Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 360: 124655, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097260

RESUMO

With the proposal of dual carbon goals and stringent effluent standards, the path of mitigating greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs) has gained significant research attention. Here, we evaluate the impact of season, elevated standards, operating parameters, and using clean energy on GHG emissions from 8 typical WWTPs in Beijing based on 180 monthly monitoring data. Coupled with the increasing demand for wastewater treatment and 77% more chemical oxygen demand being removed in 2017, total GHG emissions from 5 WWTPs increased by 89% compared to the status quo in 2007, and after energy structure reform total GHG emissions decreased by 17% in 2021. Scenario analysis reveals that energy recovery and clean energy utilization provide 64% and 48% mitigation potential by 2050, respectively. We argue stricter effluent standard leads to GHG emissions growth in WWTPs; meanwhile, process optimization, proper temperature and targeted policies at WWTPs can reduce GHG emissions.


Assuntos
Monitoramento Ambiental , Gases de Efeito Estufa , Eliminação de Resíduos Líquidos , Águas Residuárias , Gases de Efeito Estufa/análise , Pequim , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
2.
PNAS Nexus ; 3(2): pgae028, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38725530

RESUMO

Urban sustainability is a key to achieving the UN sustainable development goals (SDGs). Secure and efficient provision of food, energy, and water (FEW) resources is a critical strategy for urban sustainability. While there has been extensive discussion on the positive effects of the FEW nexus on resource efficiency and climate impacts, measuring the extent to which such synergy can benefit urban sustainability remains challenging. Here, we have developed a systematic and integrated optimization framework to explore the potential of the FEW nexus in reducing urban resource demand and greenhouse gas (GHG) emissions. Demonstrated using the Metropolis Beijing, we have identified that the optimized FEW nexus can reduce resource consumption and GHG emissions by 21.0 and 29.1%, respectively. These reductions come with increased costs compared to the siloed FEW management, but it still achieved a 16.8% reduction in economic cost compared to the business-as-usual scenario. These findings underscore the significant potential of FEW nexus management in enhancing urban resource efficiency and addressing climate impacts, while also identifying strategies to address trade-offs and increase synergies.

3.
J Inorg Biochem ; 253: 112496, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38330683

RESUMO

Cytochrome c4 (c4) is a diheme protein implicated as an electron donor to cbb3 oxidases in multiple pathogenic bacteria. Despite its prevalence, understanding of how specific structural features of c4 optimize its function is lacking. The human pathogen Neisseria gonorrhoeae (Ng) thrives in low oxygen environments owing to the activity of its cbb3 oxidase. Herein, we report characterization of Ng c4. Spectroelectrochemistry experiments of the wild-type (WT) protein have shown that the two Met/His-ligated hemes differ in potentials by ∼100 mV, and studies of the two His/His-ligated variants provided unambiguous assignment of heme A from the N-terminal domain of the protein as the high-potential heme. The crystal structure of the WT protein at 2.45 Å resolution has revealed that the two hemes differ in their solvent accessibility. In particular, interactions made by residues His57 and Ser59 in Loop1 near the axial ligand Met63 contribute to the tight enclosure of heme A, working together with the surface charge, to raise the reduction potential of the heme iron in this domain. The structure reveals a prominent positively-charged patch, which encompasses surfaces of both domains. In contrast to prior findings with c4 from Pseudomonas stutzeri, the interdomain interface of Ng c4 contributes minimally to the values of the heme iron potentials in the two domains. Analyses of the heme solvent accessibility, interface properties, and surface charges offer insights into the interplay of these structural elements in tuning redox properties of c4 and other multiheme proteins.


Assuntos
Citocromos c , Neisseria gonorrhoeae , Humanos , Oxirredução , Citocromos c/química , Oxirredutases/metabolismo , Heme/química , Ferro , Solventes
4.
J Alzheimers Dis ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37483007

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia representing from 60% to 70% of the cases globally. It is a multifactorial disease that, among its many pathological characteristics, has been found to provoke the metal ion dysregulation in the brain, along with an increase in the oxidative stress. There is proof that metallic complexes formed by the amyloid-ß peptide (Aß) and extraneuronal copper can catalyze the production of reactive oxygen species, leading to an increase in oxidative stress, promoting neuronal death. Due to this interaction, bioavailable copper has become an important redox active target to consider within the search protocols of multifunctional agents for AD's treatment. OBJECTIVE: In this study, we examined by using bioinformatics and electronic structure calculations the potential application of 44 salen-type copper chelating ligands and 12 further proposed molecules as possible multifunctional agents in the context of AD. METHODS: The candidates were evaluated by combining bioinformatic tools and electronic structure calculations, which allowed us to classify the molecules as potential antioxidants, redistributor-like compounds, and the newly proposed suppressor mechanism. RESULTS: This evaluation demonstrate that salen-type ligands exhibit properties suitable for interfering in the chain of copper-induced oxidative stress reactions present in AD and potential redistributor and suppressor activity for copper ions. Finally, a novel set of plausible candidates is proposed and evaluated. CONCLUSION: According to the evaluated criteria, a subset of 13 salen-type candidates was found to exhibit promissory pharmacological properties in the AD framework and were classified according to three plausible action mechanisms.

5.
J Environ Manage ; 331: 117215, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646038

RESUMO

The temporal and spatial patterns of wind power installation and the evaluation of carbon emission reduction potentials are of great significance to promoting China's wind power development planning and dual carbon targets achievement. This study analyzes the temporal and spatial characteristics, identifies main driving factors, and measures carbon emission reduction potentials of China's wind power installation by province based on spatial autocorrelation analysis and spatial econometric model. Overall, China's wind power installed capacity increased rapidly from 346 MW in 2000 to 279,550 MW in 2020, basically showing a significant positive spatial correlation during 2000 and 2020. Regarding driving factors of wind power installation, the technological factors and environmental factors were the main positive factors for wind power installation, and the economic factors and resource endowments showed positive spatial spillover effects. Regarding carbon emission reduction potentials, the carbon emission reduction potentials of China's wind power installation increased by year, among which Northwest China gradually accelerated Northeast China after 2015. Based on China's wind power evolution characteristics and carbon emission reduction potentials, this study attempts to provide quantitative supports and policy implications to promote sustainable development of wind power industry and the achievement of carbon peak and carbon neutrality within China.


Assuntos
Carbono , Vento , Carbono/análise , Tecnologia , Análise Espacial , China , Dióxido de Carbono/análise , Desenvolvimento Econômico
6.
J Comput Chem ; 44(4): 516-533, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36507763

RESUMO

We present a toolkit that allows for the preparation of QM/MM input files from a conformational ensemble of molecular geometries. The package is currently compatible with trajectory and topology files in Amber, CHARMM, GROMACS and NAMD formats, and has the possibility to generate QM/MM input files for Gaussian (09 and 16), Orca (≥4.0), NWChem and (Open)Molcas. The toolkit can be used in command line, so that no programming experience is required, although it presents some features that can also be employed as a python application programming interface. We apply the toolkit in four situations in which different electronic-structure properties of organic molecules in the presence of a solvent or a complex biological environment are computed: the reduction potential of the nucleobases in acetonitrile, an energy decomposition analysis of tyrosine interacting with water, the absorption spectrum of an azobenzene derivative integrated into a voltage-gated ion channel, and the absorption and emission spectra of the luciferine/luciferase complex. These examples show that the toolkit can be employed in a manifold of situations for both the electronic ground state and electronically excited states. It also allows for the automatic correction of the active space in the case of CASSCF calculations on an ensemble of geometries, as it is shown for the azobenzene derivative photoswitch case.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Software , Compostos Azo
7.
Methods Enzymol ; 666: 233-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465921

RESUMO

Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.


Assuntos
Metaloproteínas , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Metaloproteínas/química , Oxirredução
8.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215299

RESUMO

The presence of "hypoxic" tissue (with O2 levels of <0.1 mmHg) in solid tumours, resulting in quiescent tumour cells distant from blood vessels, but capable of being reactivated by reoxygenation following conventional therapy (radiation or drugs), have long been known as a limitation to successful cancer chemotherapy. This has resulted in a sustained effort to develop nitroaromatic "hypoxia-activated prodrugs" designed to undergo enzyme-based nitro group reduction selectively in these hypoxic regions, to generate active drugs. Such nitro-based prodrugs can be classified into two major groups; those activated either by electron redistribution or by fragmentation following nitro group reduction, relying on the extraordinary difference in electron demand between an aromatic nitro group and its reduction products. The vast majority of hypoxia-activated fall into the latter category and are discussed here classed by the nature of their nitroaromatic trigger units.

9.
Sci Total Environ ; 820: 153300, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074367

RESUMO

Herein, the photodegradation performances difference of rice straw biochar-derived dissolved black carbon (DBC) for Tetracycline and Methylene Blue under visible light irradiation have been investigated. Tetracycline is easier degraded (degradation rate: 68%), followed by Methylene Blue (degradation rate: 14%). Singlet oxygen (1O2), superoxide radicals (O2-), holes (h+) and triplet DBC (3DBC*) are all make contribution for Tetracycline degradation by DBC, whereas just singlet oxygen (1O2), superoxide radicals (O2-) and 3DBC* are involved in the MB degradation by DBC. Singlet oxygen (1O2) maybe from the fulvic acid-like structure of DBC, while band structure of DBC can explain why superoxide radicals (O2-) and holes (h+) can be formed, whereas hydroxyl radicals (OH) cannot be formed. The oxidation-reduction potential results of Tetracycline and Methylene Blue suggests that Tetracycline is easier to be oxidized than Methylene Blue as well as Methylene Blue is easier to be reduced than Tetracycline. Furthermore, experimental and theoretical results support that DBC has good interaction with Tetracycline, but the interaction between DBC and Methylene Blue is very weak. This likely explain why holes (h+) is not detected for Methylene Blue degradation by DBC since Methylene Blue has not too much chance to meet holes (h+). TC photodegradation intermediates are less toxic than Tetracycline based on QSAR method. Two possible photodegradation path of Tetracycline by DBC are proposed according to HPLC-MS results.


Assuntos
Poluentes Ambientais , Carvão Vegetal , Luz , Oxirredução , Fotólise
10.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067624

RESUMO

Bottom-up nanoparticle (NP) formation is assumed to begin with the reduction of the precursor metallic ions to form zero-valent atoms. Studies in which this assumption was made are reviewed. The standard reduction potential for the formation of aqueous metallic atoms-E0(Mn+aq/M0aq)-is significantly lower than the usual standard reduction potential for reducing metallic ions Mn+ in aqueous solution to a metal in solid state. E0(Mn+aq/M0solid). E0(Mn+aq/M0aq) values are negative for many typical metals, including Ag and Au, for which E0(Mn+aq/M0solid) is positive. Therefore, many common moderate reduction agents that do not have significantly high negative reduction standard potentials (e.g., hydrogen, carbon monoxide, citrate, hydroxylamine, formaldehyde, ascorbate, squartic acid, and BH4-), and cannot reduce the metallic cations to zero-valent atoms, indicating that the mechanism of NP production should be reconsidered. Both AgNP and AuNP formations were found to be multi-step processes that begin with the formation of clusters constructed from a skeleton of M+-M+ (M = Ag or Au) bonds that is followed by the reduction of a cation M+ in the cluster to M0, to form Mn0 via the formation of NPs. The plausibility of M+-M+ formation is reviewed. Studies that suggest a revised mechanism for the formation of AgNPs and AuNPs are also reviewed.

11.
Curr Opin Chem Biol ; 61: 114-122, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422836

RESUMO

Metal ions play an important role in diverse biological processes, and much of the basic knowledge derived from studying native bioinorganic systems are applied in the synthesis of new molecules with the aim of diagnosing and treating diseases. At first glance, metalloproteins and metallodrugs are very different systems, but metal ion coordination, redox chemistry and substrate binding play essential roles in advancing both of these research fields. In this article, we discuss recent metalloprotein and metallodrug studies where electron paramagnetic resonance spectroscopy served as a major tool to gain a better understanding of metal-based structures and their function.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Metaloproteínas/química , Humanos , Conformação Proteica
12.
Free Radic Res ; 54(10): 777-786, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33183109

RESUMO

The antioxidant properties of echinatin (Ech), isolated from liquorice, have recently been reported. It is well known that the free radical species can be deactivated by phenolic antioxidants via different mechanistic pathways. In this work, the scavenging of eighteen different reactive oxygen species (ROS) has been considered, focussing on three main working mechanisms, namely hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). The investigations have been performed in different dielectric media, viz. gas phase, benzene, methanol and aqueous solution, using density functional theory (DFT) calculations at the M05-2X/6-311++G** level. Various molecular descriptors have been elucidated for Ech as well as the ROS and compared with the reference antioxidant molecule, trolox. In addition, the redox potentials and the equilibrium constants have been calculated to discuss the feasibility of the overall scavenging process. The results demonstrate that the 4-OH group is the first site for H-atom donation, followed by 4'-OH. Further, it has been found that HAT would be the most favourable mechanism in the gas phase. The SPLET mechanism is thermodynamically favoured in polar media like water and methanol, while in the case of non-polar solvents like benzene, the two mechanisms are observed to be competitive.


Assuntos
Antioxidantes/metabolismo , Chalconas/metabolismo , Polaridade Celular , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio , Solventes , Termodinâmica
13.
J Mol Model ; 26(6): 116, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32377871

RESUMO

Understanding the role that metal ions play in biological and material processes is critical to addressing a number of diseases and problems facing society today. There have been a number of studies that have begun to approach this concern from a myriad of different perspectives. However, there is still a considerable lack of understanding concerning the mechanisms and structures of metal-related problems, specifically biological and medical-related issues. Understanding the mechanism of ingestion and uptake of metals into the human body is critical to addressing many diseases such as Alzheimer's and certain types of cancers. Using computational techniques, this work adds to the overall understanding of metal interactions with proteins by focusing on metal ion interactions with the amino acid, histidine, one of the most common sites of metal attachment. In this work, the geometries of single and dual histidines attached to Ni2+, Cu2+, and Zn2+ ions at B3LYP/6-311G(d) are presented. The results show stable octahedral complexes associated with each of the metal ions. Free energy calculations suggest that all three complexes are spontaneous in the formation of the dual histidine-metal complexes. Nickel and copper are spontaneous in the formation of the single histidine complex, although the copper complex undergoes slight geometric changes. Zinc is found to be nonspontaneous in forming the single histidine complex. Finally, the reduction potential of the single histidine-metal complex is presented. All of the complexes show positive reduction potentials. However, the nickel and copper complexes undergo geometrical changes to adopt a square planar conformation. Graphical abstract The impact of metal ions in biological systems is of great importance to understanding a diverse number of diseases. By understanding the fundamentals of select ions complexed with histidines, greater understanding of the mechanisms of actions these ions play in health may be elucidated. This work presents initial structures and thermodynamics of histidine complexes with nickel, copper, and zinc metal ions.


Assuntos
Complexos de Coordenação/química , Cobre/química , Histidina/química , Modelos Moleculares , Níquel/química , Zinco/química , Química Computacional , Íons/química , Termodinâmica , Água/química
14.
J Inorg Biochem ; 203: 110889, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31707335

RESUMO

At low oxygen concentrations, respiration of Pseudomonas aeruginosa (Pa) and other bacteria relies on activity of cytochrome cbb3 oxidases. A diheme cytochrome c4 (cyt c4) donates electrons to Pa cbb3 oxidases to enable oxygen reduction and proton pumping by these enzymes. Given the importance of this redox pathway for bacterial pathogenesis, both cyt c4 and cbb3 oxidase are potential targets for new antibacterial strategies. The structural information about these two proteins, however, is scarce, and functional insights for Pa and other bacteria have been primarily drawn from analyses of the analogous system from Pseudomonas stutzeri (Ps). Herein, we describe characterization of structural and redox properties of cyt c4 from Pa. The crystal structure of Pa cyt c4 has revealed that this protein is organized in two monoheme domains. The interdomain interface is more hydrophobic in Pa cyt c4, and the protein surface does not show the dipolar distribution of charges found in Ps cyt c4. The reduction potentials of the two hemes are similar in Pa cyt c4 but differ by about 100 mV in Ps cyt c4. Analyses of structural models of these and other cyt c4 proteins suggest that multiple factors contribute to the potential difference of the two hemes in these proteins, including solvent accessibility of the heme group, the distribution of surface charges, and the nature of the interdomain interface. The distinct properties of cyt c4 proteins from closely-related Pa and Ps bacteria emphasize the importance of examining the cbb3/cyt c4 redox pathway in multiple species.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos c/química , Elétrons , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Grupo dos Citocromos c/metabolismo , Heme/química , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Pseudomonas aeruginosa/enzimologia
15.
Chembiochem ; 21(12): 1773-1778, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31392810

RESUMO

The nitrogenase cofactors are structurally and functionally unique in biological chemistry. Despite a substantial amount of spectroscopic characterization of protein-bound and isolated nitrogenase cofactors, electrochemical characterization of these cofactors and their related species is far from complete. Herein we present voltammetric studies of three isolated nitrogenase cofactor species: the iron-molybdenum cofactor (M-cluster), iron-vanadium cofactor (V-cluster), and a homologue to the iron-iron cofactor (L-cluster). We observe two reductive events in the redox profiles of all three cofactors. Of the three, the V-cluster is the most reducing. The reduction potentials of the isolated cofactors are significantly more negative than previously measured values within the molybdenum-iron and vanadium-iron proteins. The outcome of this study provides insight into the importance of the heterometal identity, the overall ligation of the cluster, and the impact of the protein scaffolds on the overall electronic structures of the cofactors.


Assuntos
Azotobacter vinelandii/química , Técnicas Eletroquímicas , Ferro/metabolismo , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Vanádio/metabolismo , Azotobacter vinelandii/metabolismo , Ferro/química , Ferro/isolamento & purificação , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Conformação Molecular , Molibdênio/química , Molibdênio/isolamento & purificação , Oxirredução , Vanádio/química , Vanádio/isolamento & purificação
16.
J Environ Manage ; 248: 109261, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31357151

RESUMO

This study focused on 14 metal sectors of the 40 countries that are the largest CO2 emitters and developed a new analysis framework to estimate CO2 reduction potentials based on the Greenhouse Gas Protocol through efficiency improvement of the inefficient metal sector of these countries. The analysis framework was developed by combining a multi-regional input-output database with data envelopment analysis. We found that there were 20 inefficient countries in the basic iron and steel sector, which is the largest CO2 emitter among 14 metal sectors, and their efficiency improvements can contribute to reducing CO2 emissions by 354 Mt, accounting for 1.4% of the global CO2 emissions. We further proposed efficiency improvement schemes targeting the inefficient countries in order to help those countries to effectively reduce CO2 emissions according to their sectoral and national characteristics.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Indústrias , Aço
17.
J Comput Chem ; 40(12): 1248-1256, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30697773

RESUMO

Respiratory complex I facilitates electron transfer from NADH to quinone over ~95 Å through a chain of seven iron-sulfur (Fe-S) clusters in the respiratory chain. In this study, the reduction potentials of the Fe-S clusters in Thermus thermophilus complex I are calculated using a Density Functional Theory + Poisson-Boltzmann method. Our results indicate that the reduction potentials are influenced by a variety of factors including the clusters being deeply buried in the complex and the protonation state of buried ionizable residues. In addition, as several of the ionizable side chains have predicted pKa values near pH 7, relatively small structural fluctuations could lead to significant (0.2 V) shifts in the reduction potential of several of the Fe-S clusters, suggesting a dynamic mechanism for electron transfer. Moreover, the method used here is a useful computational tool to study other questions about complex I. © 2019 Wiley Periodicals, Inc.


Assuntos
Biologia Computacional , Proteínas Ferro-Enxofre/metabolismo , Thermus thermophilus/metabolismo , Teoria da Densidade Funcional , Transporte de Elétrons , Proteínas Ferro-Enxofre/química , Simulação de Acoplamento Molecular , Oxirredução , Termodinâmica , Thermus thermophilus/química
18.
Chemistry ; 25(14): 3440-3454, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30238526

RESUMO

Corannulene is a multifaceted polyaromatic compound. It has many interesting properties; for example, it has a bowl-shaped molecular structure that, in addition, undergoes a dynamic inversion process. It has attracted much attention within the last decades. This is not only due to its structural properties but also its electronic properties and its various potential applications to materials chemistry. Here, synthetic approaches towards corannulene derivatives with electron-withdrawing substituents are summarized. This includes both selective and unselective methods. Further, the electrochemical properties, that is, the reduction potentials, are analyzed and compared. As a main conclusion, one can state that the electron affinity depends roughly linearly on the number of substituents. Finally, the structural behavior of the substituted buckybowls in the solid state is highlighted. This also allows a general statement about the influence of the electronic and steric nature of substituents on the molecular structures and the solid-state packing of the corannulene derivatives.

19.
Biochim Biophys Acta Bioenerg ; 1859(11): 1223-1234, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30248312

RESUMO

Cytochrome c oxidases (CcO) reduce O2 to H2O in the respiratory chain of mitochondria and many aerobic bacteria. In addition, some species of CcO can also reduce NO to N2O and water while others cannot. Here, the mechanism for NO-reduction in CcO is investigated using quantum mechanical calculations. Comparison is made to the corresponding reaction in a "true" cytochrome c-dependent NO reductase (cNOR). The calculations show that in cNOR, where the reduction potentials are low, the toxic NO molecules are rapidly reduced, while the higher reduction potentials in CcO lead to a slower or even impossible reaction, consistent with experimental observations. In both enzymes the reaction is initiated by addition of two NO molecules to the reduced active site, forming a hyponitrite intermediate. In cNOR, N2O can then be formed using only the active-site electrons. In contrast, in CcO, one proton-coupled reduction step most likely has to occur before N2O can be formed, and furthermore, proton transfer is most likely rate-limiting. This can explain why different CcO species with the same heme a3-Cu active site differ with respect to NO reduction efficiency, since they have a varying number and/or properties of proton channels. Finally, the calculations also indicate that a conserved active site valine plays a role in reducing the rate of NO reduction in CcO.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico/metabolismo , Óxido Nitroso/metabolismo , Oxirredutases/metabolismo , Heme/metabolismo , Modelos Moleculares , Oxirredução , Termodinâmica
20.
Molecules ; 23(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149493

RESUMO

Nitroaromatic compounds-adducts of Morita⁻Baylis⁻Hillman (MBHA) reaction-have been applied in the treatment of malaria, leishmaniasis, and Chagas disease. The biological activity of these compounds is directly related to chemical reactivity in the environment, chemical structure of the compound, and reduction of the nitro group. Because of the last aspect, electrochemical methods are used to simulate the pharmacological activity of nitroaromatic compounds. In particular, previous studies have shown a correlation between the one-electron reduction potentials in aprotic medium (estimated by cyclic voltammetry) and antileishmanial activities (measured by the IC50) for a series of twelve MBHA. In the present work, two different computational protocols were calibrated to simulate the reduction potentials for this series of molecules with the aim of supporting the molecular modeling of new pharmacological compounds from the prediction of their reduction potentials. The results showed that it was possible to predict the experimental reduction potential for the calibration set with mean absolute errors of less than 25 mV (about 0.6 kcal·mol-1).


Assuntos
Elétrons , Modelos Teóricos , Nitrocompostos/química , Nitrocompostos/farmacologia , Algoritmos , Oxirredução/efeitos dos fármacos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA