RESUMO
The sarcoplasmic/endoplasmic reticulum (SR/ER) is the main intracellular calcium (Ca2+) pool in muscle and non-muscle eukaryotic cells, respectively. The reticulum accumulates Ca2+ against its electrochemical gradient by the action of sarco/endoplasmic reticulum calcium ATPases (SERCA pumps), and the capacity of this Ca2+ store is increased by the presence of Ca2+ binding proteins in the lumen of the reticulum. A diversity of physical and chemical signals, activate the main Ca2+ release channels, i.e. ryanodine receptors (RyRs) and inositol (1, 4, 5) trisphosphate receptors (IP3Rs), to produce transient elevations of the cytoplasmic calcium concentration ([Ca2+]i) while the reticulum is being depleted of Ca2+. This picture is incomplete because it implies that the elements involved in the Ca2+ release process are acting alone and independently of each other. However, it appears that the Ca2+ released by RyRs and IP3Rs is trapped in luminal Ca2+ binding proteins (Ca2+ lattice), which are associated with these release channels, and the activation of these channels appears to facilitate that the trapped Ca2+ ions become available for release. This situation makes the initial stage of the Ca2+ release process a highly efficient one; accordingly, there is a large increase in the [Ca2+]i with minimal reductions in the bulk of the free luminal SR/ER [Ca2+] ([Ca2+]SR/ER). Additionally, it has been shown that active SERCA pumps are required for attaining this highly efficient Ca2+ release process. All these data indicate that Ca2+ release by the SR/ER is a highly regulated event and not just Ca2+ coming down its electrochemical gradient via the open release channels. One obvious advantage of this sophisticated Ca2+ release process is to avoid depletion of the ER Ca2+ store and accordingly, to prevent the activation of ER stress during each Ca2+ release event.
Assuntos
Cálcio , Retículo Endoplasmático , Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismoRESUMO
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis-induced apoptosis. Wild-type (WT) CASP mice hearts showed an increase in apoptosis respect to WT-Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3-I) were protected against sepsis-induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT-CASP. To examine whether CaMKII-dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation-dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT-CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene-treated mice. We conclude that in sepsis, CaMKII-dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.
Assuntos
Apoptose/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sepse/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Retículo Sarcoplasmático/metabolismoRESUMO
Stress-induced cardiomyopathy (SIC) results from a profound catecholaminergic surge during strong emotional or physical stress. SIC is characterized by acute left ventricular apex hypokinesia, in the absence of coronary arteries occlusion, and can lead to arrhythmias and acute heart failure. Although, most SIC patients recover, the process could be slow, and recurrence or death may occur. Despite that the SIC common denominator is a large catecholamine discharge, the pathophysiological mechanism is incompletely understood. It is thought that catecholamines have direct cytotoxicity on apical ventricular myocytes (VM), which have the highest ß-adrenergic receptors density, and whose overstimulation might cause acute Ca2+ overload and oxidative stress, causing death in some VM and stunning others. Rodents receiving acute isoproterenol (ISO) overdose (OV) mimic SIC development, however, they have not been used to simultaneously assess Ca2+ handling and contractility status in isolated VM, which might explain ventricular hypokinesia. Therefore, treating rats with a single ISO-OV (67â¯mg/kg body weight), we sought out to characterize, with confocal imaging, Ca2+ and shortening dynamics in Fluo-4-loaded VM, during the early (1-5 days) and late post-acute phases (15 days). We found that ISO-OV VM showed contractile dysfunction; blunted shortening with slower force development and relaxation. These correlated with Ca2+ mishandling; blunted Ca2+ transient, with slower time to peak and SR Ca2+ recovery. SR Ca2+ content was low, nevertheless, diastolic Ca2+ sparks were more frequent, and their duration increased. Contractility and Ca2+ dysfunction aggravated or remained altered over time, explaining slow recovery. We conclude that diminished VM contractility is the main determinant of ISO-OV hypokinesia and is mostly related to Ca2+ mishandling.
Assuntos
Sinalização do Cálcio , Cardiomiopatias/fisiopatologia , Separação Celular , Ventrículos do Coração/patologia , Contração Miocárdica , Miócitos Cardíacos/patologia , Animais , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Citosol/metabolismo , Diástole , Modelos Animais de Doenças , Overdose de Drogas , Ventrículos do Coração/fisiopatologia , Isoproterenol , Masculino , Miócitos Cardíacos/metabolismo , Ratos Wistar , Retículo Sarcoplasmático/metabolismo , Sístole , Fatores de TempoRESUMO
Calcium (Ca2+) homeostasis is essential for cell maintenance since this ion participates in many physiological processes. For example, the spatial and temporal organization of Ca2+ signaling in the central nervous system is fundamental for neurotransmission, where local changes in cytosolic Ca2+ concentration are needed to transmit information from neuron to neuron, between neurons and glia, and even regulating local blood flow according to the required activity. However, under pathological conditions, Ca2+ homeostasis is altered, with increased cytoplasmic Ca2+ concentrations leading to the activation of proteases, lipases, and nucleases. This review aimed to highlight the role of Ca2+ signaling in neurodegenerative disease-related apoptosis, where the regulation of intracellular Ca2+ homeostasis depends on coordinated interactions between the endoplasmic reticulum, mitochondria, and lysosomes, as well as specific transport mechanisms. In neurodegenerative diseases, alterations-increased oxidative stress, energy metabolism alterations, and protein aggregation have been identified. The aggregation of α-synuclein, ß-amyloid peptide (Aß), and huntingtin all adversely affect Ca2+ homeostasis. Due to the mounting evidence for the relevance of Ca2+ signaling in neuroprotection, we would focus on the expression and function of Ca2+ signaling-related proteins, in terms of the effects on autophagy regulation and the onset and progression of neurodegenerative diseases.
Assuntos
Sinalização do Cálcio , Doenças Neurodegenerativas/metabolismo , Animais , Autofagia , Canais de Cálcio/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismoRESUMO
17ß-estradiol (E2) induces axonal growth through extracellular signal-regulated kinase 1 and 2 (ERK1/2)-MAPK cascade in hypothalamic neurons of male rat embryos in vitro, but the mechanism that initiates these events is poorly understood. This study reports the intracellular Ca2+ increase that participates in the activation of ERK1/2 and axogenesis induced by E2. Hypothalamic neuron cultures were established from 16-day-old male rat embryos and fed with astroglia-conditioned media for 48 h. E2-induced ERK phosphorylation was completely abolished by a ryanodine receptor (RyR) inhibitor (ryanodine) and partially attenuated by an L-type voltage-gated Ca2+ channel (L-VGCC) blocker (nifedipine), an inositol-1,4,5-trisphosphate receptor (IP3R) inhibitor (2-APB), and a phospholipase C (PLC) inhibitor (U-73122). We also conducted Ca2+ imaging recording using primary cultured neurons. The results show that E2 rapidly induces an increase in cytosolic Ca2+, which often occurs in repetitive Ca2+ oscillations. This response was not observed in the absence of extracellular Ca2+ or with inhibitory ryanodine and was markedly reduced by nifedipine. E2-induced axonal growth was completely inhibited by ryanodine. In summary, the results suggest that Ca2+ mobilization from extracellular space as well as from the endoplasmic reticulum is necessary for E2-induced ERK1/2 activation and axogenesis. Understanding the mechanisms of brain estrogenic actions might contribute to develop novel estrogen-based therapies for neurodegenerative diseases.
RESUMO
Aim: We hypothesize that both type-1 ryanodine receptor (RyR1) and IP3-receptor (IP3R) calcium channels are necessary for the mitochondrial Ca2+ increase caused by membrane depolarization induced by potassium (or by electrical stimulation) of single skeletal muscle fibers; this calcium increase would couple muscle fiber excitation to an increase in metabolic output from mitochondria (excitation-metabolism coupling). Methods: Mitochondria matrix and cytoplasmic Ca2+ levels were evaluated in fibers isolated from flexor digitorium brevis muscle using plasmids for the expression of a mitochondrial Ca2+ sensor (CEPIA3mt) or a cytoplasmic Ca2+ sensor (RCaMP). The role of intracellular Ca2+ channels was evaluated using both specific pharmacological inhibitors (xestospongin B for IP3R and Dantrolene for RyR1) and a genetic approach (shIP3R1-RFP). O2 consumption was detected using Seahorse Extracellular Flux Analyzer. Results: In isolated muscle fibers cell membrane depolarization increased both cytoplasmic and mitochondrial Ca2+ levels. Mitochondrial Ca2+ uptake required functional inositol IP3R and RyR1 channels. Inhibition of either channel decreased basal O2 consumption rate but only RyR1 inhibition decreased ATP-linked O2 consumption. Cell membrane depolarization-induced Ca2+ signals in sub-sarcolemmal mitochondria were accompanied by a reduction in mitochondrial membrane potential; Ca2+ signals propagated toward intermyofibrillar mitochondria, which displayed increased membrane potential. These results are compatible with slow, Ca2+-dependent propagation of mitochondrial membrane potential from the surface toward the center of the fiber. Conclusion: Ca2+-dependent changes in mitochondrial membrane potential have different kinetics in the surface vs. the center of the fiber; these differences are likely to play a critical role in the control of mitochondrial metabolism, both at rest and after membrane depolarization as part of an "excitation-metabolism" coupling process in skeletal muscle fibers.
RESUMO
Hypothyroidism (Hypo) is a risk factor for cardiovascular diseases, including heart failure. Hypo rapidly induces Ca2+ mishandling and contractile dysfunction (CD), as well as atrophy and ventricular myocytes (VM) remodeling. Hypo decreases SERCA-to-phospholamban ratio (SERCA/PLB), and thereby contributes to CD. Nevertheless, detailed spatial and temporal Ca2+ cycling characterization in VM is missing, and contribution of other structural and functional changes to the mechanism underlying Ca2+ mishandling and CD, as transverse tubules (T-T) remodeling, mitochondrial density (Dmit) and energy availability, is unclear. Therefore, in a rat model of Hypo, we aimed to characterize systolic and diastolic Ca2+ signaling, T-T remodeling, Dmit, citrate synthase (CS) activity and high-energy phosphate metabolites (ATP and phosphocreatine). We confirmed a decrease in SERCA/PLB (59%), which slowed SERCA activity (48%), reduced SR Ca2+ (19%) and blunted Ca2+ transient amplitude (41%). Moreover, assessing the rate of SR Ca2+ release (dRel/dt), we found that early and maximum dRel/dt decreased, and this correlated with staggered Ca2+ transients. However, dRel/dt persisted during Ca2+ transient relaxation due to abundant late Ca2+ sparks. Isoproterenol significantly up-regulated systolic Ca2+ cycling. T-T were unchanged, hence, cannot explain staggered Ca2+ transients and altered dRel/dt. Therefore, we suggest that these might be caused by RyR2 clusters desynchronization, due to diminished Ca2+-dependent sensitivity of RyR2, which also caused a decrease in diastolic SR Ca2+ leak. Furthermore, Dmit was unchanged and CS activity slightly decreased (14%), however, the ratio phosphocreatine/ATP did not change, therefore, energy deficiency cannot account for Ca2+ and contractility dysregulation. We conclude that decreased SR Ca2+, due to slower SERCA, disrupts systolic RyR2 synchronization, and this underlies CD.
Assuntos
Hipotireoidismo/fisiopatologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/patologia , Animais , Atrofia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipotireoidismo/sangue , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Wistar , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sístole/efeitos dos fármacos , Tapsigargina/farmacologia , Hormônios Tireóideos/sangue , Fatores de TempoRESUMO
Muscle fibres, isolated from frog tibialis anterior and mouse flexor digitorum brevis (FDB) were loaded with the fast dye MagFluo-4 to study the effects of potentiators caffeine, nitrate, Zn2+ and perchlorate on Ca2+ transients elicited by single action potentials. Overall, the potentiators doubled the transients amplitude and prolonged by about 1.5-fold their decay time. In contrast, as shown here for the first time, nitrate and Zn2+, but not caffeine, activated a late, secondary component of the transient rising phase of frog but not mouse, fibres. The rise time was increased from 1.9 ms in normal solution (NR) to 3.3 ms (nitrate) and 4.4 ms (Zn2+). In NR, a single exponential, fitted the rising phase of calcium transients of frog (τ1 = 0.47 ms) and mouse (τ1 = 0.28 ms). In nitrate and Zn2+ only frog transients showed a secondary exponential component, τ2 = 0.72 ms (nitrate) and 0.94 ms, (Zn2+). We suggest that nitrate and Zn2+ activate a late slower component of the ΔF/F signals of frog but not of mouse fibres, possibly promoting Ca2+ induced Ca2+ release at level of the RyR3, that in frog muscle fibres are localized in the para-junctional region of the triads and are absent in mouse FDB muscle fibres.
Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Animais , Anuros , CamundongosRESUMO
In Ca(2+)-overloaded ventricular myocytes, SERCA is crucial to steadily achieve the critical sarcoplasmic reticulum (SR) Ca(2+) level to trigger and sustain Ca(2+) waves, that propagate at constant rate (Êwave). High luminal Ca(2+) sensitizes RyR2, thereby increasing Ca(2+) sparks frequency, and the larger RyR2-mediated SR Ca(2+) flux (dF/dt) sequentially activates adjacent RyR2 clusters. Recently, it was proposed that rapid SERCA Ca(2+) reuptake, ahead of the wave front, further sensitizes RyR2, increasing Êwave. Nevertheless, this is controversial because rapid cytosolic Ca(2+) removal could instead impair RyR2 activation. We assessed whether rapid SR Ca(2+) uptake enhances Êwave by changing SERCA activity (Ò¡Decay) over a large range (â¼175%). We used normal (Ctrl) and hyperthyroid rat (HT; reduced phospholamban by â¼80%) myocytes treated with thapsigargin or isoproterenol (ISO). We found that Êwave and dF/dt had a non-linear dependency with Ò¡Decay, while Ca(2+) waves amplitude was largely unaffected. Furthermore, SR Ca(2+) also showed a non-linear dependency with Ò¡Decay, however, the relationships Êwave vs. SR Ca(2+) and Êwave vs. dF/dt were linear, suggesting that high steady state SR Ca(2+) determines Êwave, while rapid SERCA Ca(2+) uptake does not. Finally, ISO did not increase Êwave in HT cells, therefore, ISO-enhanced Êwave in Ctrl depended on high SR Ca(2+).