus-14 proteins, only three proteins were detected in the forebrain cortex. Gene Ontology (GO) enrichment analysis of differentially expressed hippocampal proteins revealed the most enriched terms related to metabolic changes, cytoskeleton organization and response to oxidative stress. There is increasing evidence that energy metabolism plays an important role in opioid addiction. However, the way how morphine treatment and withdrawal alter energy metabolism is not fully understood. Our results indicate that the rat hippocampus is more susceptible to changes in proteome and phosphoproteome profiles induced by 6-month morphine withdrawal than is the forebrain cortex.

13.
Eur J Neurosci ; 54(8): 6815-6825, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32463939

RESUMO

Deregulation of GSK-3ß is strongly implicated in a variety of serious brain conditions, such as Alzheimer disease, bipolar disorder and schizophrenia. To understand how GSK-3ß becomes dysregulated in these conditions, it is important to understand its physiological functions in the central nervous system. In this context, GSK-3ß plays a role in the induction of NMDA receptor-dependent long-term depression (LTD) and several substrates for GSK-3ß have been identified in this form of synaptic plasticity, including KLC-2, PSD-95 and tau. Stabilization of NMDA receptors at synapses has also been shown to involve GSK-3ß, but the substrates involved are currently unknown. Recent work has identified phosphatidylinositol 4 kinase type IIα (PI4KIIα) as a neuronal GSK-3ß substrate that can potentially regulate the surface expression of AMPA receptors. In the present study, we investigated the synaptic role of PI4KIIα in organotypic rat hippocampal slices. We found that knockdown of PI4KIIα has no effect on synaptic AMPA receptor-mediated synaptic transmission but substantially reduces NMDA receptor-mediated synaptic transmission. Furthermore, the ability of the selective GSK-3 inhibitor, CT99021, to reduce the amplitude of NMDA receptor-mediated currents was occluded in shRNA-PI4KIIα transfected neurons. The effects of knocking down PI4KIIα were fully rescued by a shRNA-resistant wild-type construct, but not by a mutant construct that cannot be phosphorylated by GSK-3ß. These data suggest that GSK-3ß phosphorylates PI4KIIα to stabilize NMDA receptors at the synapse.


Assuntos
1-Fosfatidilinositol 4-Quinase , Receptores de N-Metil-D-Aspartato , Animais , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Fosforilação , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
14.
J Comp Neurol ; 528(15): 2583-2594, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246847

RESUMO

Depression is a mental illness which is harmful seriously to the society. This study investigated the effects of fluoxetine on the CNPase+ oligodendrocytes in hippocampus of the depressed rats to explore the new target structure of antidepressants. Male Sprague-Dawley rats were used to build chronic unpredictable stress (CUS) depressed model of rats. Then, the depressed rats were divided into the CUS standard group and the CUS + fluoxetine (CUS/FLX) group. The CUS/FLX group was treated with fluoxetine at dose of 5 mg/(kg·d) from the fifth week to seventh week. After 7 weeks CUS intervention, the sucrose preference of the CUS standard group was significantly lower than that of the control group and the CUS/FLX group. The stereological results showed that the total number of the CNPase+ cells in the CA1, CA3, and DG subfield of the hippocampus in the CUS standard group were significantly decreased, when compared with the CNPase+ cells in the control group. However, the total number of the CNPase+ cells in the CA1 and CA3 subfield of the hippocampus in the CUS standard group was significantly decreased when it compared with CNPase+ cells in the CUS/FLX group. Therefore, fluoxetine might prevent the loss of CNPase+ oligodendrocytes in CA1 and CA3 subfields of hippocampus of the depressed rats. The oligodendrocytes in hippocampus may play an important role in the pathogenesis of depression. The current result might provide structural basis for the future studies that search for new antidepressant strategies.


Assuntos
Antidepressivos de Segunda Geração/uso terapêutico , Depressão/tratamento farmacológico , Fluoxetina/uso terapêutico , Hipocampo/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Depressão/enzimologia , Depressão/psicologia , Fluoxetina/farmacologia , Hipocampo/enzimologia , Masculino , Oligodendroglia/enzimologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/enzimologia , Estresse Psicológico/psicologia
15.
Seizure ; 76: 131-136, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066091

RESUMO

PURPOSE: To evaluate the meaning of immunostaining of rat hippocampus with respect to clinical manifestations, Status epilepticus(SE)severity, treatment, and prognosis of New-Onset Refractory Status Epilepticus(NORSE) patients. METHODS: Consecutive patients with cryptogenic NORSE admitted to the neuro-intensive care unit (NICU) between January 2015 and October 2018 were screened, and those who had serum and cerebrospinal fluid (CSF) immunostaining were included. Subsequently, the patients were classified into positive and negative immunostain groups. Immunotherapy was initiated in patients who progressed to super-RSE (SRSE). The demographic, and clinical, and immunostaining data were collected. The prognosis was evaluated by modified Rankin scale (mRS) at discharge (short-term prognosis) and 6 months (long-term prognosis), with mRS score ≤2 defined as the favorable outcome. The clinical manifestations, treatment response, and prognosis were compared between the patients with positive and negative immunostains. RESULTS: 4/18 patients had positive immunostaining on both CSF and serum, 8 (had positive immunostaining on serum only, while 6 had negative immunostaining on serum and CSF. Twelve (66.7 %) patients progressed to SRSE, with no difference between the positive and negative immunostaining groups (P = 1.000). 7/18 patients had a favorable outcome at discharge and 11/18 after 6 months. No significant difference on the prognosis was detected between patients with positive and negative serum/CSF immunostaining and between the patients with or without immunotherapy at discharge or 6-month follow-up (P = 0.657/P = 0.502, P = 0.445/P = 0.829, P = 0.622, P = 0.567, respectively). CONCLUSIONS: The immunostaining on serum and/or CSF from NORSE patients did not indicate the progression to SRSE and clinical outcomes.

16.
Eur J Neurosci ; 51(1): 34-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30614107

RESUMO

Behaviors, such as sleeping, foraging, and learning, are controlled by different regions of the rat brain, yet they occur rhythmically over the course of day and night. They are aligned adaptively with the day-night cycle by an endogenous circadian clock in the suprachiasmatic nucleus (SCN), but local mechanisms of rhythmic control are not established. The SCN expresses a ~24-hr oscillation in reduction-oxidation that modulates its own neuronal excitability. Could circadian redox oscillations control neuronal excitability elsewhere in the brain? We focused on the CA1 region of the rat hippocampus, which is known for integrating information as memories and where clock gene expression undergoes a circadian oscillation that is in anti-phase to the SCN. Evaluating long-term imaging of endogenous redox couples and biochemical determination of glutathiolation levels, we observed oscillations with a ~24 hr period that is 180° out-of-phase to the SCN. Excitability of CA1 pyramidal neurons, primary hippocampal projection neurons, also exhibits a rhythm in resting membrane potential that is circadian time-dependent and opposite from that of the SCN. The reducing reagent glutathione rapidly and reversibly depolarized the resting membrane potential of CA1 neurons; the magnitude is time-of-day-dependent and, again, opposite from the SCN. These findings extend circadian redox regulation of neuronal excitability from the SCN to the hippocampus. Insights into this system contribute to understanding hippocampal circadian processes, such as learning and memory, seizure susceptibility, and memory loss with aging.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Animais , Hipocampo , Neurônios , Oxirredução , Ratos
17.
J Mech Behav Biomed Mater ; 98: 121-130, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229904

RESUMO

We use micromanipulation techniques and real-time particle tracking to develop an approach to study specific attributes of neuron mechanics. We use a mechanical probe composed of a hollow micropipette with its tip fixed to a functionalized bead to induce the formation of a neurite in a sample of rat hippocampal neurons. We then move the sample relative to the pipette tip, elongating the neurite while simultaneously measuring its tension by optically tracking the deflection of the beaded tip. By calibrating the spring constant of the pipette, we can convert this deflection to a force. We use this technique to obtain uniaxial strain measurements of induced neurites and investigate the dependence of the force-extension relationship on mechanical pull speed. We show that in the range of pull speeds studied (0.05-1.8 µm/s), the variation in the work to extend a neurite 10 µm is consistent across pull speeds. We do not observe statistically significant rate-dependent effects in the force-extension profiles; instead we find the same quadratic behaviour (with parameters drawn from the same distributions) at each pull speed.


Assuntos
Teste de Materiais/métodos , Fenômenos Mecânicos , Neuritos/metabolismo , Animais , Fenômenos Biomecânicos , Hipocampo/citologia , Ratos , Estresse Mecânico
18.
Neurobiol Dis ; 127: 582-590, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30910746

RESUMO

Soluble synaptotoxic aggregates of the main pathological proteins of Alzheimer's disease, amyloid ß-protein (Aß) and tau, have rapid and potent inhibitory effects on long-term potentiation (LTP). Although the promotion of synaptic weakening mechanisms, including long-term depression (LTD), is posited to mediate LTP inhibition by Aß, little is known regarding the action of exogenous tau on LTD. The present study examined the ability of different assemblies of full-length human tau to affect LTD in the dorsal hippocampus of the anaesthetized rat. Unlike Aß, intracerebroventricular injection of soluble aggregates of tau (SτAs), but not monomers or fibrils, potently increased the threshold for LTD induction in a manner that required cellular prion protein. However, MTEP, an antagonist of the putative prion protein coreceptor metabotropic glutamate receptor 5, did not prevent the disruption of synaptic plasticity by SτAs. In contrast, systemic treatment with Ro 25-6981, a selective antagonist at GluN2B subunit-containing NMDA receptors, reduced SτA-mediated inhibition of LTD, but not LTP. Intriguingly, SτAs completely blocked Aß-facilitated LTD, whereas a subthreshold dose of SτAs facilitated Aß-mediated inhibition of LTP. Overall, these findings support the importance of cellular prion protein in mediating a range of, sometimes opposing, actions of soluble Aß and tau aggregates with different effector mechanisms on synaptic plasticity.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Hipocampo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Agregados Proteicos/fisiologia , Proteínas tau/metabolismo , Animais , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Piridinas/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Tiazóis/farmacologia
19.
Eur J Neurosci ; 49(11): 1418-1435, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30588669

RESUMO

The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na+ ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information.


Assuntos
Região CA1 Hipocampal/metabolismo , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Neurônios/metabolismo , Canais de Sódio/metabolismo , Animais , Feminino , Ratos , Ratos Wistar
20.
Zhonghua Yu Fang Yi Xue Za Zhi ; 52(10): 976-982, 2018 Oct 06.
Artigo em Chinês | MEDLINE | ID: mdl-30392313

RESUMO

Objective: To observe the cellular damage of low-dose combined exposure to Hg, Pb and Cd on hippocampal neurons in rat. Methods: SH-SY5Y cells were randomly divided into 8 groups by 2×2×2 factorial design: control group, Pb exposure group, Hg exposure group, Pb+Hg exposure group, Pb+Cd exposure group, Hg+Cd exposure group and Pb+Cd+Hg exposure group. And the cell viabilities were measured. On this basis, an animal model was established. Twenty eight-week-old SD pregnant rats were randomly divided into four groups by random number table, and five in each group: the control group(distilled water), 1-fold metal mixture exposure group (1×MM, poisoning solution containing mercury chloride 0.15 mg/L, lead acetate trihydrate 25 mg/L, cadmium chloride 7.5 mg/L), 5-fold metal mixture exposure group (5×MM, poisoning solution containing mercury chloride 0.75 mg/L, lead acetate trihydrate 125.00 mg/L, cadmium chloride 37.50 mg/L), 10-fold metal mixture exposure group (10×MM, poisoning solution containing mercury chloride 1.50 mg/L, lead acetate trihydrate 250.00 mg/L, cadmium chloride 75.00 mg/L). Pregnant rats drank water until delivery. Twenty male pups were selected and exposed to these metals through breast milk until weaned. The heavy metals dose of poisoning water was adjusted, and then the weaned rats were exposed to heavy metals via drinking poisoning water until adulthood (postnatal day 83). The blood samples and brain hippocampus samples were collected to observe the ultrastructural changes of hippocampus, and to determine the levels of Hg, Pb and Cd in blood. In addition, apoptosis rate and fluorescence intensity of reactive oxygen species and intracellular free calcium concentration ([Ca(2+)](i)) in hippocampal neurons were measured. Results: Cellular factorial design analysis showed that Hg+Pb+Cd (at no observed adverse effect level, 1.0, 0.5 and 0.1 µmol/L, respectively)had a interaction on cell viability after 48 or 72 hours of combined exposure (P<0.05). The results of ultrastructure showed that mitochondria decreased, ridges and matrixes gradually dissolved in rat hippocampal neurons of 5×MM group; nuclear chromatin aggregated, more ridges and matrixes dissolved and the mitochondria also decreased in rat hippocampal neurons of 10×MM group. The concentration of Hg, Pb and Cd in the blood of 1×MM group, 5×MM group and 10×MM group were higher than those in the control group, and the differences were statistically significant (P<0.001). There was no significant difference in apoptosis rate between the 1×MM group and the control group. The apoptosis rate of 5×MM group and 10×MM group was higher than that in the control group, and the differences were statistically significant (P<0.001). There was no statistically significant difference in the fluorescence intensity of reactive oxygen species in hippocampal neurons of the 1×MM group and the control group. The fluorescence intensity of reactive oxygen species in the 5×MM group and the 10×MM group was higher than that in the control group, the difference was statistically significant (P<0.05). There was no significant difference in the fluorescence intensity of [Ca(2+)](i) between the 1×MM group and the control group. The fluorescence intensity values of [Ca(2+)](i) in the 5×MM group and the 10×MM group were higher than the control group, the differences were statistically significant (P<0.001). Conclusion: Low-level combined exposure to Hg, Pb, and Cd caused synergistic neurotoxic damage, and the process may be related to the changes of neuronal apoptosis, reactive oxide species, and [Ca(2+)](i) levels.


Assuntos
Cádmio/toxicidade , Exposição Ambiental/efeitos adversos , Hipocampo/patologia , Chumbo/toxicidade , Mercúrio/toxicidade , Neurônios/patologia , Síndromes Neurotóxicas/etiologia , Animais , Feminino , Humanos , Masculino , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA