Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Food Sci Biotechnol ; 33(13): 2999-3007, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39220318

RESUMO

The present study investigated the sweetness interaction and the sensory characteristics of a novel glycosylated rebaudioside A (g-reb_A) when mixed with other sweeteners. Binary sweetener mixtures were formulated by mixing g-reb_A with four types of sweeteners (sucrose, aspartame, acesulfame-K, saccharin). The sweetness potencies of sweeteners were measured at various concentrations. G-reb_A was mixed with each of the four other sweeteners at the concentration ratio of 35:65 or 50:50 to match the sweetness of a 10% sucrose solution. A generic descriptive analysis was conducted to evaluate the binary samples compared to the 10% sucrose solution. Most binary mixtures exhibited an additive effect on sweetness. A marginal sweetness synergistic effect was observed when g-reb_A was mixed with sucrose at the 50:50 ratio. The sensory characteristics of the binary mixture depended on the type of sweetener mixed with g-reb_A. Mixtures of g-reb_Aacesulfame-K or g-reb_Asaccharin elicited significantly higher bitter taste than the other binary mixtures.

2.
J Agric Food Chem ; 72(28): 15823-15831, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959519

RESUMO

Given the low-calorie, high-sweetness characteristics of steviol glycosides (SGs), developing SGs with improved taste profiles is a key focus. Rebaudioside M8 (Reb M8), a novel non-natural SG derivative obtained through glycosylation at the C-13 position of rebaudioside D (Reb D) using glycosyltransferase UGT94E13, holds promise for further development due to its enhanced sweetness. However, the low catalytic activity of UGT94E13 hampers further research and commercialization. This study aimed to improve the enzymatic activity of UGT94E13 through semirational design, and a variant UGT94E13-F169G/I185G was obtained with the catalytic activity improved by 13.90 times. A cascade reaction involving UGT94E13-F169G/I185G and sucrose synthase AtSuSy was established to recycle uridine diphosphate glucose, resulting in an efficient preparation of Reb M8 with a yield of 98%. Moreover, according to the analysis of the distances between the substrate Reb D and enzymes as well as between Reb D and the glucose donor through molecular dynamics simulations, it is found that the positive effect of shortening the distance on glycosylation reaction activity accounts for the improved catalytic activity of UGT94E13-F169G/I185G. Therefore, this study addresses the bottleneck in the efficient production of Reb M8 and provides a foundation for its widespread application in the food industry.


Assuntos
Diterpenos do Tipo Caurano , Glicosiltransferases , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosilação , Edulcorantes/química , Edulcorantes/metabolismo , Stevia/química , Stevia/enzimologia , Stevia/metabolismo , Stevia/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Engenharia de Proteínas , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Glicosídeos
3.
Int J Radiat Biol ; 100(7): 1104-1115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870412

RESUMO

PURPOSE: Stevia rebaudiana Bertoni is a perennial herb, widely used as a natural sweetener around the globe. The key compounds responsible for its sweetness includes stevioside and rebaudioside-A. In order to improve these steviol glycosides, the present study was initiated to study the effect of induced mutagenesis on growth parameters, steviol glycosides and nuclear DNA content in Stevia rebaudiana Bertoni using ten doses of gamma-rays (5-100 kR). MATERIALS AND METHODS: Healthy seeds of 'Madhuguna' variety of Stevia rebaudiana Bertoni developed and maintained at stevia breeding farm, Agrotechnology division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (HP), India were irradiated with ten doses of gamma rays (600 seeds each/dose) ranging from 5 kR to 100 kR (i.e., 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100 kR) using Co60 gamma irradiation chamber at CCS Haryana Agricultural University, Hisar, (Haryana), India. RESULTS: Significant variations were recorded for all the seedling traits studied while major impact was noticed on the seedling after reaching the cotyledonary stage and doses above 40 kR showed absolute mortality of the seedlings. Based on probit analysis, the optimum LD50 dose lies in the range of 20-23 kR. Glycosidic profiling of 296 mutants using high-performance liquid chromatography showed decreased total steviol glycoside content with increased radiation dose. Doses 5 kR and 10 kR, were found to be effective in increasing the overall glycosidic content. A total of 72 promising mutants were also screened for increased rebaudioside-A stevioside ratio. Comparison of nuclear DNA content using flow cytometry revealed a similar decrease in the total nuclear DNA content with increase in dosage of gamma rays. The average genome size at 5, 10, 15, 20 and 30 kR treatments were 2.72, 2.69, 2.68, 2.70 and 2.66 pg as compared to 2.72 pg in control. CONCLUSIONS: Mild dose of gamma rays (5 and 10 kR) in stevia were found to be effective in improving the mean steviol glycoside content and may be used in future stevia mutation programmes.


Assuntos
Diterpenos do Tipo Caurano , Raios gama , Stevia , Stevia/efeitos da radiação , Tolerância a Radiação , Glucosídeos , Relação Dose-Resposta à Radiação
4.
Food Res Int ; 183: 114185, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760122

RESUMO

Low- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth. This study investigated the impact of diffusion coefficients of common high-intensity sweeteners on taste perception focusing on the sweeteners' diffusion through mucin. Transwell Permeable Support well plates were used to measure diffusion coefficients of samples that were collected at specific intervals to estimate the coefficients based on concentration measurements. The diffusion coefficients of acesulfame-K, aspartame, rebaudioside M, sucralose, and sucrose with and without NaCl were compared. We found that different sweeteners show different diffusion behavior through mucin and that the presence of salt enhances the diffusion. These findings contribute insights into the diffusion of high-intensity sweeteners, offer a way to evaluate diffusion coefficients in real-time, and inform the development of products with improved taste profiles.


Assuntos
Mucinas , Sacarose , Edulcorantes , Difusão , Mucinas/metabolismo , Sacarose/análogos & derivados , Percepção Gustatória , Humanos , Tiazinas
5.
J Agric Food Chem ; 72(14): 8140-8148, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563232

RESUMO

Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Trissacarídeos , Saccharomyces cerevisiae/genética , Difosfato de Uridina , Hidrolases , Glucosídeos , Glicosiltransferases/genética , Glicosídeos , Folhas de Planta
6.
Artigo em Inglês | MEDLINE | ID: mdl-38584527

RESUMO

OBJECTIVE: At present, no proven effective treatment is available for Lung Ischemiareperfusion Injury (LIRI). Natural compounds offer promising prospects for developing new drugs to address various diseases. This study sought to explore the potential of Rebaudioside B (Reb B) as a treatment compound for LIRI, both in vivo and in vitro. METHODS: This study involved utilizing the human pulmonary alveolar cell line A549, consisting of epithelial type II cells, subjected to Oxygen-glucose Deprivation/recovery (OGD/R) for highthroughput in vitro cell viability screening. The aim was to identify the most promising candidate compounds. Additionally, an in vivo rat model of lung ischemia-reperfusion was employed to evaluate the potential protective effects of Reb B. RESULTS: Through high-throughput screening, Reb B emerged as the most promising natural compound among those tested. In the A549 OGD/R models, Reb B exhibited a capacity to enhance cell viability by mitigating apoptosis. In the in vivo LIRI model, pre-treatment with Reb B notably decreased apoptotic cells, perivascular edema, and neutrophil infiltration within lung tissues. Furthermore, Reb B demonstrated its ability to attenuate lung inflammation associated with LIRI primarily by elevating IL-10 levels while reducing levels of IL-6, IL-8, and TNF-α. CONCLUSION: The comprehensive outcomes strongly suggest Reb B's potential as a protective agent against LIRI. This effect is attributed to its inhibition of the mitochondrial apoptotic pathway and its ability to mitigate the inflammatory response.

7.
Biology (Basel) ; 13(3)2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534433

RESUMO

The consumption of non-sugar sweeteners (NSS) has increased during pregnancy. The European Food Safety Agency suggested that steviol glycosides, such as Rebaudioside A (RebA), the major sweetener component of stevia, are safe for humans up to a dose of 4 mg/kg body weight/day. However, the World Health Organization recommended in 2023 the restraint of using NSS, including stevia, at any life stage, highlighting the need to study NSS safety in early periods of development. We aimed to study the mitochondrial and cardiometabolic effects of long-term RebA consumption during the reproductive stage of the life cycle. Female rats were exposed to RebA (4 mg steviol equivalents/kg body weight/day) in the drinking water from 4 weeks before mating until weaning. Morphometry, food and water consumption, glucose and lipid homeostasis, heart structure, function, and mitochondrial function were assessed. RebA showed an atrophic effect in the heart, decreasing cardiomyocyte cross-sectional area and myocardial fibrosis without repercussions on cardiac function. Mitochondrial and myofilamentary functions were not altered. Glucose tolerance and insulin sensitivity were not affected, but fasting glycemia and total plasma cholesterol decreased. This work suggests that this RebA dose is safe for female consumption during the reproductive stage, from a cardiometabolic perspective. However, studies on the effects of RebA exposure on the offspring are mandatory.

8.
Food Sci Biotechnol ; 33(4): 913-923, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371686

RESUMO

Rebaudioside A (Reb A) and neohesperidin dihydrochalcone (NHDC) are known as intense sweeteners. This study aimed to examine the anti-obesity effects of Reb A and NHDC. C57BL/6 J-ob/ob mice were supplemented with Reb A (50 mg/kg body weight [b.w.]), NHDC (100 mg/kg b.w.), or their combination (COMB) for 4 weeks. COMB-supplemented mice showed significant reduction in b.w. gain, food efficiency ratio, and fat mass. Additionally, mice in the COMB group showed suppressed levels of genes related to adipogenesis, lipogenesis, and lipolysis in the perirenal fat and the levels of hepatic triglyceride, glutamic oxaloacetic transaminase, and glutamic pyruvic transaminase. The lipogenesis and pro-inflammatory gene expressions were also downregulated in the liver, whereas ß-oxidation related genes were upregulated in the COMB group. In addition, mice that received COMB showed distinct gut microbiota structure, enriched in Blautia and Parabacteroides, and depleted in Faecalibaculum and Mucispirillum, in relation to the control group. These results suggest that supplementation with Reb A and NHDC may be an effective treatment for obesity-related metabolic disorders. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01391-1.

9.
Biotechnol J ; 19(2): e2300628, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403450

RESUMO

Bioconversion of Rebaudioside D faces high-cost obstacles. Herein, a novel glycosyltransferase StUGT converting Rebaudioside A to Rebaudioside D was screened and characterized, which exhibits stronger affinity and substrate specificity for Rebaudioside A than previously reported enzymes. A whole-cell catalytic system was thus developed using the StUGT strain. The production of Rebaudioside D was enhanced significantly by enhancing cell permeability, and the maximum production of 6.12 g/L and the highest yield of 98.08% by cell catalyst was obtained by statistical-based optimization. A new cascade process utilizing this recombinant strain and E. coli expressing sucrose synthase was further established to reduce cost through replacing expensive UDPG with sucrose. A StUGT-GsSUS1 system exhibited high catalytic capability, and 5.27 g L-1 Rebaudioside D was achieved finally without UDPG addition by systematic optimization. This is the best performance reported in cell-cascaded biosynthesis, which paves a new cost-effective strategy for sustainable synthesis of scarce premium sweeteners from biomass.


Assuntos
Diterpenos do Tipo Caurano , Glicosídeos , Solanum tuberosum , Stevia , Solanum tuberosum/genética , Stevia/química , Uridina Difosfato Glucose , Glicosiltransferases/genética , Escherichia coli/genética
10.
Front Bioeng Biotechnol ; 12: 1334427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375456

RESUMO

Rebaudioside M2 (Reb M2), a novel steviol glycoside derivative, has limited industrial applications due to its low synthetic yield and selectivity. Herein, we identify UGT94D1 as a selective glycosyltransferase for rebaudioside D (Reb D), leading to the production of a mono ß-1,6-glycosylated derivative, Reb M2. A variant UGT94D1-F119I/D188P was developed through protein engineering. This mutant exhibited a 6.33-fold improvement in catalytic efficiency, and produced Reb M2 with 92% yield. Moreover, molecular dynamics simulations demonstrated that UGT94D1-F119I/D188P exhibited a shorter distance between the nucleophilic oxygen (OH6) of the substrate Reb D and uridine diphosphate glucose, along with an increased Ophosphate-C1-Oacceptor angle, thus improving the catalytic activity of the enzyme. Therefore, this study provides an efficient method for the selective synthesis of Reb M2 and paves the way for its applications in various fields.

11.
EFSA J ; 21(12): e8387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125973

RESUMO

The EFSA Panel on Food Additive and Flavourings (FAF Panel) provides a scientific opinion on the safety of a new process to produce steviol glycosides by fermentation of simple sugars using a genetically modified strain of Yarrowia lipolytica (named Y. lipolytica VRM). The manufacturing process may result in impurities different from those that may be present in the other steviol glycosides E 960a-d, therefore the Panel concluded that separate specifications are required for the food additive produced as described in the current application. Viable cells and DNA from the production strain are not present in the final product. The Panel considered that the demonstration of the absence of kaurenoic acid in the proposed food additive, using a method with a limit of detection (LOD) of 0.3 mg/kg, is adequate to dispel the concerns for potential genotoxicity. Given that all steviol glycosides follow the same metabolic pathways, the Panel considered that the current steviol glycosides would fall within the same group of substances. Therefore, the Panel considered that the already existing data on rebaudioside M and structurally related steviol glycosides are sufficient, and a similar metabolic fate and toxicity is expected for the food additive. The results from the bacterial reverse mutation assay and the in vitro micronucleus assay were negative and indicated absence of genotoxicity from the food additive. The existing acceptable daily intake (ADI) of 4 mg/kg body weight (bw) per day, expressed as steviol equivalents, was considered to be applicable to the proposed food additive. The Panel concluded that there is no safety concern for steviol glycosides, predominantly Rebaudioside M, produced by fermentation using Y. lipolytica VRM, to be used as a food additive at the proposed uses and use levels.

12.
Food Res Int ; 173(Pt 1): 113353, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803656

RESUMO

Rebaudioside A, a sweet-tasting steviol glycoside, is known to degrade in food products during storage and thought to contribute to flavor instability. The impact of rebaudioside A degradation compounds on flavor perception was investigated. Sensory descriptive analysis indicated rebaudioside A degradation compounds, at concentrations below detection thresholds, modified the perception of taste, somatosensorial, and retronasal aroma attributes of a strawberry-flavored model beverage. Gas chromatography/mass spectrometry analysis and orthonasal sensory tetrad tests further indicated the addition of the degradation compounds did not significantly alter the volatile aroma composition or orthonasal perception, respectively. Altogether, subthreshold unimodal and cross-modal integration of multisensory percepts were supported to impact the flavor performance of rebaudioside A.


Assuntos
Diterpenos do Tipo Caurano , Olfato , Paladar , Percepção Gustatória , Aditivos Alimentares
13.
Front Microbiol ; 14: 1220208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649634

RESUMO

Sucrose synthase (SuSy, EC 2.4.1.13) is a unique glycosyltransferase (GT) for developing cost-effective glycosylation processes. Up to now, some SuSys derived from plants and bacteria have been used to recycle uridine 5'-diphosphate glucose in the reactions catalyzed by Leloir GTs. In this study, after sequence mining and experimental verification, a SuSy from Micractinium conductrix (McSuSy), a single-cell green alga, was overexpressed in Escherichia coli, and its enzymatic properties were characterized. In the direction of sucrose cleavage, the specific activity of the recombinant McSuSy is 9.39 U/mg at 37°C and pH 7.0, and the optimum temperature and pH were 60°C and pH 7.0, respectively. Its nucleotide preference for uridine 5'-diphosphate (UDP) was similar to plant SuSys, and the enzyme activity remained relatively high when the DMSO concentration below 25%. The mutation of the predicted N-terminal phosphorylation site (S31D) significantly stimulated the activity of McSuSy. When the mutant S31D of McSuSy was applied by coupling the engineered Stevia glycosyltransferase UGT76G1 in a one-pot two-enzyme reaction at 10% DMSO, 50 g/L rebaudioside E was transformed into 51.06 g/L rebaudioside M in 57 h by means of batch feeding, with a yield of 76.48%. This work may reveal the lower eukaryotes as a promising resource for SuSys of industrial interest.

14.
J Sci Food Agric ; 103(15): 7445-7454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37400952

RESUMO

BACKGROUND: Rebaudioside A (Reb-A) and rebaudioside M (Reb-M) are intense natural sweeteners but can also elicit bitterness and a bitter aftertaste. In this study, the effect of vanilla and chocolate flavorings on the sensory attributes of Reb-A and Reb-M applied to soymilk and milk was investigated to identify whether the addition of flavoring could enhance the sweetness via aroma-taste interactions. RESULTS: Nine samples each of soymilk and milk were formulated by adding sucrose, Reb-A and Reb-M in three flavor conditions (no flavoring, vanilla, and chocolate). Descriptive analyses were conducted using nine panelists for the soymilk and eight panelists for the milk. Another descriptive analysis was conducted using the same samples with olfactory occlusion via the wearing of a nose clip to check whether the sweetness enhancement was due to olfactory input. The chocolate flavoring significantly enhanced the sweetness of Reb-A and Reb-M and reduced the bitterness, bitter aftertaste and astringency in both soymilk and milk. The vanilla flavoring was not as effective as the chocolate flavoring in enhancing sweetness. When the olfactory passage was closed with a nose clip, the sweetness enhancement and bitterness suppression were not detected in the samples. CONCLUSION: The addition of chocolate flavoring could successfully improve the sensory profile of soymilk sweetened with Reb-A through aroma-taste interactions. © 2023 Society of Chemical Industry.


Assuntos
Leite , Paladar , Animais , Leite/química , Odorantes/análise , Aditivos Alimentares/análise , Edulcorantes/análise , Aromatizantes/análise
15.
BMC Plant Biol ; 23(1): 352, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415121

RESUMO

Stevia rebaudiana Bertoni is a valuable medicinal plant and an essential source of natural sweetener, steviol glycosides (SGs), with rebaudioside A (RA) being one of the main components of SGs. bHLH transcription factors play a crucial role in plant development and secondary metabolism. In this study, 159 SrbHLH genes were identified from the S. rebaudiana genome, and each gene was named based on its chromosome location. The SrbHLH proteins were then clustered into 18 subfamilies through phylogenetic analysis. The analysis of conserved motifs and gene structure further supported the classification of the SrbHLH family. Chromosomal location and gene duplication events of SrbHLH genes were also studied. Moreover, based on the RNA-Seq data of different tissues of S. rebaudiana, 28 SrbHLHs were co-expressed with structural genes involved in RA biosynthesis. The expression pattern of candidate SrbHLH genes were confirmed by qPCR. Finally, dual luciferase reporter assays (DLAs) and subcellular localization analysis verified SrbHLH22, SrbHLH111, SrbHLH126, SrbHLH142, and SrbHLH152 are critical regulators of RA biosynthesis. This study provides new insights into the function of SrbHLHs in regulating SGs biosynthesis and lays the foundation for future applications of SrbHLH genes in molecular breeding of S. rebaudiana.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/genética , Stevia/metabolismo , Fatores de Transcrição/genética , Filogenia , Diterpenos do Tipo Caurano/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismo
16.
Front Microbiol ; 14: 1180388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180279

RESUMO

Steviol glycosides are ideal sweeteners that are widely used in food, medicine, and cosmetics. Rebaudioside C (RC) is considered to be the third most abundant steviol glycoside, which has a bitter aftertaste that limits its application. Hydrolysis of RC to generate other bioactive steviol glycosides is an effective way to promote its additional utilization. In our previous study, a bacterium Paenarthrobacter ilicis CR5301 was isolated and identified for hydrolyzing RC with high efficiency. Herein, the expression profiles of P. ilicis CR5301 in the deletion and presence of RC were investigated by RNA-seq. The RC metabolites were identified by high-performance liquid chromatography and ultra-performance liquid chromatography-triple-time of flight mass spectrometry. Novel results were discovered in four aspects of research. First, the identification of metabolites revealed that four metabolites, namely, dulcoside A, dulcoside B, dulcoside A1, and steviol, were produced during RC metabolism. Second, RNA-seq analyses unraveled that 105 genes of P. ilicis CR5301 were significantly differentially expressed, and 7 pathways were significantly enriched. Third, independent RT-qPCR verified the accuracy and reliability of the RNA-seq results. Finally, a complete catabolic model of RC in P. ilicis CR5301 was proposed, and key genes were indicated in the RC catabolic metabolism by combining them with literature and sequence alignments. This study comprehensively unraveled the genes and pathways of RC catabolism in P. ilicis CR5301 at the transcriptional and metabolic levels. It provided new insights and evidence for understanding the mechanism of RC catabolism in bacteria. Key candidate genes may potentially contribute to the RC hydrolysis and preparation of other functional steviol glycosides in the future.

17.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768498

RESUMO

In this study, a new strain of Pantoea vagans, SRS89, was isolated from surface-sterilized stevia seeds. The isolate was evaluated using morphological, molecular, and biochemical methods. The bacterium was 1.5 µm long, yellowish in color, and classified as Gram-negative. Whole genome sequencing of our strain revealed the presence of a 4,610,019 bp chromosome, and genome annotation resulted in the detection of 4283 genes encoding 4204 putative coding sequences. Phylogenic analysis classified the genome of our strain close to the MP7 and LMG 24199 strains of P. vagans. Functional analysis showed that the highest number of genes within the analyzed bacterium genome were involved in transcription, amino acid transport and metabolism, and carbohydrate transport and metabolism. We also identified genes for enzymes involved in the biosynthesis of carotenoids and terpenoids. Furthermore, we showed the presence of growth regulators, with the highest amount noted for gibberellic acid A3, indole-3-acetic acid, and benzoic acid. However, the most promising property of this strain is its ability to synthesize rebaudioside A; the estimated amount quantified using reversed-phase (RP)-HPLC was 4.39 mg/g of the dry weight of the bacteria culture. The isolated endophytic bacterium may be an interesting new approach to the production of this valuable metabolite.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/genética , Stevia/metabolismo , Glucosídeos/metabolismo , Aditivos Alimentares/metabolismo , Sementes/metabolismo , Folhas de Planta/metabolismo
18.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688762

RESUMO

To improve the conversion efficiency of rebaudioside C, this study screened the Paenarthrobacter ilicis CR5301 from soil samples and identified it by 16S rRNA. The conversion experiment proved that P. ilicis CR5301 was capable of converting rebaudioside C. The effects of initial pH, temperature, inoculation amount, and substrate concentration on rebaudioside C conversion rate were investigated. The results showed that the conversion rate of rebaudioside C reached up to 100% when CR5301 was incubated in a conversion medium with an initial pH of 7.0 for 8 h at 28°C and 270 rpm. The conversion time was reduced by at least 16 h compared with previous studies. The conversion product was analyzed and identified as steviol by high performance liquid chromatography, ultra performance liquid chromatography-triple-time of flight mass spectrometer, and Fourier transform infrared spectroscopy methods. In addition, stevioside, rebaudioside A, dulcoside A, and some unknown components in steviol glycosides byproduct were all efficiently converted to steviol. These findings provide an efficient approach to the conversion of rebaudioside C and byproduct to steviol to simplify the subsequent industrial process and improve the reuse value of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , RNA Ribossômico 16S , Glucosídeos , Diterpenos do Tipo Caurano/análise , Diterpenos do Tipo Caurano/química , Stevia/química , Glicosídeos/análise
19.
Carbohydr Res ; 523: 108737, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36657220

RESUMO

Steviol glycosides have attracted great interest because of their high levels of sweetness and safety, and absence of calories. Improvement of their sensory qualities via glycosylation modification by glycosyltransferase is a research hotspot. In this study, YjiC, a uridine diphosphate-dependent glycosyltransferase from Bacillus subtilis 168, was found with the ability to glycosylate rebaudioside A (Reb A) to produce a novel mono ß-1, 6-glycosylated Reb A derivative rebaudioside L2 (Reb L2). It has an improved sweetness compared with Reb A. Next, a cascade reaction was established by combining YjiC with sucrose synthase AtSuSy from Arabidopsis thaliana for scale-up preparation of Reb L2. It shows that Reb L2 (30.94 mg/mL) could be efficiently synthesized with an excellent yield of 91.34% within 12 h. Therefore, this study provides a potential approach for the production and application of new steviol glycoside Reb L2, expanding the scope of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glicosiltransferases , Glucosídeos , Catálise
20.
Environ Sci Pollut Res Int ; 30(13): 36915-36927, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36550247

RESUMO

In this study, the interaction between nanoparticles (0, 50, 100, and 150 mg L-1) and light intensity (100, 200, and 400 µmol·m-2·s-1) was evaluated for effectiveness in improving stevia shoot induction by measuring morphological traits, nutrient absorption, total carbohydrates, steviol glycosides (SVglys), and DNA damage in two DNA sequence regions (promoter and sequence of the UGT76G1 gene). MWCNTs at a concentration of 50 mg L-1 in interaction with the light intensity of 200 µmol·m-2·s-1 improved the morphological traits and absorption of nutrients such as nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), iron (Fe), and Manganese (Mn), compared to other treatments. Also, under this interaction, the accumulation of total carbohydrates and SVglys was elevated. Moreover, DNA damage in both regions of the DNA sequence under light intensity at low concentrations of MWCNTs (0 and 50 mg L-1) did not show a significant change but increased with increasing MWCNT concentration at high light intensities (200 and 400 µmol·m-2·s-1). These results demonstrate that the advantages and phytotoxicity of MWCNTs in the in vitro culture of stevia are dose-dependent and are affected by light intensity. Based on this, the interaction of 50 mg L-1 of MWCNTs with the light intensity of 200 µmol·m-2·s-1 is recommended to improve stevia micropropagation and subsequent growth and metabolism.


Assuntos
Nanotubos de Carbono , Stevia , Stevia/genética , Stevia/metabolismo , Metabolismo Secundário , Glucosídeos , Dano ao DNA , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA