Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39106976

RESUMO

Reconfiguration of chemical sensors, intended as the capacity of the sensor to adapt to novel operational scenarios, e.g., new target analytes, is potentially game changing and would enable rapid and cost-effective reaction to dynamic changes occurring at healthcare, environmental, and industrial levels. Yet, it is still a challenge, and rare examples of sensor reconfiguration have been reported to date. Here, we report on a reconfigurable label-free optical sensor leveraging the versatile immobilization of metal ions through a chelating agent on a nanostructured porous silica (PSiO2) optical transducer for the detection of different biomolecules. First, we show the reversible grafting of different metal ions on the PSiO2 surface, namely, Ni2+, Cu2+, Zn2+, and Fe3+, which can mediate the interaction with different biomolecules and be switched under mild conditions. Then, we demonstrate reconfiguration of the sensor at two levels: 1) switching of the metal ions on the PSiO2 surface from Cu2+ to Zn2+ and testing the ability of Cu2+-functionalized and Zn2+-reconfigured devices for the sensing of the dipeptide carnosine (CAR), leveraging the well-known chelating ability of CAR toward divalent metal ions; and 2) reconfiguration of the Cu2+-functionalized PSiO2 sensor for a different target analyte, namely, the nucleotide adenosine triphosphate (ATP), switching Cu2+ with Fe3+ ions to exploit the interaction with ATP through phosphate groups. The Cu2+-functionalized and Zn2+-reconfigured sensors show effective sensing performance in CAR detection, also evaluated in tissue samples from murine brain, and so does the Fe3+-reconfigured sensor toward ATP, thus demonstrating effective reconfiguration of the sensor with the proposed surface chemistry.

2.
Small ; : e2404379, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096073

RESUMO

Surface reconstruction plays a pivotal role in enhancing the activity of the oxygen evolution reaction (OER), particularly in terms of the structural transformation from metal oxides to (oxy)hydroxides. Herein, a novel (oxy)hydroxide (FeCoNiCuMoOOH) with high entropy is developed by the electrochemical reconstitution of corresponding oxide (FeCoNiCuMoOx). Significantly, the FeCoNiCuMoOOH exhibits much higher OER electrocatalytic activity and durability with an overpotential as low as 201 mV at a current density of 10 mA cm-2, and with a Tafel slope of 39.4 mV dec-1. The FeCoNiCuMoOOH/NF presents high stability when testing under a constant current at 100 mA cm-2 within 1000 h. The surface reconstruction is a process of dissolution-reprecipitation of Cu and Mo species and co-hydroxylation of five metal species, which ultimately leads to the formation of FeCoNiCuMoOOH from FeCoNiCuMoOx. This study holds great significance in the realm of designing high-entropy (oxy)hydroxides catalysts with exceptional activity and stability for OER.

3.
Nat Comput ; 23(2): 407-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100658

RESUMO

Molecular robotics is challenging, so it seems best to keep it simple. We consider an abstract molecular robotics model based on simple folding instructions that execute asynchronously. Turning Machines are a simple 1D to 2D folding model, also easily generalisable to 2D to 3D folding. A Turning Machine starts out as a line of connected monomers in the discrete plane, each with an associated turning number. A monomer turns relative to its neighbours, executing a unit-distance translation that drags other monomers along with it, and through collective motion the initial set of monomers eventually folds into a programmed shape. We provide a suite of tools for reasoning about Turning Machines by fully characterising their ability to execute line rotations: executing an almost-full line rotation of 5 π / 3 radians is possible, yet a full 2 π rotation is impossible. Furthermore, line rotations up to 5 π / 3 are executed efficiently, in O ( log n ) expected time in our continuous time Markov chain time model. We then show that such line-rotations represent a fundamental primitive in the model, by using them to efficiently and asynchronously fold shapes. In particular, arbitrarily large zig-zag-rastered squares and zig-zag paths are foldable, as are y-monotone shapes albeit with error (bounded by perimeter length). Finally, we give shapes that despite having paths that traverse all their points, are in fact impossible to fold, as well as techniques for folding certain classes of (scaled) shapes without error. Our approach relies on careful geometric-based analyses of the feats possible and impossible by a very simple robotic system, and pushes conceptional hardness towards mathematical analysis and away from molecular implementation.

4.
Adv Mater ; : e2408634, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148167

RESUMO

Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.

5.
HRB Open Res ; 7: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036588

RESUMO

Background: Unforeseeable public health emergencies (PHEs) profoundly impact psychological well-being and disrupt mental health care provision in affected regions. To enhance preparedness for future emergencies, it is crucial to understand the effectiveness of mental health services, their underlying mechanisms, the populations they are tailored to, and their appropriateness across distinct emergencies. The aim of this scoping review will be to explore how mental health services have responded to PHEs, focusing on their effectiveness as well as barriers and facilitators to implementation. Methods: Following the five-stage Arksey-O'Malley guidance, as updated further by Westphaln and colleagues, this mixed-methods scoping review will search academic and grey literature. Publications related to mental health interventions and supports delivered during PHEs will be considered for inclusion. The interventions and supports are operationally defined as any adaptations to mental health service provision at the international, national, regional or community level as a consequence of PHEs. The "Four Ss" framework will be utilised to provide structure for the evidence synthesis and inform categorisation of interventions and supports delivered during PHEs. Any research methodology will be considered for inclusion. Two reviewers will independently screen titles, abstracts, and full texts of publications against eligibility criteria. The gathered data will be depicted in accordance with the Four Ss" framework through the utilisation of descriptive/analytical statistics and supplemented by narrative exploration of findings. Conclusions: Considering the diverse research methodologies and the varied applicability of services in different contexts of PHEs, this review will offer insights into the type, effectiveness, and implementation barriers and facilitators of mental health interventions and supports delivered during PHEs. By employing the "Four Ss" framework, the review will guide decision-making bodies in identifying effective and practical aspects of mental health system operations during emergencies.

6.
Exp Gerontol ; 195: 112527, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39059517

RESUMO

Stroke is recognized as a network communication disorder. Advances in neuroimaging technologies have enhanced our comprehension of dynamic cerebral alterations. However, different levels of motor function impairment after stroke may have different patterns of brain reorganization. Abnormal and adaptive patterns of brain activity in mild-to-moderate motor function impairments after stroke remain still underexplored. We aim to identify dynamic patterns of network remodeling in stroke patients with mild-to-moderate impairment of motor function. fMRI data were obtained from 30 stroke patients and 31 healthy controls to establish a spatiotemporal multilayer modularity model. Then, graph-theoretic measures, including modularity, flexibility, cohesion, and disjointedness, were calculated to quantify dynamic reconfiguration. Our findings reveal that the post-stroke brain exhibited higher modular organization, as well as heightened disjointedness, compared to HCs. Moreover, analyzing from the network level, we found increased disjointedness and flexibility in the Default mode network (DMN), indicating that brain regions tend to switch more frequently and independently between communities and the dynamic changes were mainly driven by DMN. Notably, modified functional dynamics positively correlated with motor performance in patients with mild-to-moderate motor impairment. Collectively, our research uncovered patterns of dynamic community reconstruction in multilayer networks following stroke. Our findings may offer new insights into the complex reorganization of neural function in post-stroke brain.

7.
Materials (Basel) ; 17(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063826

RESUMO

Increasing attention is being paid to the application potential of multi-functional reconfigurable metamaterials in intelligent communication, sensor networks, homeland security, and other fields. A polarization-independent multi-functional reconfigurable metasurface based on doped vanadium dioxide (VO2) is proposed in this paper. It can be controlled to switch its function among three working modes: electromagnetically induced absorption (EIA), electromagnetically induced transparency (EIT), and asymmetrical absorption. In addition, deep learning tools have greatly accelerated the design of relevant devices. Such devices and the method proposed in this paper have important value in the field of intelligent reconfigurable metamaterials, communication, and sensing.

8.
Adv Mater ; : e2406671, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988151

RESUMO

Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.

9.
Netw Neurosci ; 8(2): 395-417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952809

RESUMO

Functional brain networks have preserved architectures in rest and task; nevertheless, previous work consistently demonstrated task-related brain functional reorganization. Efficient rest-to-task functional network reconfiguration is associated with better cognition in young adults. However, aging and cognitive load effects, as well as contributions of intra- and internetwork reconfiguration, remain unclear. We assessed age-related and load-dependent effects on global and network-specific functional reconfiguration between rest and a spatial working memory (SWM) task in young and older adults, then investigated associations between functional reconfiguration and SWM across loads and age groups. Overall, global and network-level functional reconfiguration between rest and task increased with age and load. Importantly, more efficient functional reconfiguration associated with better performance across age groups. However, older adults relied more on internetwork reconfiguration of higher cognitive and task-relevant networks. These reflect the consistent importance of efficient network updating despite recruitment of additional functional networks to offset reduction in neural resources and a change in brain functional topology in older adults. Our findings generalize the association between efficient functional reconfiguration and cognition to aging and demonstrate distinct brain functional reconfiguration patterns associated with SWM in aging, highlighting the importance of combining rest and task measures to study aging cognition.


Brain networks identified by functional connectivity (FC) have preserved architectures from rest to task and across task demands. Higher similarity, implying more efficient network reconfiguration, was associated with better cognition and task performance in young adults. To examine how it may be influenced by aging, we compared whole-brain and network-level FC similarities between resting-state and spatial working memory fMRI in young and older adults. At whole-brain level and higher order cognitive networks, older adults evidenced less efficient network reconfiguration from rest to task than young adults. Importantly, more efficient reconfiguration was associated with better accuracy. This relationship relied more on internetwork connections in older adults. Despite reduced neural resources compared to young, maintaining efficient network updating still contributes to better cognition at older age.

10.
Adv Mater ; 36(32): e2406093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865651

RESUMO

Aqueous Zn-ion batteries featuring with intrinsic safety and low cost are highly desirable for large-scale energy storage, but the unstable Zn-metal anode resulting from uncontrollable dendrite growth and grievous hydrogen evolution reaction (HER) shortens their cycle life. Herein, a feasible in situ self-reconfiguration strategy is developed to generate triple-gradient poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI)-Zn5(OH)8Cl2·H2O-Sn (PT-ZHC-Sn) artificial layer. The resulting triple-gradient interface consists of the spherical top layer PT with cation confinement and H2O inhibition, the dense intermediate layer ZHC nanosheet with Zn2+ conduction and electron shielding, and the bottom layer Znophilic Sn metal. The well-designed triple-gradient artificial interfacial layer synergistically facilitates rapid Zn2+ diffusion to regulate uniform Zn deposition and accelerates the desolvation process while suppressing HER. Consequently, the PT-ZHC-Sn@Zn symmetric cell achieves an ultralong lifespan over 6500 h at 0.5 mA cm-2 for 0.5 mAh cm-2. Furthermore, a full battery coupling with MnO2 cathode exhibits a 17.2% increase in capacity retention compared with bare Zn anode after 1000 cycles. The in situ self-reconfiguration strategy is also applied to prepare triple-gradient PT-ZHC-In, and the assembled Zn//Cu cell operates steadily for over 8400 h while maintaining Coulombic efficiency of 99.6%. This work paves the way to designing multicomponent gradient interface for stable Zn-metal anodes.

11.
Bioresour Technol ; 406: 131035, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925409

RESUMO

Yarrowia lipolytica was successfully engineered to synthesize erythritol from crude glycerol, a cheap by-product of biodiesel production, but the yield remained low. Here, a biosensor-guided adaptive evolution screening platform was constructed to obtain mutant strains which could efficiently utilize crude glycerol to produce erythritol. Erythrose reductase D46A (M1) was identified as a key mutant through whole-genome sequencing of the strain G12, which exhibited higher catalytic activity (1.6-fold of the wild-type). M1 was further modified to obtain a combinatorial mutant with 4.1-fold enhancement of catalytic activity. Finally, the metabolic network was reconfigured to redirect carbon fluxes toward erythritol synthesis. The erythritol titer of the engineered strain G31 reached 220.5 g/L with a productivity of 1.8 g/L/h in a 5-L bioreactor. The study provides valuable guidance for biosensor-based ultra-high-throughput screening strategies in Y. lipolytica, as well as presenting a new paradigm for the sustainable valorization of crude glycerol.


Assuntos
Eritritol , Glicerol , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Eritritol/metabolismo , Glicerol/metabolismo , Engenharia Metabólica/métodos , Técnicas Biossensoriais/métodos , Mutação , Reatores Biológicos
12.
Biosens Bioelectron ; 262: 116540, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943856

RESUMO

Most multiplexed photoelectrochemical (PEC) sensors require additional instrumentation and cumbersome electrode modification and surface partitioning, which limits their portability and instrument miniaturization. Herein, a pH-responsive programmable triple DNA nanomachine was developed for constructing a reconfigurable multiplex PEC sensing platform. By programming the base sequence, T-A·T-riched triple DNA was designed to construct integrated nano-controlled release machine (INCRM) for simultaneous recognition of multiple targets. The INCRM enables to recognize two targets in one step, and sequentially separate the signal labels by pH adjustment. The detached signal label catalyzes glucose to produce gluconic acid, causing the C-riched DNA fold into a triple structure on the electrode surface. As a result, one target can be detected relying on the enhanced photocurrent due to accelerated electron transfer between the CdS QD labeled at the end of C-riched DNA and the electrode. The triplex DNA dissociation in pH 7.4 buffer reconfigures the electrode interface, which can be continued to detect another target. The feasibility of the multiplexed sensor is verified by the detection of extensively coexisting antibiotics enrofloxacin (ENR) and ciprofloxacin (CIP). Under the optimal conditions, wide linear range (10 fg/mL âˆ¼ 1 µg/mL) and low detection limit (3.27 fg/mL and 9.60 fg/mL) were obtained. The pH-regulated programmable triplex DNA nanomachine-based sensing platform overcomes the technical difficulties of conventional multiplexed PEC assay, which may open the way for miniaturization of multiplexed PEC sensors.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , DNA/química , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas/métodos , Limite de Detecção , Pontos Quânticos/química , Antibacterianos/farmacologia , Eletrodos , Ciprofloxacina/farmacologia
13.
Heliyon ; 10(11): e31675, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867951

RESUMO

Many challenges have emerged due to the intense integration of renewables in the distribution system and the associated uncertainties in power generation. Consequently, local management strategies are developed at the distribution level, leading to the emergence of concepts such as microgrids. Microgrids include a variety of heating, cooling, and electrical resources and loads, and the operators' aim is to minimize operation and outage costs. Since significant distribution system outages are typically caused by events such as earthquakes, floods, and hurricanes, microgrid operators are compelled to improve resilience to ensure uninterrupted service during such conditions. A mixed-integer linear programming model is designed in this paper to optimize the energy management and structural configuration of microgrids. This optimization aims to enhance resilience cost, minimizing operation and capital costs as well as power loss and pollution. To achieve these goals, several tools are implemented including reconfiguration, storages, combined cooling, heat and power units, wind turbines, photovoltaic panels, as well as capacitors. Four case studies are defined to prove the developed model efficiency. The first case study focuses on energy management in the microgrid for operation cost minimization. The second case study emphasizes the improvement of resilience alongside energy management, aiming at minimizing costs and enhance resilience. In the third case, the microgrid's reconfiguration capability is also added to the second case. Therefore, this case aims to optimize both energy and structural management within the microgrid to simultaneously enhance resilience and minimize operational costs. Finally, in the fourth case, the problem is studied in a multi-objective approach. By comparing the results, the resilience impact on the operation of microgrids is elucidated. By considering the resilience concept in microgrid operation and based on the results of case 2, it is found that the operating costs are increased by an average of 10.38 %. However, because of reducing resilience costs by an average of 13.91 %, the total cost is reduced by an average of 5.93 % in case 2 compared to case 1. Furthermore, when comparing cases 2 and 3, the reconfiguration effect can be determined. It can be observed that the operating costs are decreased by an average of 4.5 %. Moreover, the resilience cost is decreased by an average of 1.61 %, resulting in an overall reduction of the total objective function by an average of 2.43 % in case 3 compared to case 2.

14.
Bioact Mater ; 39: 287-301, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38827170

RESUMO

Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair. Unfortunately, few has met clinical needs for inadequate electrode precision, poor nerve entrapment and insufficient bioactivity of the matrix material. Herein, we present an advanced wireless electrical nerve stimulator, based on water-responsive self-curling silk membrane with excellent bioabsorbable and biocompatible properties. We constructed a unique bilayer structure with an oriented pre-stretched inner layer and a general silk membrane as outer layer. After wetting, the simultaneous contraction of inner layer and expansion of outer layer achieved controllable super-contraction from 2D flat surface to 3D structural reconfiguration. It enables shape-adaptive wrapping to cover around nerves, overcomes the technical obstacle of preparing electrodes on the inner wall of the conduit, and prevents electrode breakage caused by material expansion in water. The use of fork capacitor-like metal interface increases the contact points between the metal and the regenerating nerve, solving the challenge of inefficient and rough electrical stimulation methods in the past. Newly developed electronic stimulator is effective in restoring 10 mm rat sciatic nerve defects comparable to autologous grafts. The underlying mechanism involves that electric stimulation enhances anterograde mitochondrial transport to match energy demands. This newly introduced device thereby demonstrated the potential as a viable and efficacious alternative to autografts for enhancing peripheral nerve repair and functional recovery.

15.
Adv Mater ; 36(29): e2401693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733317

RESUMO

Flexible metal-organic framework (MOF) adsorbents commonly encounter limitations in removing trace impurities below gate-opening threshold pressures. Topology reconfiguration can fundamentally eliminate intrinsic structural flexibility, yet remains a formidable challenge and is rarely achieved in practical applications. Herein, a solvent-mediated approach is presented to regulate the flexible CuSnF6-dpds-sql (dpds = 4,4''-dipyridyldisulfide) with sql topology into rigid CuSnF6-dpds-cds with cds topology. Notably, the cds topology is unprecedented and first obtained in anion-pillared MOF materials. As a result, rigid CuSnF6-dpds-cds exhibits enhanced C2H2 adsorption capacity of 48.61 cm3 g-1 at 0.01 bar compared to flexible CuSnF6-dpds-sql (21.06 cm3 g-1). The topology transformation also facilitates the adsorption kinetics for C2H2, exhibiting a 6.5-fold enhanced diffusion time constant (D/r2) of 1.71 × 10-3 s-1 on CuSnF6-dpds-cds than that of CuSnF6-dpds-sql (2.64 × 10-4 s-1). Multiple computational simulations reveal the structural transformations and guest-host interactions in both adsorbents. Furthermore, dynamic breakthrough experiments demonstrate that high-purity C2H4 (>99.996%) effluent with a productivity of 93.9 mmol g-1 can be directly collected from C2H2/C2H4 (1/99, v/v) gas-mixture in a single CuSnF6-dpds-cds column.

16.
Q J Exp Psychol (Hove) ; : 17470218241256361, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724482

RESUMO

Task-switching experiments have shown that the "switch cost" (poorer performance for task switches than for repetitions) is smaller when the probability of a switch is high (e.g., 0.75) than when it is low (e.g., 0.25). Some theoretical accounts explain this effect in terms of top-down control deployed in advance of the task cue ("pre-cue reconfiguration"). We tested such accounts by manipulating the time available before the onset of the cue (the response-cue interval, RCI), reasoning that top-down pre-cue reconfiguration requires time and therefore its effect should increase with RCI. Participants heard a man and a woman simultaneously speaking number words and categorised the number (< 5 vs. > 5) spoken by the voice specified by a pictorial gender-related cue presented at an RCI of 100 ms or 2,200 ms. The target voice switched with a probability of 0.25 or 0.75 (in separate sessions). In Experiment 1, RTs revealed a large effect of switch probability on the switch cost in the short RCI, which did not increase in the long RCI. Errors hinted at such an increase, but it did not receive clear statistical support and was disconfirmed by a direct and better powered replication in Experiment 2, which fully confirmed the RT pattern from Experiment 1. Thus, the effect of switch probability on the switch cost required little/no time following the response to emerge-it was already at full magnitude at a short RCI-challenging accounts that assume "phasic" deployment of top-down task-set control in advance of the cue.

17.
Adv Mater ; 36(31): e2402234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781597

RESUMO

Rationally designed defects in a crystal can confer unique properties. This study showcases a novel dual-defects engineering strategy to tailor the electrochemical response of metal-organic framework (MOF) materials used for electrochemical energy storage. Salicylic acid (SA) is identified as an effective modulator to control MOF-74 growth and induce structural defects, and cobalt cation doping is adopted for introducing a second type of defect. The resulting dual-defects engineered bimetallic MOF exhibits a discharging capacity of 218.6 mAh g-1, 4.4 times that of the pristine MOF-74, and significantly improved cycling stability. Moreover, the engineered MOF-74(Ni0.675Co0.325)-8//Zn aqueous battery shows top energy/power density performances for Ni-Zn batteries (266.5 Wh kg-1, 17.22 kW kg-1). Comprehensive investigations reveal that engineered defects modify the local coordination environment and promote the in situ electrochemical reconfiguration during operation to significantly boost the electrochemical activity. This work suggests that rational tailoring of the defects within the MOF crystal is an effective strategy to manipulate the coordination environment of the metal centers and the corresponding electrochemical reconfiguration for electrochemical applications.

18.
ACS Nano ; 18(22): 14764-14778, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776362

RESUMO

High-energy-density lithium-metal batteries (LMBs) coupling lithium-metal anodes and high-voltage cathodes are hindered by unstable electrode/electrolyte interphases (EEIs), which calls for the rational design of efficient additives. Herein, we analyze the effect of electron structure on the coordination ability and energy levels of the additive, from the aspects of intramolecular electron cloud density and electron delocalization, to reveal its mechanism on solvation structure, redox stability, as-formed EEI chemistry, and electrochemical performances. Furthermore, we propose an electron reconfiguration strategy for molecular engineering of additives, by taking sorbide nitrate (SN) additive as an example. The lone pair electron-rich group enables strong interaction with the Li ion to regulate solvation structure, and intramolecular electron delocalization yields further positive synergistic effects. The strong electron-withdrawing nitrate moiety decreases the electron cloud density of the ether-based backbone, improving the overall oxidation stability and cathode compatibility, anchoring it as a reliable cathode/electrolyte interface (CEI) framework for cathode integrity. In turn, the electron-donating bicyclic-ring-ether backbone breaks the inherent resonance structure of nitrate, facilitating its reducibility to form a N-contained and inorganic Li2O-rich solid electrolyte interface (SEI) for uniform Li deposition. Optimized physicochemical properties and interfacial biaffinity enable significantly improved electrochemical performance. High rate (10 C), low temperature (-25 °C), and long-term stability (2700 h) are achieved, and a 4.5 Ah level Li||NCM811 multilayer pouch cell under harsh conditions is realized with high energy density (462 W h/kg). The proof of concept of this work highlights that the rational ingenious molecular design based on electron structure regulation represents an energetic strategy to modulate the electrolyte and interphase stability, providing a realistic reference for electrolyte innovations and practical LMBs.

19.
Int J Urol ; 31(8): 886-890, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38666362

RESUMO

OBJECTIVES: To describe a new penoscrotal reconfiguration technique, named "V-I penoscrotal reconfiguration" for the surgical reconstruction of a congenital webbed penis (CWP). METHODS: Twenty-one patients who underwent the "V-I penoscrotal reconfiguration technique" were included in this retrospective study. The CWP severity was assessed according to El-Koutby's classification. Demographic and clinical data, surgical data, and postoperative outcomes were scheduled and analyzed. Specifically, the postoperative follow-up included both physical and psychological assessments at 2 weeks, 1, 6, and 12 months after surgery. Parents' satisfaction degree was quantified by the Likert scale. RESULTS: CWP was grade 3 in 11 (52%) patients, 2 in five (24%), and 1 (24%) in five. Five (24%) CWP were isolated malformations, 11 (52%) were associated with phimosis, three (14%) with hypospadias, and two (10%) with hypospadias and phimosis. There were no postoperative complications and no cases of redo surgery. The cosmetic outcomes were excellent in all cases: the parents' satisfaction score was 4 in 17 (81%) cases and 3 (9%) in the other four cases. CONCLUSIONS: CWP may cause psychological distress and functional problems, especially during sexual intercourse. Its correction in childhood is advocated to prevent psychological and sexual issues. The "V-I reconfiguration technique" is simple, and easy with excellent cosmetic and functional outcomes.


Assuntos
Satisfação do Paciente , Pênis , Procedimentos de Cirurgia Plástica , Escroto , Procedimentos Cirúrgicos Urológicos Masculinos , Humanos , Masculino , Estudos Retrospectivos , Pênis/cirurgia , Pênis/anormalidades , Procedimentos Cirúrgicos Urológicos Masculinos/métodos , Escroto/cirurgia , Escroto/anormalidades , Pré-Escolar , Procedimentos de Cirurgia Plástica/métodos , Criança , Resultado do Tratamento , Lactente , Hipospadia/cirurgia , Hipospadia/psicologia , Seguimentos , Adolescente
20.
Adv Sci (Weinh) ; 11(24): e2307830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588016

RESUMO

Reconfiguration of architected structures has great significance for achieving new topologies and functions of engineering materials. Existing reconfigurable strategies have been reported, including approaches based on heat, mechanical instability, swelling, origami/kirigami designs, and electromagnetic actuation. However, these approaches mainly involve physical interactions between the host materials and the relevant stimuli. Herein, a novel, easy-manipulated, and controllable reconfiguration strategy for polymer architectures is proposed by using a chemical reaction of host material within a hydrogel reactive microenvironment. 3D printed polycaprolactone (PCL) lattices transformed in an aqueous polyacrylamide (PAAm) hydrogel precursor solution, in which ultraviolet (UV) light triggered heterogeneous grafting polymerization between PCL and AAm. In situ microscopy shows that PCL beams go through volumetric expansion and cooperative buckling, resulting in transformation of PCL lattices into sinusoidal patterns. The transformation process can be tuned easily and patterned through the adjustment of the PCL beam diameter, unit cell width, and UV light on-off state. Controlling domain formation is achieved by using UV masks. This framework enables the design, fabrication, and programming of architected materials and inspires the development of novel 4D printing approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA