Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Front Ophthalmol (Lausanne) ; 4: 1332197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984141

RESUMO

Fundus cameras are widely used by ophthalmologists for monitoring and diagnosing retinal pathologies. Unfortunately, no optical system is perfect, and the visibility of retinal images can be greatly degraded due to the presence of problematic illumination, intraocular scattering, or blurriness caused by sudden movements. To improve image quality, different retinal image restoration/enhancement techniques have been developed, which play an important role in improving the performance of various clinical and computer-assisted applications. This paper gives a comprehensive review of these restoration/enhancement techniques, discusses their underlying mathematical models, and shows how they may be effectively applied in real-life practice to increase the visual quality of retinal images for potential clinical applications including diagnosis and retinal structure recognition. All three main topics of retinal image restoration/enhancement techniques, i.e., illumination correction, dehazing, and deblurring, are addressed. Finally, some considerations about challenges and the future scope of retinal image restoration/enhancement techniques will be discussed.

2.
Diagnostics (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39061681

RESUMO

This study assesses the quality of retinal images captured using a non-mydriatic fundus camera within a teleophthalmologic platform in Taiwan. The objective was to evaluate the effectiveness of non-mydriatic fundus cameras for remote retinal screening and identify factors impacting image quality. From June 2020 to August 2022, 629 patients from five rural infirmaries underwent ophthalmic examinations, with fundus images captured without pupil dilation. These images were reviewed by senior ophthalmologists and graded based on quality. The results indicated that approximately 70% of images were of satisfactory diagnostic quality. Risk factors for poor image quality included older age, the presence of cataracts, pseudophakia, and diabetes mellitus. This study demonstrates the feasibility of using non-mydriatic fundus cameras for teleophthalmology, highlighting the importance of identifying and addressing factors that affect image quality to enhance diagnostic accuracy in remote settings.

3.
Med Biol Eng Comput ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969811

RESUMO

Retinal image registration is of utmost importance due to its wide applications in medical practice. In this context, we propose ConKeD, a novel deep learning approach to learn descriptors for retinal image registration. In contrast to current registration methods, our approach employs a novel multi-positive multi-negative contrastive learning strategy that enables the utilization of additional information from the available training samples. This makes it possible to learn high-quality descriptors from limited training data. To train and evaluate ConKeD, we combine these descriptors with domain-specific keypoints, particularly blood vessel bifurcations and crossovers, that are detected using a deep neural network. Our experimental results demonstrate the benefits of the novel multi-positive multi-negative strategy, as it outperforms the widely used triplet loss technique (single-positive and single-negative) as well as the single-positive multi-negative alternative. Additionally, the combination of ConKeD with the domain-specific keypoints produces comparable results to the state-of-the-art methods for retinal image registration, while offering important advantages such as avoiding pre-processing, utilizing fewer training samples, and requiring fewer detected keypoints, among others. Therefore, ConKeD shows a promising potential towards facilitating the development and application of deep learning-based methods for retinal image registration.

4.
Acta Ophthalmol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953839

RESUMO

PURPOSE: To characterise the retinal vasculometry of a Danish eye and vision cohort and examine associations with systolic blood pressure (BP), diastolic BP, mean arterial BP, and intraocular pressure (IOP). DESIGN: Longitudinal study. METHODS: The retinal vasculature of fundus images from the FOREVER (Finding Ophthalmic Risks and Evaluating the Value of Eye exams and their predictive Reliability) cohort was analysed using a fully automated image analysis program. Longitudinal associations of retinal vessel morphology at follow-up visit with IOP (baseline and follow-up) and BP (follow-up) were examined using multilevel linear regression models adjusting for age, sex and retinal vasculometry at baseline as fixed effects and person as random effect. Width measurements were additionally adjusted for the spherical equivalent. RESULTS: A total of 2089 subjects (62% female) with a mean age of 61 (standard deviation 8) years and a mean follow-up period of 4.1 years (SD 0.6 years) were included. The mean arteriolar diameter was approximately 20% thinner than the mean venular diameter, and venules were about 21%-23% less tortuous than arterioles. BP at follow-up was associated with decreased arteriolar diameter from baseline to follow-up. After adjusting for baseline IOP, IOP at follow-up was associated with increased arteriolar tortuosity above baseline (0.59%, 95% CI 0.08-1.10, p-value 0.024). CONCLUSION: In a Danish eye and vision cohort, variations in BP and alterations in IOP over time were associated with changes in the width and tortuosity of retinal vessels. Our findings contribute novel insights into retinal vascular alterations over time.

5.
Med Image Anal ; 97: 103242, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901099

RESUMO

OBJECTIVE: The development of myopia is usually accompanied by changes in retinal vessels, optic disc, optic cup, fovea, and other retinal structures as well as the length of the ocular axis. And the accurate registration of retinal images is very important for the extraction and analysis of retinal structural changes. However, the registration of retinal images with myopia development faces a series of challenges, due to the unique curved surface of the retina, as well as the changes in fundus curvature caused by ocular axis elongation. Therefore, our goal is to improve the registration accuracy of the retinal images with myopia development. METHOD: In this study, we propose a 3D spatial model for the pair of retinal images with myopia development. In this model, we introduce a novel myopia development model that simulates the changes in the length of ocular axis and fundus curvature due to the development of myopia. We also consider the distortion model of the fundus camera during the imaging process. Based on the 3D spatial model, we further implement a registration framework, which utilizes corresponding points in the pair of retinal images to achieve registration in the way of 3D pose estimation. RESULTS: The proposed method is quantitatively evaluated on the publicly available dataset without myopia development and our Fundus Image Myopia Development (FIMD) dataset. The proposed method is shown to perform more accurate and stable registration than state-of-the-art methods, especially for retinal images with myopia development. SIGNIFICANCE: To the best of our knowledge, this is the first retinal image registration method for the study of myopia development. This method significantly improves the registration accuracy of retinal images which have myopia development. The FIMD dataset we constructed has been made publicly available to promote the study in related fields.

6.
Bioengineering (Basel) ; 11(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38927804

RESUMO

Ultra-widefield (UWF) retinal imaging stands as a pivotal modality for detecting major eye diseases such as diabetic retinopathy and retinal detachment. However, UWF exhibits a well-documented limitation in terms of low resolution and artifacts in the macular area, thereby constraining its clinical diagnostic accuracy, particularly for macular diseases like age-related macular degeneration. Conventional supervised super-resolution techniques aim to address this limitation by enhancing the resolution of the macular region through the utilization of meticulously paired and aligned fundus image ground truths. However, obtaining such refined paired ground truths is a formidable challenge. To tackle this issue, we propose an unpaired, degradation-aware, super-resolution technique for enhancing UWF retinal images. Our approach leverages recent advancements in deep learning: specifically, by employing generative adversarial networks and attention mechanisms. Notably, our method excels at enhancing and super-resolving UWF images without relying on paired, clean ground truths. Through extensive experimentation and evaluation, we demonstrate that our approach not only produces visually pleasing results but also establishes state-of-the-art performance in enhancing and super-resolving UWF retinal images. We anticipate that our method will contribute to improving the accuracy of clinical assessments and treatments, ultimately leading to better patient outcomes.

7.
Clin Exp Optom ; : 1-12, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561016

RESUMO

CLINICAL RELEVANCE: The results of this study present novel insights into the impact of spherical and astigmatic refractive errors on overall, corneal and internal aberrations and may provide a clear understanding of the emmetropisation process and the development of visual function. BACKGROUND: This study aimed to assess the association between overall, corneal and internal higher-order aberrations and the spherical and astigmatic components (magnitude and angle) of refractive error in a large sample of children. METHODS: A total of 311 children aged 7 - 8 years old were classified based on spherical equivalent refraction (myopic, emmetropic and hyperopic); magnitude of astigmatism (none, low and moderate); and angle of astigmatism (with-the-rule, against-the-rule and oblique). Refractive error and overall, corneal and internal higher-order aberrations were measured using the OPD-Scan III workstation. RESULTS: Regarding spherical equivalent refraction, myopic eyes had greater root mean square (RMS) overall higher-order values, total spherical, tetrafoil and secondary astigmatism aberrations, and internal higher-order, total spherical and tetrafoil aberrations in comparison to emmetropic eyes. The magnitude of astigmatism was positively associated with all overall RMS aberrations and with internal higher order, coma, total coma, total spherical and tetrafoil aberrations. Eyes with with-the-rule astigmatism showed higher RMS values of coma and total coma compared to eyes with against-the-rule and oblique astigmatism. CONCLUSIONS: Higher-order aberrations are dependent on the spherical as well as astigmatic components of refractive error. These findings enhance the current understanding of the emmetropisation process and visual function development.

8.
Diagnostics (Basel) ; 14(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611684

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a multifactorial disease encompassing a complex interaction between aging, environmental risk factors, and genetic susceptibility. The study aimed to determine whether there is a relationship between the polygenic risk score (PRS) in patients with AMD and the characteristics of the retinal vascular network visualized by optical coherence tomography angiography (OCTA). METHODS: 235 patients with AMD and 97 healthy controls were included. We used data from a previous AMD PRS study with the same group. The vascular features from different retina layers were compared between the control group and the patients with AMD. The association between features and PRS was then analyzed using univariate and multivariate approaches. RESULTS: Significant differences between the control group and AMD patients were found in the vessel diameter distribution (variance: p = 0.0193, skewness: p = 0.0457) and fractal dimension distribution (mean: p = 0.0024, variance: p = 0.0123). Both univariate and multivariate analyses showed no direct and significant association between the characteristics of the vascular network and AMD PRS. CONCLUSIONS: The vascular features of the retina do not constitute a biomarker of the risk of AMD. We have not identified a genotype-phenotype relationship, and the expression of AMD-related genes is perhaps not associated with the characteristics of the retinal vascular network.

9.
EPMA J ; 15(1): 39-51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463622

RESUMO

Purpose: We developed an Infant Retinal Intelligent Diagnosis System (IRIDS), an automated system to aid early diagnosis and monitoring of infantile fundus diseases and health conditions to satisfy urgent needs of ophthalmologists. Methods: We developed IRIDS by combining convolutional neural networks and transformer structures, using a dataset of 7697 retinal images (1089 infants) from four hospitals. It identifies nine fundus diseases and conditions, namely, retinopathy of prematurity (ROP) (mild ROP, moderate ROP, and severe ROP), retinoblastoma (RB), retinitis pigmentosa (RP), Coats disease, coloboma of the choroid, congenital retinal fold (CRF), and normal. IRIDS also includes depth attention modules, ResNet-18 (Res-18), and Multi-Axis Vision Transformer (MaxViT). Performance was compared to that of ophthalmologists using 450 retinal images. The IRIDS employed a five-fold cross-validation approach to generate the classification results. Results: Several baseline models achieved the following metrics: accuracy, precision, recall, F1-score (F1), kappa, and area under the receiver operating characteristic curve (AUC) with best values of 94.62% (95% CI, 94.34%-94.90%), 94.07% (95% CI, 93.32%-94.82%), 90.56% (95% CI, 88.64%-92.48%), 92.34% (95% CI, 91.87%-92.81%), 91.15% (95% CI, 90.37%-91.93%), and 99.08% (95% CI, 99.07%-99.09%), respectively. In comparison, IRIDS showed promising results compared to ophthalmologists, demonstrating an average accuracy, precision, recall, F1, kappa, and AUC of 96.45% (95% CI, 96.37%-96.53%), 95.86% (95% CI, 94.56%-97.16%), 94.37% (95% CI, 93.95%-94.79%), 95.03% (95% CI, 94.45%-95.61%), 94.43% (95% CI, 93.96%-94.90%), and 99.51% (95% CI, 99.51%-99.51%), respectively, in multi-label classification on the test dataset, utilizing the Res-18 and MaxViT models. These results suggest that, particularly in terms of AUC, IRIDS achieved performance that warrants further investigation for the detection of retinal abnormalities. Conclusions: IRIDS identifies nine infantile fundus diseases and conditions accurately. It may aid non-ophthalmologist personnel in underserved areas in infantile fundus disease screening. Thus, preventing severe complications. The IRIDS serves as an example of artificial intelligence integration into ophthalmology to achieve better outcomes in predictive, preventive, and personalized medicine (PPPM / 3PM) in the treatment of infantile fundus diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00350-y.

10.
J Imaging Inform Med ; 37(4): 1783-1799, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38438695

RESUMO

Image segmentation is a crucial task in computer vision and image processing, with numerous segmentation algorithms being found in the literature. It has important applications in scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, image compression, among others. In light of this, the widespread popularity of deep learning (DL) and machine learning has inspired the creation of fresh methods for segmenting images using DL and ML models respectively. We offer a thorough analysis of this recent literature, encompassing the range of ground-breaking initiatives in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid-based methods, recurrent networks, visual attention models, and generative models in adversarial settings. We study the connections, benefits, and importance of various DL- and ML-based segmentation models; look at the most popular datasets; and evaluate results in this Literature.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação
11.
Exp Eye Res ; 239: 109773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171476

RESUMO

The retinopathy of prematurity (ROP) can cause serious clinical consequences and, fortunately, it is remediable while the time window for treatment is relatively narrow. Therefore, it is urgent to screen all premature infants and diagnose ROP degree timely, which has become a large workload for pediatric ophthalmologists. We developed a retinal image-free procedure using small amount of blood samples based on the plasma Raman spectrum with the machine learning model to automatically classify ROP cases before medical intervention was performed. Statistical differences in infrared Raman spectra of plasma samples were found among the control, mild (ZIIIS1), moderate (ZIIIS2 & ZIIS1), and advanced (ZIIS2) ROP groups. With the different wave points of Raman spectra as the inputs, the outputs of our support vector machine showed that the area under the curves in the receiver operating characteristic (AUC) were 0.763 for the pair comparisons of the control with the mild groups, 0.821 between moderate and advanced groups (ZIIS2), while more than 90% in comparisons of the other four pairs: control vs. moderate (0.981), control vs. advanced (0.963), mild vs. moderate (0.936), and mild vs. advanced (0.953), respectively. Our study could advance principally the ROP diagnosis in two dimensions: the moderate ROPs have been classified remarkably from the mild ones, which leaves more time for the medical treatments, and the procedure of Raman spectrum with a machine learning model based on blood samples can be conveniently promoted to those hospitals lacking of the pediatric ophthalmologists with experience in reading retinal images.


Assuntos
Retinopatia da Prematuridade , Telemedicina , Recém-Nascido , Lactente , Humanos , Criança , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/terapia , Sensibilidade e Especificidade , Telemedicina/métodos , Algoritmos , Aprendizado de Máquina , Idade Gestacional
12.
Med Biol Eng Comput ; 62(2): 357-369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37848753

RESUMO

Cataract affects the quality of fundus images, especially the contrast, due to lens opacity. In this paper, we propose a scheme to enhance different cataractous retinal images to the same contrast as normal images, which can automatically choose the suitable enhancement model based on cataract grading. A multi-level cataract dataset is constructed via the degradation model with quantified contrast. Then, an adaptive enhancement strategy is introduced to choose among three enhancement networks based on a blurriness classifier. The blurriness grading loss is proposed in the enhancement models to further constrain the contrast of the enhanced images. During test, the well-trained blurriness classifier can assist in the selection of enhancement networks with specific enhancement ability. Our method performs the best on the synthetic paired data on PSNR, SSIM, and FSIM and has the best PIQE and FID on 406 clinical fundus images. There is a 7.78% improvement for our method compared with the second on the introduced [Formula: see text] score without over-enhancement according to [Formula: see text], which demonstrates that the proper enhancement by our method is close to the high-quality images. The visual evaluation on multiple clinical datasets also shows the applicability of our method for different blurriness. The proposed method can benefit clinical diagnosis and improve the performance of computer-aided algorithms such as vessel tracking and vessel segmentation.


Assuntos
Algoritmos , Catarata , Humanos , Fundo de Olho , Vasos Retinianos/diagnóstico por imagem , Catarata/diagnóstico por imagem , Padrões de Referência , Processamento de Imagem Assistida por Computador/métodos
13.
Microsc Res Tech ; 87(1): 78-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37681440

RESUMO

Diabetic retinopathy (DR) is a prevalent cause of global visual impairment, contributing to approximately 4.8% of blindness cases worldwide as reported by the World Health Organization (WHO). The condition is characterized by pathological abnormalities in the retinal layer, including microaneurysms, vitreous hemorrhages, and exudates. Microscopic analysis of retinal images is crucial in diagnosing and treating DR. This article proposes a novel method for early DR screening using segmentation and unsupervised learning techniques. The approach integrates a neural network energy-based model into the Fuzzy C-Means (FCM) algorithm to enhance convergence criteria, aiming to improve the accuracy and efficiency of automated DR screening tools. The evaluation of results includes the primary dataset from the Shiva Netralaya Centre, IDRiD, and DIARETDB1. The performance of the proposed method is compared against FCM, EFCM, FLICM, and M-FLICM techniques, utilizing metrics such as accuracy in noiseless and noisy conditions and average execution time. The results showcase auspicious performance on both primary and secondary datasets, achieving accuracy rates of 99.03% in noiseless conditions and 93.13% in noisy images, with an average execution time of 16.1 s. The proposed method holds significant potential in medical image analysis and could pave the way for future advancements in automated DR diagnosis and management. RESEARCH HIGHLIGHTS: A novel approach is proposed in the article, integrating a neural network energy-based model into the FCM algorithm to enhance the convergence criteria and the accuracy of automated DR screening tools. By leveraging the microscopic characteristics of retinal images, the proposed method significantly improves the accuracy of lesion segmentation, facilitating early detection and monitoring of DR. The evaluation of the method's performance includes primary datasets from reputable sources such as the Shiva Netralaya Centre, IDRiD, and DIARETDB1, demonstrating its effectiveness in comparison to other techniques (FCM, EFCM, FLICM, and M-FLICM) in terms of accuracy in both noiseless and noisy conditions. It achieves impressive accuracy rates of 99.03% in noiseless conditions and 93.13% in noisy images, with an average execution time of 16.1 s.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/patologia , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Retina/diagnóstico por imagem , Retina/patologia , Análise por Conglomerados
14.
Diagnostics (Basel) ; 13(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958260

RESUMO

Retinal blood vessel segmentation is a valuable tool for clinicians to diagnose conditions such as atherosclerosis, glaucoma, and age-related macular degeneration. This paper presents a new framework for segmenting blood vessels in retinal images. The framework has two stages: a multi-layer preprocessing stage and a subsequent segmentation stage employing a U-Net with a multi-residual attention block. The multi-layer preprocessing stage has three steps. The first step is noise reduction, employing a U-shaped convolutional neural network with matrix factorization (CNN with MF) and detailed U-shaped U-Net (D_U-Net) to minimize image noise, culminating in the selection of the most suitable image based on the PSNR and SSIM values. The second step is dynamic data imputation, utilizing multiple models for the purpose of filling in missing data. The third step is data augmentation through the utilization of a latent diffusion model (LDM) to expand the training dataset size. The second stage of the framework is segmentation, where the U-Nets with a multi-residual attention block are used to segment the retinal images after they have been preprocessed and noise has been removed. The experiments show that the framework is effective at segmenting retinal blood vessels. It achieved Dice scores of 95.32, accuracy of 93.56, precision of 95.68, and recall of 95.45. It also achieved efficient results in removing noise using CNN with matrix factorization (MF) and D-U-NET according to values of PSNR and SSIM for (0.1, 0.25, 0.5, and 0.75) levels of noise. The LDM achieved an inception score of 13.6 and an FID of 46.2 in the augmentation step.

15.
Front Med (Lausanne) ; 10: 1259478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964881

RESUMO

Purpose: For early screening of diabetic nephropathy patients, we propose a deep learning algorithm to screen high-risk patients with diabetic nephropathy from retinal images of diabetic patients. Methods: We propose the use of attentional mechanisms to improve the model's focus on lesion-prone regions of retinal OCT images. First, the data is trained using the base network and the Grad-CAM algorithm locates image regions that have a large impact on the model output and generates a rough mask localization map. The mask is used as a auxiliary region to realize the auxiliary attention module. We then inserted the region-guided attention module into the baseline model and trained the CNN model to guide the model to better focus on relevant lesion features. The proposed model improves the recognition of the lesion region. Results: To evaluate the lesion-aware attention network, we trained and tested it using OCT volumetric data collected from 66 patients with diabetic retinal microangiopathy (89 eyes, male = 43, female = 23). There were 45 patients (60 eyes, male=27, female = 18) in DR group and 21 patients (29 eyes, male = 16, female = 5) in DN group. Our proposed model performs even better in disease classification, specifically, the accuracy of the proposed model was 91.68%, the sensitivity was 89.99%, and the specificity was 92.18%. Conclusion: The proposed lesion-aware attention model can provide reliable screening of high-risk patients with diabetic nephropathy.

16.
J Imaging ; 9(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37888326

RESUMO

Optical Coherence Tomography (OCT) is an imperative symptomatic tool empowering the diagnosis of retinal diseases and anomalies. The manual decision towards those anomalies by specialists is the norm, but its labor-intensive nature calls for more proficient strategies. Consequently, the study recommends employing a Convolutional Neural Network (CNN) for the classification of OCT images derived from the OCT dataset into distinct categories, including Choroidal NeoVascularization (CNV), Diabetic Macular Edema (DME), Drusen, and Normal. The average k-fold (k = 10) training accuracy, test accuracy, validation accuracy, training loss, test loss, and validation loss values of the proposed model are 96.33%, 94.29%, 94.12%, 0.1073, 0.2002, and 0.1927, respectively. Fast Gradient Sign Method (FGSM) is employed to introduce non-random noise aligned with the cost function's data gradient, with varying epsilon values scaling the noise, and the model correctly handles all noise levels below 0.1 epsilon. Explainable AI algorithms: Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are utilized to provide human interpretable explanations approximating the behaviour of the model within the region of a particular retinal image. Additionally, two supplementary datasets, namely, COVID-19 and Kidney Stone, are assimilated to enhance the model's robustness and versatility, resulting in a level of precision comparable to state-of-the-art methodologies. Incorporating a lightweight CNN model with 983,716 parameters, 2.37×108 floating point operations per second (FLOPs) and leveraging explainable AI strategies, this study contributes to efficient OCT-based diagnosis, underscores its potential in advancing medical diagnostics, and offers assistance in the Internet-of-Medical-Things.

18.
Medicina (Kaunas) ; 59(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629731

RESUMO

Background and Objectives: Glaucoma is a major cause of irreversible visual impairment and blindness, so its timely detection is crucial. Retinal images from diabetic retinopathy screening programmes (DRSP) provide an opportunity to detect undiagnosed glaucoma. Our aim was to find out which retinal image indicators are most suitable for referring DRSP patients for glaucoma assessment and to determine the glaucoma detection potential of Slovenian DRSP. Materials and Methods: We reviewed retinal images of patients from the DRSP at the University Medical Centre Ljubljana (November 2019-January 2020, May-August 2020). Patients with at least one indicator and some randomly selected patients without indicators were invited for an eye examination. Suspect glaucoma and glaucoma patients were considered accurately referred. Logistic regression (LOGIT) with patients as statistical units and generalised estimating equation with logistic regression (GEE) with eyes as statistical units were used to determine the referral accuracy of indicators. Results: Of the 2230 patients reviewed, 209 patients (10.1%) had at least one indicator on a retinal image of either one eye or both eyes. A total of 149 (129 with at least one indicator and 20 without) attended the eye exam. Seventy-nine (53.0%) were glaucoma negative, 54 (36.2%) suspect glaucoma, and 16 (10.7%) glaucoma positive. Seven glaucoma patients were newly detected. Neuroretinal rim notch predicted glaucoma in all cases. The cup-to-disc ratio was the most important indicator for accurate referral (odds ratio 7.59 (95% CI 3.98-14.47; p < 0.001) and remained statistically significant multivariably. Family history of glaucoma also showed an impact (odds ratio 3.06 (95% CI 1.02-9.19; p = 0.046) but remained statistically significant only in the LOGIT multivariable model. Other indicators and confounders were not statistically significant in the multivariable models. Conclusions: Our results suggest that the neuroretinal rim notch and cup-to-disc ratio are the most important for accurate glaucoma referral from retinal images in DRSP. Approximately half of the glaucoma cases in DRSPs may be undiagnosed.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Glaucoma , Humanos , Estudos Transversais , Retinopatia Diabética/diagnóstico por imagem , Glaucoma/diagnóstico , Encaminhamento e Consulta , Eslovênia/epidemiologia
19.
Heliyon ; 9(8): e18605, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576244

RESUMO

Background and objective: Diabetes can induce diabetic retinopathy (DR), and the blindness caused by this disease is irreversible. The early analysis of mouse retinal images, including the layer and cell segmentation properties of these images, can help to effectively diagnose this disease. Method: In the study, we design a dilated residual method based on a feature pyramid network (FPN), in which the FPN is adopted as the base network for solving the multiscale segmentation problem concerning mouse retinal images. In the bottom-up encoding pathway, we construct our backbone feature extraction network via the combination of dilated convolution and a residual block, further increasing the range of the receptive field to obtain more context information. At the same time, we integrate a squeeze-and-excitation (SE) attention module into the backbone network to obtain more small object details. In the top-down decoding pathway, we replace the traditional nearest-neighbor upsampling method with the transposed convolution method and add a segmentation head to obtain semantic segmentation results. Results: The effectiveness of our network model is verified in two segmentation tasks: ganglion cell segmentation and mouse retinal cell and layer segmentation. The outcomes demonstrate that, compared to other supervised segmentation methods based on deep learning, our model attains the utmost precision in both binary segmentation and multiclass semantic segmentation tasks. Conclusion: The dilated residual FPN is a robust method for mouse retinal image segmentation and it can effectively assist DR diagnosis.

20.
Exp Biol Med (Maywood) ; 248(11): 909-921, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37466156

RESUMO

Diabetic retinopathy (DR) will cause blindness if the detection and treatment are not carried out in the early stages. To create an effective treatment strategy, the severity of the disease must first be divided into referral-warranted diabetic retinopathy (RWDR) and non-referral diabetic retinopathy (NRDR). However, there are usually no sufficient fundus examinations due to lack of professional service in the communities, particularly in the developing countries. In this study, we introduce UGAN_Resnet_CBAM (URNet; UGAN is a generative adversarial network that uses Unet for feature extraction), a two-stage end-to-end deep learning technique for the automatic detection of diabetic retinopathy. The characteristics of DDR fundus data set were used to design an adaptive image preprocessing module in the first stage. Gradient-weighted Class Activation Mapping (Grad-CAM) and t-distribution and stochastic neighbor embedding (t-SNE) were used as the evaluation indices to analyze the preprocessing results. In the second stage, we enhanced the performance of the Resnet50 network by integrating the convolutional block attention module (CBAM). The outcomes demonstrate that our proposed solution outperformed other current structures, achieving 94.5% and 94.4% precisions, and 96.2% and 91.9% recall for NRDR and RWDR, respectively.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Fundo de Olho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA