Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 327: 138540, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996925

RESUMO

As the primary inorganic by-product species of ClO2, chlorite is believed to have negative toxicological effects on human health and therefrom greatly limits the wide application of ClO2 in water treatment. The synergistic trimethoprim (TMP) removal concerning degradation efficiency, energy consumption and disinfection by-products (DBPs) formation in the UV activated chlorite process accompanied by the simultaneously elimination of chlorite was comprehensively evaluated. UV/chlorite integrated process removed TMP far more rapidly than UV (1.52%) or chlorite (3.20%) alone due to the endogenous radicals (Cl•, ClO• and •OH), the contributing proportions of which were 31.96%, 19.20% and 44.12%. The second-order rate constants of TMP reaction with Cl•, ClO• and •OH were determined to be 1.75 × 1010, 1.30 × 109 and 8.66 × 109 M-1 s-1. The effects of main water parameters including chlorite dosage, UV intensity, pH as well as water matrixes (nature organic matter, Cl- and HCO3-) were examined. kobs obeyed the order as UV/Cl2>UV/H2O2≈UV/chlorite>UV, and the cost ranking via electrical energy per order (EE/O, kWh m-3 order-1) parameter was UV/chlorite (3.7034) > UV/H2O2 (1.1625) >UV/Cl2 (0.1631). The operational scenarios can be optimized to achieve the maximum removal efficiencies and the minimum energy costs. The destruction mechanisms of TMP were proposed by LC-ESI-MS analysis. The overall weighted toxicity in subsequent disinfection was assessed as UV/Cl2>UV/chlorite > UV, the values of which in post-chlorination were 6.2947, 2.5806 and 1.6267, respectively. Owing to the vital roles of reactive chlorine species (RCS), UV/chlorite displayed far higher TMP degradation efficiency than UV, and concurrently presented much less toxicity than UV/Cl2. In an effort to determine the viability of the promising combination technology, this study was devoted to reduce and reuse chlorite and synchronously realize the contaminants degradation efficiently.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Desinfecção , Peróxido de Hidrogênio , Trimetoprima , Raios Ultravioleta , Halogenação , Cloro , Poluentes Químicos da Água/análise , Oxirredução
2.
J Hazard Mater ; 437: 129371, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35717814

RESUMO

Three different UV-LED wavelengths (265, 310, and 365 nm) were used in the UV-LED/chlorine reaction to investigate the degradation mechanism of iopromide (IPM) at different wavelengths, a representative iodinated contrast media compound. The degradation rate (k'IPM) increased from pH 6-8 at 265 nm, but, decreased as the pH increased up to 9 at 310 nm and 365 nm. Radical scavenging experiments showed that reactive chlorine species (RCS) are the dominant radical species at all wavelengths, but a higher contribution of OH• was observed at lower pH and longer wavelengths. The contribution of RCS decreased but the contribution of OH• increased as the wavelength increased. Among RCS, the largest contribution was found to be ClO•. Total nine transformation products (TPs) were identified by LC-QTOF-MS during the UV-LED/chlorine reaction at 265 nm. Based on the identified TPs and their time profiles, we proposed a degradation pathway of IPM during UV-LED/chlorine reaction. The Microtox test using V. fischeri showed that no significant increase in toxicity was observed at all wavelengths. The synergistic effect of UV-LED and chlorine was greater at a higher wavelength by the electrical efficiency per order (EEO) calculation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloretos , Cloro/química , Iohexol/análogos & derivados , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/química
3.
Environ Sci Pollut Res Int ; 29(36): 54407-54420, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35301631

RESUMO

Sulfadiazine (SDZ) is a typical persistent sulfonamide antibiotic, which has been widely detected in natural drinking water sources. The degradation of SDZ by UV/Oxone (potassium monopersulfate compound) was explored in this study. The results showed that Cl- can effectively activate PMS to promote rapid degradation of SDZ in the Oxone process by forming chlorine in the system. Radical quenching tests suggested that radical oxidation, including HO•, SO4•-, and reactive chlorine species (RCS), played an important role by UV/Oxone. It further verified that concentration and distribution of HO•, SO4•-, and RCS were pH-dependent; RCS act as a major contributor at pH 6.0 and pH 7.0 to degrade SDZ in this process. The SDZ degradation rate was firstly increased and then decreased by Cl- and HCO3- (0-10 mM); HA (0-10 mg L-1) exhibited insignificant influence on SDZ degradation. The degradation pathways of SDZ during UV/Oxone and formation pathways of five disinfection byproducts during subsequent chlorination were proposed. The possible DBP precursors formed by SO2 extrusion, hydroxylation, and chlorination of SDZ during UV/Oxone pre-oxidation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/química , Desinfecção/métodos , Halogenação , Cinética , Oxirredução , Estresse Oxidativo , Sulfadiazina , Ácidos Sulfúricos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos
4.
Ultrason Sonochem ; 83: 105918, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066332

RESUMO

In this work, after exploring the first report on the synergism of combining ultrasound (US: 600 kHz) and chlorine toward the degradation of Allura Red AC (ARAC) textile dye, as a contaminant model, the impact of various mineral water constituents (Cl-, SO42-, NO3-, HCO3- and NO2-) and natural organic matter, i.e., humic acid (HA), on the performance of the US/chlorine sono-hybrid process was assessed for the first time. Additionally, the process effectiveness was evaluated in a real natural mineral water (NMW) of a known composition. Firstly, it was found that the combination of ultrasound and chlorine (0.25 mM) at pH 5.5 in cylindrical standing wave ultrasonic reactor (f = 600 kHz and Pe = 120 W, equivalent to PA âˆ¼ 2.3 atm) enhanced in a drastic manner the degradation rate of ARAC; the removal rate being 320% much higher than the arithmetic sum of the two separated processes. The source of the synergistic effect was attributed to the effective implication of reactive chlorine species (RCS: Cl, ClO and Cl2-) in the degradation process. Radical probe technique using nitrobenzene (NB) as a specific quencher of the acoustically generated hydroxyl radical confirmed the dominant implication of RCS in the overall degradation rate of ARAC by US/chlorine system. Overall, the presence of humic acid and mineral anions decreased the efficiency of the sono-hybrid process; however, the inhibition degrees depend on the type and the concentration of the selected additives. The reaction of these additives with the generated RCS is presumably the reason for the finding results. The inhibiting effect of Cl-, SO42-, NO3- and NO2- was more pronounced in US/chlorine process as compared to US alone, whereas the inverse scenario was remarked for the effect of HA. These outcomes were associated to the difference in the reactivity of HA and mineral anions toward RCS and OH oxidizing species, in addition to the more selective character of RCS than hydroxyl radical. The displacement of the reaction zone with increasing the additive concentration may also be another influencing factor that favors competition reactions, which subsequently reduce the available reactive species in the reacting medium. The NMW exerted reductions of 43% and 10% in the process efficiency at pH 5.5 and 8, respectively, thereby confirming the RCS-quenching mechanism by the water matrix constituents. Hence, this work provided a precise understanding of the overall mechanism of chlorine activation by ultrasound to promote organic compounds degradation in water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/química , Matéria Orgânica Dissolvida , Cinética , Minerais , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos
5.
Sci Total Environ ; 812: 152551, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952077

RESUMO

The UV/Cl2 process (also known as chlorine photolysis, which is the combination of chlorine and simultaneous irradiation of UV light) is conventionally applied at acidic mediums for drinking water treatment and further treatment of wastewater effluents for secondary reuse. This is because the quantum yield of HO• from HOCl (ϕHO•, 254 = 1.4) is greater than the one from OCl- (ϕHO•, 254 = 0.278) by approximately 5 times. Moreover, chlorine photolysis in acidic mediums also tends to have lower radical quenching rates than that of their alkaline counterparts by up to 1000 times. The aim of this research is to investigate the applicability of the UV/Cl2 process by assessing its efficacy on the removal of trimethoprim (TMP) at not only acidic to neutral conditions (pH 6-7), but also alkaline mediums (pH 8-9). At alkaline pH, free chlorine exists as OCl- and since OCl- has a higher molar absorption coefficient as compared to HOCl at higher wavelengths, there would be higher reactive chlorine species (RCS) formation and contribution. TMP removal followed pseudo-first order kinetics and depicted that a maximum fluence based constant (kf' = 0.275 cm2/mJ) was obtained using 42.25 µM (3 mg/L) of chlorine at pH 9, with an irradiation of 275 nm. At alkaline conditions, chlorine photolysis performance followed the trend of UV (275)/Cl2 > UV (265)/Cl2 > UV (310)/Cl2 > UV (254)/Cl2. RCS like Cl•, Cl2-• and ClO• contributed to the degradation of TMP. When the pH was increased from 6 to 8, contribution from hydroxyl radicals (HO• ) was decreased whilst that of RCS was increased. Application of UV (310)/Cl2 had the highest HO• generation, contributing to TMP removals up to 13% to 48% as compared to 5% to 27% in UV (254, 265, 275)/Cl2 systems at pH 6-9. Artificial neural networks modelling was found to be able to verify and predict the contribution of HO• and RCS conventionally calculated via the general kinetic equations in the UV/Cl2 system at 254, 265, 275 and 310 nm.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Cinética , Redes Neurais de Computação , Oxirredução , Trimetoprima , Raios Ultravioleta
6.
J Biol Chem ; 288(45): 32574-32584, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24078635

RESUMO

Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance.


Assuntos
Fator de Transcrição AraC/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Oxidantes/farmacologia , Transativadores/metabolismo , Fator de Transcrição AraC/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA