Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295536

RESUMO

Soybean yield loss due to soybean cyst nematode (SCN) infestation has a negative impact on the U.S. economy. Most SCN-resistant soybeans carry a common resistance locus (Rhg1), conferred by copy number variation of a 31.2-kb segment at the Rhg1 locus. To identify the effects of Rhg1 copy number on the plant prior to SCN infection, we investigated genome-wide expression profiles in isogenic Fayette plants carrying different copy numbers at the Rhg1 locus (9-11 copies), that confer different levels of resistance to SCN. We found that even small differences in copy number lead to large changes in expression of downstream defense genes. The co-expression network constructed from differentially expressed genes (DEGs) outside the Rhg1 locus revealed complex effects of Rhg1 copy number on transcriptional regulation involving signal transduction and ethylene-mediated signaling pathways. Moreover, we report a variation in expression levels of phytoalexin biosynthesis-related genes that is correlated with copy number, and the activation of different NBS-LRR gene sets, indicating a broad effect of copy number on defense responses. Using qRT-PCR time series during SCN infection, we validated the SCN responses of DEGs detected in the copy number comparison and showed a stable upregulation of genes related to phytoalexin biosynthesis in resistant Fayette lines during the early stages of the incompatible interaction between soybeans and SCN, before syncytium formation. These results suggest additional genes that could enhance Rhg1-mediated SCN resistance.

2.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
3.
Front Plant Sci ; 14: 1270546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053759

RESUMO

Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.

4.
Plant Dis ; 107(2): 401-412, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35787008

RESUMO

Heterodera glycines, the soybean cyst nematode (SCN), and fungal pathogen Macrophomina phaseolina are economically important soybean pathogens that may coinfest fields. Resistance remains the most effective management tactic for SCN, and the rhg1-b resistance allele derived from plant introduction 88788 is most commonly deployed in the northern United States. The concomitant effects of SCN and M. phaseolina on soybean performance, as well as the effect of the rhg1-b allele in two different genetic backgrounds, were evaluated in three environments (during 2013 to 2015) and a greenhouse bioassay. Within two soybean populations, half of the lines had the rhg1-b allele, and the other half had the susceptible allele in the backgrounds of the cultivars IA3023 and LD00-3309. Significant interactions between soybean rhg1-b allele and M. phaseolina-infested plots were observed in 2014. In all experiments, initial SCN populations (Pi) and M. phaseolina in roots were associated with reduced soybean yield. SCN reproduction factor (RF = final population/Pi) was affected by SCN Pi, rhg1-b, and genetic background. A background-by-genotype interaction on yield was observed only in 2015, with a stronger rhg1-b effect in the LD00-3309 background, which suggested that the susceptible parent 'IA3023' is tolerant to SCN. SCN female index from greenhouse experiments was compared with field RF, and Lin's concordance and Pearson's correlation coefficients decreased with increasing field SCN Pi in soil. In this study, both SCN and M. phaseolina reduced soybean yield asymptomatically, and the impact of SCN rhg1-b resistance was dependent on SCN virulence but also population density.


Assuntos
Glycine max , Tylenchoidea , Animais , Glycine max/genética , Doenças das Plantas/microbiologia , Genótipo , Tylenchoidea/genética
5.
Plant Biotechnol J ; 20(2): 283-296, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34532941

RESUMO

The soybean cyst nematode (SCN) is one of the most important causes of soybean yield loss. The major source of genetic resistance to SCN is the Rhg1 repeat, a tandem copy number polymorphism of three genes. The roles of these genes are only partially understood. Moreover, nematode populations virulent on Rhg1-carrying soybeans are becoming more common, increasing the need to understand the most successful genetic resistance mechanism. Here, we show that a Rhg1-locus gene (Glyma.18G02270) encoding a wound-inducible protein (WI12Rhg1 ) is needed for SCN resistance. Furthermore, knockout of WI12Rhg1 reduces the expression of DELLA18, and the expression of WI12Rhg1 is itself induced by either JA, SA or GA. The content of the defence hormone SA is significantly lower whilst GA12 and GA53 are increased in WI12Rhg1 knockout roots compared with unedited hairy roots. We find that WI12Rhg1 directly interacts with DELLA18 (Glyma.18G040000) in yeast and plants and that double knockout of DELLA18 and its homeolog DELLA11 (Glyma.11G216500) significantly reduces SCN resistance and alters the root morphology. As DELLA proteins are implicated in hormone signalling, we explored the content of defence hormones (JA and SA) in DELLA knockout and unedited roots, finding reduced levels of JA and SA after the knockout of DELLA. Additionally, the treatment of DELLA-knockout roots with JA or SA rescues SCN resistance lost by the knockout. Meanwhile, the SCN resistance of unedited roots decreases after the treatment with GA, but increases with JA or SA. Our findings highlight the critical roles of WI12Rhg1 and DELLA proteins in SCN resistance through interconnection with hormone signalling.


Assuntos
Cistos , Tylenchoidea , Animais , Resistência à Doença/genética , Hormônios/metabolismo , Doenças das Plantas/genética , Glycine max/genética , Glycine max/metabolismo
6.
Mol Plant Microbe Interact ; 34(12): 1433-1445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34343024

RESUMO

Soybean cyst nematode (SCN) is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance quantitative trait locus cqSCN-006, introgressed from the wild relative Glycine soja, provides intermediate resistance against nematode populations, including those with increased virulence on the heavily used rhg1-b resistance locus. cqSCN-006 was previously fine-mapped to a genome interval on chromosome 15. The present study determined that Glyma.15G191200 at cqSCN-006, encoding a γ-SNAP, contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the cqSCN-006 allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other cqSCN-006-specific DNA polymorphisms in the Glyma.15G191200 promoter and gene body were identified, and we observed differing induction of γ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the Glyma.15G191200 γ-SNAP gene and observed differential expression of the splice forms 2 days after SCN infection. Heterologous overexpression of γ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain G. soja evolved quantitative SCN resistance through altered regulation of γ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by Glyma.18G022500 (Rhg1) and Glyma.11G234500. The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about γ-SNAPs in any system, but the present work suggests a role for γ-SNAPs during susceptible responses to cyst nematodes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Cistos , Nematoides , Tylenchoidea , Animais , Resistência à Doença/genética , Doenças das Plantas , Locos de Características Quantitativas , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética
7.
Plant J ; 104(2): 318-331, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645235

RESUMO

Soybean cyst nematode (SCN; Heterodera glycines) is the largest pathogenic cause of soybean yield loss. The Rhg1 locus is the most used and best characterized SCN resistance locus, and contains three genes including one encoding an α-SNAP protein. Although the Rhg1 α-SNAP is known to play an important role in vesicle trafficking and SCN resistance, the protein's binding partners and the molecular mechanisms underpinning SCN resistance remain unclear. In this report, we show that the Rhg1 α-SNAP strongly interacts with two syntaxins of the t-SNARE family (Glyma.12G194800 and Glyma.16G154200) in yeast and plants; importantly, the genes encoding these syntaxins co-localize with SCN resistance quantitative trait loci. Fluorescent visualization revealed that the α-SNAP and the two interacting syntaxins localize to the plasma membrane and perinuclear space in both tobacco epidermal and soybean root cells. The two syntaxins and their two homeologs were mutated, individually and in combination, using the CRISPR-Cas9 system in the SCN-resistant Peking and SCN-susceptible Essex soybean lines. Peking roots with deletions introduced into syntaxin genes exhibited significantly reduced resistance to SCN, confirming that t-SNAREs are critical to resisting SCN infection. The results presented here uncover a key step in the molecular mechanism of SCN resistance, and will be invaluable to soybean breeders aiming to develop highly SCN-resistant soybean varieties.


Assuntos
Glycine max/parasitologia , Proteínas de Plantas/metabolismo , Proteínas SNARE/metabolismo , Tylenchoidea/patogenicidade , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistência à Doença , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Locos de Características Quantitativas , Proteínas SNARE/genética , Glycine max/genética , Técnicas do Sistema de Duplo-Híbrido
8.
Plant Direct ; 3(8): e00164, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31468029

RESUMO

Soybean growers widely use the Resistance to Heterodera glycines 1 (Rhg1) locus to reduce yield losses caused by soybean cyst nematode (SCN). Rhg1 is a tandemly repeated four gene block. Two classes of SCN resistance-conferring Rhg1 haplotypes are recognized: rhg1-a ("Peking-type," low-copy number, three or fewer Rhg1 repeats) and rhg1-b ("PI 88788-type," high-copy number, four or more Rhg1 repeats). The rhg1-a and rhg1-b haplotypes encode α-SNAP (alpha-Soluble NSF Attachment Protein) variants α-SNAP Rhg1 LC and α-SNAP Rhg1 HC, respectively, with differing atypical C-terminal domains, that contribute to SCN resistance. Here we report that rhg1-a soybean accessions harbor a copia retrotransposon within their Rhg1 Glyma.18G022500 (α-SNAP-encoding) gene. We termed this retrotransposon "RAC," for Rhg1 alpha-SNAP copia. Soybean carries multiple RAC-like retrotransposon sequences. The Rhg1 RAC insertion is in the Glyma.18G022500 genes of all true rhg1-a haplotypes we tested and was not detected in any examined rhg1-b or Rhg1WT (single-copy) soybeans. RAC is an intact element residing within intron 1, anti-sense to the rhg1-a α-SNAP open reading frame. RAC has intrinsic promoter activities, but overt impacts of RAC on transgenic α-SNAP Rhg1 LC mRNA and protein abundance were not detected. From the native rhg1-a RAC+ genomic context, elevated α-SNAP Rhg1 LC protein abundance was observed in syncytium cells, as was previously observed for α-SNAP Rhg1 HC (whose rhg1-b does not carry RAC). Using a SoySNP50K SNP corresponding with RAC presence, just ~42% of USDA accessions bearing previously identified rhg1-a SoySNP50K SNP signatures harbor the RAC insertion. Subsequent analysis of several of these putative rhg1-a accessions lacking RAC revealed that none encoded α-SNAPRhg1LC, and thus, they are not rhg1-a. rhg1-a haplotypes are of rising interest, with Rhg4, for combating SCN populations that exhibit increased virulence against the widely used rhg1-b resistance. The present study reveals another unexpected structural feature of many Rhg1 loci, and a selectable feature that is predictive of rhg1-a haplotypes.

9.
Plant Biotechnol J ; 17(8): 1595-1611, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30688400

RESUMO

Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.


Assuntos
Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Tylenchoidea/patogenicidade , Animais , Sequência de Bases , Feminino , Loci Gênicos , Genoma de Planta , Haplótipos , Doenças das Plantas/parasitologia , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Glycine max/parasitologia
10.
Mol Plant Pathol ; 20(2): 270-286, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30264924

RESUMO

Rhg1 (resistance to Heterodera glycines 1) is an important locus that contributes to resistance against soybean cyst nematode (SCN; Heterodera glycines Ichinohe), which is the most economically damaging disease of soybean worldwide. Simultaneous overexpression of three genes encoding a predicted amino acid transporter, an α-soluble N-ethylmaleimide-sensitive factor attachment protein (α-SNAP) and a predicted wound-induced protein resulted in resistance to SCN provided by this locus. However, the roles of two of these genes (excluding α-SNAP) remain unknown. Here, we report the functional characterization of Glyma.18G022400, a gene at the Rhg1 locus that encodes the predicted amino acid transporter Rhg1-GmAAT. Although the direct role of Rhg1-GmAAT in glutamate transport was not demonstrated, multiple lines of evidence showed that Rhg1-GmAAT impacts glutamic acid tolerance and glutamate transportation in soybean. Transcriptomic and metabolite profiling indicated that overexpression of Rhg1-GmAAT activated the jasmonic acid (JA) pathway. Treatment with a JA biosynthesis inhibitor reduced the resistance provided by the Rhg1-containing PI88788 to SCN, which suggested that the JA pathway might play a role in Rhg1-mediated resistance to SCN. Our results could be helpful for the clarification of the mechanism of resistance to SCN provided by Rhg1 in soybean.


Assuntos
Ciclopentanos/farmacologia , Glycine max/parasitologia , Oxilipinas/farmacologia , Tylenchoidea/patogenicidade , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Resistência à Doença/efeitos dos fármacos , Glutamatos/metabolismo , Doenças das Plantas/microbiologia , Glycine max/metabolismo , Tylenchoidea/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(19): E4512-E4521, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29695628

RESUMO

N-ethylmaleimide sensitive factor (NSF) and α-soluble NSF attachment protein (α-SNAP) are essential eukaryotic housekeeping proteins that cooperatively function to sustain vesicular trafficking. The "resistance to Heterodera glycines 1" (Rhg1) locus of soybean (Glycine max) confers resistance to soybean cyst nematode, a highly damaging soybean pest. Rhg1 loci encode repeat copies of atypical α-SNAP proteins that are defective in promoting NSF function and are cytotoxic in certain contexts. Here, we discovered an unusual NSF allele (Rhg1-associated NSF on chromosome 07; NSFRAN07 ) in Rhg1+ germplasm. NSFRAN07 protein modeling to mammalian NSF/α-SNAP complex structures indicated that at least three of the five NSFRAN07 polymorphisms reside adjacent to the α-SNAP binding interface. NSFRAN07 exhibited stronger in vitro binding with Rhg1 resistance-type α-SNAPs. NSFRAN07 coexpression in planta was more protective against Rhg1 α-SNAP cytotoxicity, relative to WT NSFCh07 Investigation of a previously reported segregation distortion between chromosome 18 Rhg1 and a chromosome 07 interval now known to contain the Glyma.07G195900 NSF gene revealed 100% coinheritance of the NSFRAN07 allele with disease resistance Rhg1 alleles, across 855 soybean accessions and in all examined Rhg1+ progeny from biparental crosses. Additionally, we show that some Rhg1-mediated resistance is associated with depletion of WT α-SNAP abundance via selective loss of WT α-SNAP loci. Hence atypical coevolution of the soybean SNARE-recycling machinery has balanced the acquisition of an otherwise disruptive housekeeping protein, enabling a valuable disease resistance trait. Our findings further indicate that successful engineering of Rhg1-related resistance in plants will require a compatible NSF partner for the resistance-conferring α-SNAP.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glycine max/crescimento & desenvolvimento , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Nematoides/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Interações Hospedeiro-Parasita , Proteínas Sensíveis a N-Etilmaleimida/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitologia
12.
Proc Natl Acad Sci U S A ; 113(47): E7375-E7382, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821740

RESUMO

α-SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] and NSF proteins are conserved across eukaryotes and sustain cellular vesicle trafficking by mediating disassembly and reuse of SNARE protein complexes, which facilitate fusion of vesicles to target membranes. However, certain haplotypes of the Rhg1 (resistance to Heterodera glycines 1) locus of soybean possess multiple repeat copies of an α-SNAP gene (Glyma.18G022500) that encodes atypical amino acids at a highly conserved functional site. These Rhg1 loci mediate resistance to soybean cyst nematode (SCN; H. glycines), the most economically damaging pathogen of soybeans worldwide. Rhg1 is widely used in agriculture, but the mechanisms of Rhg1 disease resistance have remained unclear. In the present study, we found that the resistance-type Rhg1 α-SNAP is defective in interaction with NSF. Elevated in planta expression of resistance-type Rhg1 α-SNAPs depleted the abundance of SNARE-recycling 20S complexes, disrupted vesicle trafficking, induced elevated abundance of NSF, and caused cytotoxicity. Soybean, due to ancient genome duplication events, carries other loci that encode canonical (wild-type) α-SNAPs. Expression of these α-SNAPs counteracted the cytotoxicity of resistance-type Rhg1 α-SNAPs. For successful growth and reproduction, SCN dramatically reprograms a set of plant root cells and must sustain this sedentary feeding site for 2-4 weeks. Immunoblots and electron microscopy immunolocalization revealed that resistance-type α-SNAPs specifically hyperaccumulate relative to wild-type α-SNAPs at the nematode feeding site, promoting the demise of this biotrophic interface. The paradigm of disease resistance through a dysfunctional variant of an essential gene may be applicable to other plant-pathogen interactions.


Assuntos
Resistência à Doença , Glycine max/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Mutação , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitologia
13.
Appl Biochem Biotechnol ; 180(8): 1657-1674, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27491306

RESUMO

Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.


Assuntos
Fusarium/fisiologia , Glycine max/metabolismo , Glycine max/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Proteômica/métodos , Eletroforese em Gel Bidimensional , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Ligação Proteica
14.
Plant J ; 88(1): 143-153, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27310152

RESUMO

Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2-kb genomic units each containing four genes. Reliable, high-throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single-tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN-resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker-assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars.


Assuntos
Variações do Número de Cópias de DNA/genética , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Resistência à Doença/genética , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Mol Ecol ; 24(8): 1774-91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25735447

RESUMO

The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2-kb unit contains four genes. One allele of Rhg1, Rhg1-b, is responsible for protecting most US soybean production from SCN. Whole-genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2-kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high-density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non-neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1.


Assuntos
Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Alelos , Animais , Genes de Plantas , Genética Populacional , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Nematoides , Fenótipo , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Glycine max/parasitologia
16.
Breed Sci ; 61(5): 602-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136498

RESUMO

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is one of the most damaging pests of soybean (Glycine max (L.) Merr.). Host plant resistance has been the most effective control method. Because of the spread of multiple SCN races in Hokkaido, the Tokachi Agricultural Experiment Station has bred soybeans for SCN resistance since 1953 by using 2 main resistance resources PI84751 (resistant to races 1 and 3) and Gedenshirazu (resistant to race 3). In this study, we investigated the genetic relationships of SCN resistance originating from major SCN resistance genes in Gedenshirazu and PI84751 by using SSR markers. We confirmed that race 1 resistance in PI84751 was independently controlled by 4 genes, 2 of which were rhg1 and Rhg4. We classified the PI84751- type allele of Rhg1 as rhg1-s and the Gedenshirazu-type allele of Rhg1 as rhg1-g. In the cross of the Gedenshirazu-derived race 3-resistant lines and the PI84751-derived races 1- and 3-resistant lines, the presence of rhg1-s and Rhg4 was responsible for race 1-resistance. These results indicated that it was possible to select race 1 resistant plants by using marker-assisted selection for the rhg1-s and Rhg4 alleles through a PI84751 origin × Gedenshirazu origin cross.

17.
J Nematol ; 37(2): 168-77, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19262857

RESUMO

The effect of the rhg1 gene on equilibrium population densities (E) and reproduction factors (Rf) of Heterodera glycines was studied by comparing the nematode population development on two near-isogenic soybean lines (NIL), differing at the rhg1 locus. The NIL were inoculated with a series of initial egg densities (Pi) in the greenhouse. The relationships between final population densities (Pf = females per plant or eggs per plant) or Rf (final egg density/Pi) on both NIL and Pi were adequately described by quadratic models. The rhg1 gene suppressed Pf and Rf at all Pi of a population of H. glycines race 3 (HG Type 0-); E and maximum Rf were higher on the NIL-S line than on the NIL-R line. After two generations of culture of the race 3 population on the NIL-R line, the population selected by the rhg1 gene (R-eggs) had higher Pf and Rf on the NIL-R line than the population cultured on the NIL-S line (S-eggs) at all Pi. Both R-eggs and S-eggs produced similar egg numbers on the NIL-S line, which was higher than the egg number of either population on the NIL-R line at all Pi. The ratio of E in female numbers on the NIL-R line to E on the NIL-S line increased from 29% for the original race 3 population (S-eggs) to 46% for the rhg1-selected population (R-eggs). Regardless of different egg sources, a trend of increase in the number of eggs per female with the rise of Pi was observed on the NIL-S line. In contrast, female fecundity of both populations declined with the increase of Pi on the NIL-R line. At most inoculum densities, the highest number of eggs per female was observed on the NIL-S line inoculated with the R-eggs, whereas the lowest number of eggs per female was detected on the NIL-R line inoculated with the S-eggs. This study demonstrated that the E and maximum Rf determined by the quadratic models are useful measurements of plant resistance to nematodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA