Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Cardiovasc Toxicol ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240427

RESUMO

Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.

2.
Bioorg Med Chem ; 113: 117895, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39259985

RESUMO

Rhein, as a plant antibiotic, demonstrates a broad spectrum of pharmacological effects. Nevertheless, its limited water solubility, low bioavailability, and potential hepatotoxicity and nephrotoxicity making it difficult to directly become a medicine, thereby imposing significant constraints on its clinical application. In recent decades, extensive researches have been proceeded on the multifaceted structural modifications of rhein, resulting in notable improvements on pharmacological activities and druggabilities. This review offers a comprehensive overview and advanced update on the biological potential and structural-activity relationships (SARs) of various rhein derivatives, delineating the sites of structural modification and corresponding activity trends of rhein derivatives for future.

3.
Int J Biol Macromol ; 279(Pt 3): 135360, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39242008

RESUMO

The multi-drug resistance of methicillin-resistant Staphylococcus aureus (MRSA) and complex wound microenvironment challenge the repair of MRSA infected wound. Herein, in this study, α-tocopherol modified glycol chitosan (TG) nanoparticles encapsulated with phytochemical rhein (Rhein@TG NPs) were prepared for comprehensive anti-infection and promotion of MRSA infected wound healing. Rhein@TG NPs could not only specifically release rhein in the infection site in response to low pH and lipase of infectious microenvironment, but also up-regulated M1 macrophage polarization in the infection stage, thus achieving synergistically bacterial elimination with low possibility of developing resistance. Additionally, the NPs reduced the levels of pro-inflammatory factors in the post-infection stage, scavenged the ROS, promoted cell migration and angiogenesis, which significantly improved the microenvironment of infected wound healing. Therefore, this antibiotic-free NPs enabling anti-infection and promotion of wound healing provides a new and long-term strategy for the treatment of MRSA infected wound.

4.
Front Mol Biosci ; 11: 1414197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161777

RESUMO

Ras-related C3 botulinum toxin substrate 1 (Rac1) is a small GTPase belonging to the Rho family. It acts as a binary molecular switch regulating several cellular functions, including cell adhesion and migration. Malfunctions due to the P29S mutation in Rac1 increase the stability of the activated form of Rac1. This sustained activation can drive aberrant cellular processes associated with cancer, such as cell proliferation, survival, and migration. Therefore, finding an inhibitor that can inhibit the mutant form of the protein is very important. Rhein, a natural compound with diverse pharmacological properties, has been studied in relation to Rac1. However, specific interactions between Rhein and Rac1 have not been examined. In this study, we investigated the potential of Rhein, a natural compound, as an inhibitor of two forms of Rac1: the wild type and the P29S mutation, using molecular dynamics simulations. Results indicated that the P29S mutation led to structural changes in the Rac1 protein, which resulted in greater accessibility of the Rhein to the active site. In addition, the binding energy of Rhein to mutant Rac1 was more negative than the native protein. Therefore, it seems that the Rhein has a better inhibitory effect on the P29S-mutated form of the Rac1 protein.

5.
Animals (Basel) ; 14(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39199967

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification affecting skeletal muscle development. Rhein, an anti-inflammatory extract, inhibits FTO, a key demethylase in m6A metabolism. Our study showed that during muscle fiber formation, FTO and ALKBH5 expression increased while m6A levels decreased. After muscle injury, FTO and ALKBH5 expression initially rose but later fell, while m6A levels initially dropped and then recovered. Inhibition of FTO by Rhein reduced MyHC and MyoG expression, indicating myoblast differentiation suppression. In a mouse model, Rhein decreased MyHC expression and muscle fiber cross-sectional area, delaying muscle regeneration. Rhein's ability to increase RNA m6A modification delays skeletal muscle remodeling post-injury, suggesting a new medicinal application for this plant extract.

6.
Int J Biol Macromol ; 277(Pt 4): 134472, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102924

RESUMO

Chronic inflammation and infection often lead to delayed healing in skin wounds of patients with diabetes, presenting a significant challenge in clinical wound repair. In an effort to tackle this issue, we explored the utilization of the natural compounds Rhein and chitosan in the creation of a crosslinked in situ gel. Developed as Rhein-chitosan in situ hydrogel (CS-Rh gel), this formulation has the ability to gel at body temperature, making it suitable for irregular wounds of varying shapes. Our experimental investigations have demonstrated its excellent biocompatibility, controlled release of Rhein, biodegradability, anti-inflammatory properties, antibacterial effect, as well as its ability to enhance keratinocyte proliferation and migration. Furthermore, in vivo studies have confirmed that CS-Rh gel can effectively mitigate tissue inflammation, promote collagen deposition, and significantly accelerate wound healing in diabetic mice within a short timeframe of two weeks. Consequently, this innovative approach holds promise as a viable therapeutic strategy for supporting the healing of diabetic wounds in a clinical setting.


Assuntos
Antraquinonas , Quitosana , Diabetes Mellitus Experimental , Hidrogéis , Cicatrização , Quitosana/química , Quitosana/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Hidrogéis/química , Hidrogéis/farmacologia , Antraquinonas/farmacologia , Antraquinonas/química , Humanos , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Movimento Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos
7.
Molecules ; 29(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39064904

RESUMO

Carrier-free self-assembly has gradually shifted the focus of research on natural products, which effectively improve the bioavailability and the drug-loading rate. However, in spite of the existing studies, the development of self-assembled natural phytochemicals that possess pharmacological effects still has scope for further exploration and enhancement. Herein, a nano-delivery system was fabricated through the direct self-assembly of Rhein and Matrine and was identified as a self-assembled Rhein-Matrine nanoparticles (RM NPs). The morphology of RM NPs was characterized by TEM. The molecular mechanisms of self-assembly were explored using FT-IR, 1H NMR, and molecular dynamics simulation analysis. Gelatin methacryloyl (GelMA) hydrogel was used as a drug carrier for controlled release and targeted delivery of RM NPs. The potential wound repair properties of RM NPs were evaluated on a skin wound-healing model. TEM and dynamic light scattering study demonstrated that the RM NPs were close to spherical, and the average size was approximately 75 nm. 1H NMR of RM NPs demonstrated strong and weak changes in the interaction energies during self-assembly. Further molecular dynamics simulation analysis predicted the self-assembly behavior. An in vivo skin wound-healing model demonstrated that RM NPs present better protection effect against skin damages. Taken together, RM NPs are a new self-assembly system; this may provide new directions for natural product applications.


Assuntos
Alcaloides , Antraquinonas , Matrinas , Simulação de Dinâmica Molecular , Nanopartículas , Quinolizinas , Cicatrização , Alcaloides/química , Alcaloides/farmacologia , Cicatrização/efeitos dos fármacos , Quinolizinas/química , Quinolizinas/farmacologia , Nanopartículas/química , Antraquinonas/química , Antraquinonas/farmacologia , Animais , Portadores de Fármacos/química , Camundongos , Hidrogéis/química , Humanos
8.
Toxins (Basel) ; 16(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057925

RESUMO

Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 µM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 µM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 µM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.


Assuntos
Aflatoxina B1 , Antraquinonas , Aspergillus flavus , Espécies Reativas de Oxigênio , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Antraquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Aflatoxina B1/biossíntese , Aflatoxina B1/toxicidade , Metabolismo Energético/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Antifúngicos/farmacologia
9.
Food Res Int ; 189: 114547, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876606

RESUMO

Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.


Assuntos
Caseínas , Ácidos Cumáricos , Simulação de Acoplamento Molecular , Polifenóis , Solubilidade , Caseínas/química , Concentração de Íons de Hidrogênio , Polifenóis/química , Ácidos Cumáricos/química , Resveratrol/química , Antraquinonas/química , Nanopartículas/química , Composição de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier , Interações Hidrofóbicas e Hidrofílicas , Antioxidantes/química
10.
Front Neurosci ; 18: 1396345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933815

RESUMO

Background: Parkinson's disease (PD) is a common neurodegenerative disease with a rapid increase in incidence in recent years. Existing treatments cannot slow or stop the progression of PD. It was proposed that neuroinflammation leads to neuronal death, making targeting neuroinflammation a promising therapeutic strategy. Our previous studies have demonstrated that rhein protects neurons in vitro by inhibiting neuroinflammation, and it has been found to exhibit neuroprotective effects in Alzheimer's disease and epilepsy, but its neuroprotective mechanisms and effects on PD are still unclear. Methods: PD animal model was induced by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP). ELISA, RT-qPCR, western blot and Immunofluorescence were used to detect the levels of inflammatory cytokines and M1 polarization markers. The protein expression levels of signaling pathways were measured by western blot. Hematoxylin-eosin (HE) staining showed that rhein did not damage the liver and kidney. Two behavioral tests, pole test and rotarod test, were used to evaluate the improvement effect of rhein on movement disorders. The number of neurons in the substantia nigra was evaluated by Nissl staining. Immunohistochemistry and western blot were used to detect tyrosine hydroxylase (TH) and α-synuclein. Results: Rhein inhibited the activation of MAPK/IκB signaling pathway and reduced the levels of pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and M1 polarization markers of microglia in vivo. In a mouse model of PD, rhein ameliorated movement disorders, reduced dopaminergic neuron damage and α-synuclein deposition. Conclusion: Rhein inhibits neuroinflammation through MAPK/IκB signaling pathway, thereby reducing neurodegeneration, α-synuclein deposition, and improving movement disorders in Parkinson's disease.

11.
Int J Dev Neurosci ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858813

RESUMO

BACKGROUND: Rhein is an anthraquinone compound with anti-inflammatory pharmacological activity. It has been found to play a neuroprotective role in neurological diseases, but the neuroprotective mechanism of rhein remains unclear. METHODS: SH-SY5Y cells serving as neuron-like cells and BV2 microglia were used. The toxicity of rhein on BV2 microglia and the viability of SH-SY5Y cells were measured by CCK-8 assay. The mRNA expression and secretion of pro-inflammatory cytokines were detected by qPCR and ELISA. Iba1, CD86 and pathway signalling protein in BV2 microglia were assessed by Western blot and immunofluorescence. Apoptosis of SH-SY5Y cells exposed to neuroinflammation was analysed through flow cytometry. RESULTS: Rhein inhibited MAPK/IκB signalling pathways. Further studies revealed that rhein inhibited the production of pro-inflammatory cytokines TNF-α, IL-6, IL-1ß and iNOS in BV2 cells and also inhibited the expression of M1 polarization markers Iba1 and CD86 in BV2 cells. Furthermore, rhein reduced the apoptotic rate and restored cell viability of SH-SY5Y cells exposed to neuroinflammation. CONCLUSIONS: Our study demonstrated that rhein inhibited microglia M1 polarization via MAPK/IκB signalling pathway and protected nerve cells through suppressing neuroinflammation.

12.
Int J Pharm ; 661: 124397, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38945463

RESUMO

Rhein, a natural anthraquinone compound derived from traditional Chinese medicine, exhibits potent anti-inflammatory properties via modulating the level of Reactive oxygen or nitrogen species (RONS). Nevertheless, its limited solubility in water, brief duration of plasma presence, as well as its significant systemic toxicity, pose obstacles to its in vivo usage, necessitating the creation of a reliable drug delivery platform to circumvent these difficulties. In this study, an esterase-responsive and mitochondria-targeted nano-prodrug was synthesized by conjugating Rhein with the polyethylene glycol (PEG)-modified triphenyl phosphonium (TPP) molecule, forming TPP-PEG-RH, which could spontaneously self-assemble into RPT NPs when dispersed in aqueous media. The TPP outer layer of these nanoparticles enhances their pharmacokinetic profile, facilitates efficient delivery to mitochondria, and promotes cellular uptake, thereby enabling enhanced accumulation in mitochondria and improved therapeutic effects in vitro. The decline in RONS was observed in IL-1ß-stimulated chondrocyte after RPT NPs treating. RPT NPs also exert excellent anti-inflammatory (IL-1ß, TNF-α, IL-6 and MMP-13) and antioxidative effects (Cat and Sod) via the Nrf2 signalling pathway, upregulation of cartilage related genes (Col2a1 and Acan). Moreover, RPT NPs shows protection of mitochondrial membrane potential and inhibition of chondrocyte apoptosis. Moreover, These findings suggest that the mitochondria-targeted polymer-Rhein conjugate may offer a therapeutic solution for patients suffering from chronic joint disorders, by attenuating the progression of osteoarthritis (OA).


Assuntos
Antraquinonas , Anti-Inflamatórios , Mitocôndrias , Nanopartículas , Osteoartrite , Pró-Fármacos , Antraquinonas/administração & dosagem , Antraquinonas/farmacologia , Antraquinonas/farmacocinética , Antraquinonas/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteoartrite/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Nanopartículas/química , Condrócitos/efeitos dos fármacos , Polietilenoglicóis/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/química , Sistemas de Liberação de Medicamentos/métodos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Compostos Organofosforados/química , Compostos Organofosforados/administração & dosagem , Ratos
13.
Chem Biodivers ; 21(8): e202400753, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38818648

RESUMO

VEGFR-2 is a prominent therapeutic target in antitumor drug research to block tumor angiogenesis. This study focused on the synthesis and optimization of PROTACs based on the natural product rhein, resulting in the successful synthesis of 15 distinct molecules. In A549 cells, D9 exhibited remarkable antitumor efficacy with an IC50 of 5.88±0.50 µM, which was 15-fold higher compared to rhein (IC50=88.45±2.77 µM). An in-depth study of the effect of D9 on the degradation of VEGFR-2 revealed that D9 was able to induce the degradation of VEGFR-2 in A549 cells in a time-dependent manner. The observed effect was reversible, contingent upon the proteasome and ubiquitination system, and demonstrably linked to CRBN. Further experiments revealed that D9 induced apoptosis in A549 cells and led to cell cycle arrest in the G1 phase. Molecular docking simulations validated the binding mode of D9 to VEGFR, establishing the potential of D9 to bind to VEGFR-2 in its natural state. In summary, this study confirms the feasibility of natural product-bound PROTAC technology for the development of a new generation of VEGFR-2 degraders, offering a novel trajectory for the future development of pharmacological agents targeting VEGFR-2.


Assuntos
Antineoplásicos , Apoptose , Produtos Biológicos , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Antraquinonas/farmacologia , Antraquinonas/química , Antraquinonas/síntese química , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Estrutura Molecular , Células A549 , Proteólise/efeitos dos fármacos , Quimera de Direcionamento de Proteólise
14.
Med Oncol ; 41(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743323

RESUMO

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Assuntos
Antraquinonas , Ciclo Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Neoplasias Esofágicas , Humanos , Antraquinonas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rheum/química
15.
Ecotoxicol Environ Saf ; 279: 116474, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772144

RESUMO

Rhubarb is widely used in health care, but causing a great amount of rhein-containing herbal residue. Rhein with several toxicities might pollute environment, damage ecology and even hazard human health if left untreated. In this study, the degradation effects of bisulfite- (BS) and peroxymonosulfate- (PMS) based oxidation systems on rhein in rhubarb residue were compared and investigated. The effects of BS and PMS with two valence states of ferric ion (Fe) on the degradation of rhein in rhubarb residue were optimized for the selection of optimal oxidation system. The influences of reaction temperature, reaction time and initial pH on the removal of rhein under the optimal oxidation system were evaluated. The chemical profiles of rhubarb residue with and without oxidation process were compared by UPLC-QTOF-MS/MS, and the degradation effects were investigated by PLS-DA and S plot/OPLS-DA analysis. The results manifested that PMS showed relative higher efficiency than BS on the degradation of rhein. Moreover, Fe(III) promoted the degradation effect of PMS, demonstrated that Fe(III)/PMS is the optimal oxidation system to degrade rhein in rhubarb residue. Further studies indicated that the degradation of rhein by the Fe(III)/PMS oxidation system was accelerated with the prolong of reaction time and the elevation of reaction temperature, and also affected by the initial pH. More importantly, Fe(III)/PMS oxidation system could degrade rhein in rhubarb residue completely under the optimal conditions. In conclusion, Fe(III)/PMS oxidation system is a feasible method to treat rhein in rhubarb residue.


Assuntos
Antraquinonas , Oxirredução , Peróxidos , Rheum , Antraquinonas/química , Rheum/química , Peróxidos/química , Espectrometria de Massas em Tandem , Sulfitos/química , Concentração de Íons de Hidrogênio , Compostos Férricos/química , Temperatura
16.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658095

RESUMO

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Assuntos
Antraquinonas , Proliferação de Células , Neoplasias Colorretais , Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antraquinonas/farmacologia , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus
17.
Acta Biomater ; 180: 383-393, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38570106

RESUMO

Ferroptosis has emerged as a promising strategy for treating triple-negative breast cancer (TNBC) due to bypassing apoptosis and triggering immunogenic cell death (ICD) of tumor cells. However, the antitumor efficacy has been limited by the insufficient intracellular ferrous iron concentration required for ferroptosis and inadequate antitumor immune response. To address these limitations, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which exhibited a synergistic effect of ferroptosis, apoptosis and induced immune response for enhanced antitumor therapy. MP-FA@R-F NPs target folate receptors, which are over-expressed on the tumor cell's surface to promote intracellular uptake. The cargoes, including Rhein and Fe3O4, would be released in intracellular acid, accelerating by NIR laser irradiation. The released Rhein induced apoptosis of tumor cells mediated by the caspase 3 signal pathway, while the released Fe3O4 triggered ferroptosis through the Fenton reaction and endowed the nanoplatform with magnetic resonance imaging (MRI) capabilities. In addition, ferroptosis-dying tumor cells could release damage-associated molecular patterns (DAMPs) to promote T cell activation and infiltration for immune response and induce immunogenic cell death (ICD) for tumor immunotherapy. Together, MP-FA@R-F NPs represent a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy. STATEMENT OF SIGNIFICANCE: The massive strategies of cancer therapy based on ferroptosis have been emerging in recent years, which provided new insights into designing materials for cancer therapy. However, the antitumor efficacy of ferroptosis is still unsatisfactory, mainly due to insufficient intracellular pro-ferroptotic stimuli. In the current study, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which represented a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy.


Assuntos
Antraquinonas , Ferroptose , Imunoterapia , Antraquinonas/química , Antraquinonas/farmacologia , Animais , Imunoterapia/métodos , Humanos , Linhagem Celular Tumoral , Camundongos , Ferroptose/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Ácido Fólico/química , Ácido Fólico/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Apoptose/efeitos dos fármacos
18.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38668646

RESUMO

Background. Actinobacillus pleuropneumoniae, a member of the Pasteurellaceae family, is known for its highly infectious nature and is the primary causative agent of infectious pleuropneumonia in pigs. This disease poses a considerable threat to the global pig industry and leads to substantial economic losses due to reduced productivity, increased mortality rates, and the need for extensive veterinary care and treatment. Due to the emergence of multi-drug-resistant strains, Chinese herbal medicine is considered one of the best alternatives to antibiotics due to its unique mechanism of action and other properties. As a type of Chinese herbal medicine, Rhein has the advantages of a wide antibacterial spectrum and is less likely to develop drug resistance, which can perfectly solve the limitations of current antibacterial treatments.Methods. The killing effect of Rhein on A. pleuropneumoniae was detected by fluorescence quantification of differential expression changes of key genes, and scanning electron microscopy was used to observe the changes in A. pleuropneumoniae status after Rhein treatment. Establishing a mouse model to observe the treatment of Rhein after A. pleuropneumoniae infection.Results. Here, in this study, we found that Rhein had a good killing effect on A. pleuropneumoniae and that the MIC was 25 µg ml-1. After 3 h of action, Rhein (4×MIC) completely kills A. pleuropneumoniae and Rhein has good stability. In addition, the treatment with Rhein (1×MIC) significantly reduced the formation of bacterial biofilms. Therapeutic evaluation in a murine model showed that Rhein protects mice from A. pleuropneumoniae and relieves lung inflammation. Quantitative RT-PCR (Quantitative reverse transcription polymerase chain reaction is a molecular biology technique that combines both reverse transcription and polymerase chain reaction methods to quantitatively detect the amount of a specific RNA molecule) results showed that Rhein treatment significantly downregulated the expression of the IL-18 (Interleukin refers to a class of cytokines produced by white blood cells), TNF-α, p65 and p38 genes. Along with the downregulation of genes such as IL-18, it means that Rhein has an inhibitory effect on the expression of these genes, thereby reducing the activation of inflammatory cells and the production of inflammatory mediators. This helps reduce inflammation and protects tissue from further damage.Conclusions. This study reports the activity of Rhein against A. pleuropneumoniae and its mechanism, and reveals the ability of Rhein to treat A. pleuropneumoniae infection in mice, laying the foundation for the development of new drugs for bacterial infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antraquinonas , Antibacterianos , Animais , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Suínos , Modelos Animais de Doenças , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
19.
Curr Res Food Sci ; 8: 100718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545378

RESUMO

Currently, dairy mastitis caused by Staphylococcus xylosus poses a serious challenge for dairy farming. In this study, we explored the role and mechanism of rhein against S. xylosus with the hope of providing new research ideas to solve mastitis in dairy cows and ensure the source safety of dairy products. Through in vitro antimicrobial studies, we found that the minimum inhibitory concentration (MIC) of rhein was 64 µg/mL, and it significantly interfered with the formation of S. xylosus biofilm at sub-MIC. In experiments on mastitis in mice, rhein alleviated inflammation in mammary tissue, reduced the levels of TNF-α and IL-6, and decreased the number of S. xylosus. To explore the anti-S. xylosus mechanism of rhein, we identified the relevant proteins involved in carbon metabolism (Glycolysis/gluconeogenesis, TCA cycle, Fatty acid degradation) through proteomics. Additionally, proteins associated with the respiratory chain, oxidative stress (proteins of antioxidant and DNA repair), and nitrate respiration were also found to be upregulated. Thus, rhein may act as an antibacterial agent by interfering with the respiratory metabolism of S. xylosus and inducing the production of ROS, high levels of which alter the permeability of bacterial cell membranes and cause damage to them. We measured the concentrations of extracellular ß-galactosidase and nucleic acids. Additionally, SEM observation of S. xylosus morphology showed elevated membrane permeability and damage to the cell membrane. Finally, RT-PCR experiments showed that mRNAs of key proteins of the TCA cycle (odhA, mqo) and nitrate respiration (nreB, nreC, narG) were significantly up-regulated, consistent with proteomic results. In conclusion, rhein has good anti-S. xylosus effects in vitro and in vivo, by interfering with bacterial energy metabolism, inducing ROS production, and causing cell membrane and DNA damage, which may be one of the important mechanisms of its antimicrobial activity.

20.
Adv Healthc Mater ; 13(19): e2304674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501303

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disease with uncontrolled inflammation and demage to the intestinal barrier. Rhein, a bioactive compound in traditional Chinese medicine, has anti-inflammatory and intestinal repair effect. However, their clinical application is limited by their hydrophobicity and poor bioavailability. L-arginine, as a complement to NO, has synergistic and attenuating effects. In this paper, red/NIR-I fluorescent carbon dots based on rhein and doped with L-arginine (RA-CDs), which are synthesized by a hydrothermal process without any organic solvents, are reported. RA-CDs preserve a portion of the functional group of the active precursor, increase rhein solubility, and emit red/NIR-I light for biological imaging. In vitro experiments show that RA-CDs scavenge excessive reactive oxygen species (ROS), protect cells from oxidative stress, and enable the fluorescence imaging of inflamed colons. In a DSS-induced UC mouse model, both delayed and prophylactic treatment with RA-CDs via intraperitoneal and tail vein injections alleviate UC severity by reducing intestinal inflammation and restoring the intestinal barrier. This study highlights a novel strategy for treating and imaging UC with poorly soluble small-molecule drugs.


Assuntos
Antraquinonas , Carbono , Colite Ulcerativa , Espécies Reativas de Oxigênio , Antraquinonas/química , Antraquinonas/farmacologia , Animais , Camundongos , Carbono/química , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Camundongos Endogâmicos C57BL , Sulfato de Dextrana , Arginina/química , Corantes Fluorescentes/química , Modelos Animais de Doenças , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA