Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biol Interact ; 375: 110429, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36870467

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that affects several elderly people per years. AD is a pathology of multifactorial etiology, resulting from multiple environmental and genetic determinants. However, there is no effective pharmacological alternative for the treatment of this illness. In this sense, the purpose of current study was to characterize the mechanisms by which Aß1-42 injection via intracerebroventricular induces neurobehavioral changes in a time-course curve. In addition, suberoylanilide hydroxamic acid (SAHA) inhibitor of histone deacetylase (HDAC) was used to investigate the involvement of epigenetic modifications Aß1-42-caused in aged female mice. In general manner, Aß1-42 injection induced a major neurochemical disturbance in hippocampus and prefrontal cortex of animals and a serious impairment of memory. Overall, SAHA treatment attenuated neurobehavioral changes caused by Aß1-42 injection in aged female mice. The subchronic effects presented of SAHA were through modulation of HDAC activity, regulation of brain-derived neurotrophic factor (BDNF) levels and expression of BDNF mRNA, accompanied by unlocking cAMP/PKA/pCREB pathway in hippocampus and prefrontal cortex of animals.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Feminino , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Vorinostat
2.
J Plant Physiol ; 253: 153261, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32947244

RESUMO

MicroRNAs (miRNAs) are small non-coding molecules that modulate gene expression through targeting mRNA by specific-sequence cleavage, translation inhibition, or transcriptional regulation. miRNAs are key molecules in regulatory networks in abiotic stresses such as salt stress and water deficit in plants. Throughout the world, soybean is a critical crop, the production of which is affected by environmental stress conditions. In this study, RNA-Seq libraries from leaves of soybean under salt treatment were analyzed. 17 miRNAs and 31 putative target genes were identified with inverse differential expression patterns, indicating miRNA-target interaction. The differential expression of six miRNAs, including miR482bd-5p, and their potential targets, were confirmed by RT-qPCR. The miR482bd-5p expression was repressed, while its potential HEC1 and BAK1 targets were increased. Polyethylene glycol experiment was used to simulate drought stress, and miR482bd-5p, HEC1, and BAK1 presented a similar expression pattern, as found in salt stress. Histone modifications occur in response to abiotic stress, where histone deacetylases (HDACs) can lead to gene repression and silencing. The miR482bd-5p epigenetic regulation by histone deacetylation was evaluated by using the SAHA-HDAC inhibitor. The miR482bd-5p was up-regulated, and HEC1 was down-regulated under SAHA-salt treatment. It suggests an epigenetic regulation, where the miRNA gene is repressed by HDAC under salt stress, reducing its transcription, with an associated increase in the HEC1 target expression.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , MicroRNAs/genética , Estresse Fisiológico/efeitos dos fármacos , Biblioteca Gênica , Pressão Osmótica/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , RNA Mensageiro/genética , RNA de Plantas/genética , RNA-Seq , Estresse Salino/efeitos dos fármacos , Glycine max/genética , Glycine max/fisiologia
3.
J Biomol Struct Dyn ; 37(3): 584-610, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29447615

RESUMO

Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K+) in both sites (HDAC1k), a second with K+ only at site 1 (HDAC1ks1), a third with K+ only at site 2 (HDAC1ks2) and a fourth with no K+ (HDAC1wk). We found that the presence or absence of K+ not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.


Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Sítios de Ligação , Desenho de Fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Concentração Inibidora 50 , Ligantes , Termodinâmica
4.
Chem Biodivers ; 15(8): e1800133, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29851264

RESUMO

Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) Drechslera sp., isolated from the roots of rye grass (Lollium sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilidehydroxamic acid (SAHA) and other histone deacetylase inhibitors as epigenetic modifiers in the culture medium was evaluated by LC/MS and LC/MS/MS. Several differences in the metabolite production were detected by means of supervised principal component analysis (PCA) of LC/MS data. The presence of the compounds in the culture medium or in the mycelium was compared. In order to confirm their structure, many of these natural products were isolated from a larger scale culture. These metabolites were characterized as prenylhydroxybenzoic acids and chromans, two compounds, one of each class were previously undescribed, prenylquinoids, diketopiperazines and macrosphelides. Some of the compounds, which were released to the medium, showed good antifungal activity, suggesting that these compounds could protect Lollium from fungal phytopatogens. The use of SAHA as an additive of the cultures also induced the release of hexosylphytosphyngosine to the culture medium. The biotransformation of the inhibitors was observed in addition to the production of antifungal metabolites, showing the ability of this endophytic strain to control xenobiotics.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Endófitos/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Análise de Componente Principal , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cromatografia Líquida , Endófitos/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/isolamento & purificação , Testes de Sensibilidade Microbiana , Espectrometria de Massas em Tandem
5.
Pharmacol Res ; 109: 64-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26774789

RESUMO

Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders.


Assuntos
Estresse Psicológico/genética , Animais , Epigênese Genética , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Gravidez , Efeitos Tardios da Exposição Pré-Natal
6.
São Paulo; s.n; 2015. 71 p. ilus, graf. (BR).
Tese em Português | LILACS | ID: lil-775977

RESUMO

Carcinoma mucoepidermóide (CME) é o tumor maligno de glândulas salivares mais comum, representando cerca de 30% dos tumores malignos. O tratamento do CME é a ressecção cirúrgica com eventual radioterapia. Assim, o tratamento do CME pode levar a varias complicações estéticas e funcionais. A quimioterapia tem sido utilizadas apenas em casos recorrentes ou com metástases à distancia. Vários relatos na literatura tem mostrado que o tratamento com drogas isoladas ou combinadas possuem uma resposta insatisfatória e de curta duração em grande parte devido a aquisição de resistência a quimioterapia. Recentemente, a quimiorresistência tem sido relacionada com a presença de Células-Tronco Tumorais (CTT). Essa resistência tem sido associada ao fato de que as essa células são quiescentes e possuem altos níveis de proteínas associadas ao reparo do DNA e baixos níveis das proteínas que levam a apoptose. Recentemente mostrou-se que a resistência a quimioterapia tem sido relacionada com modificações de histonas, uma vez que as células quimiorresistentes possuem núcleo pequeno e baixos níveis de acetilação de histonas, adicionalmente as células sensíveis são relacionadas com núcleo aumentado. O objetivo desse estudo foi avaliar os efeitos do tratamento com IHDAC e cisplatina sobre a população de CTT de CME...


Mucoepidermoid carcinoma (MEC) is the most common malignant salivary tumor compromising about 30% of all salivary malignances. Managing MEC patients remain challenging especially due to the heterogeneous response of tumor cells to available therapy. For this reason clinical outcome remains unpredictable. Current treatment of MEC encompasses surgical resection with eventual adjuvant radiotherapy, which frequently leads to functional and aesthetic complications. The use of chemotherapy is often reserved for recurrent and metastatic tumors. Administration of single-agent or combination therapy has showed activity, however overall response rates are unsatisfactory and of short duration. Emerging evidences suggest that the modest response of tumor cells to therapy resulting in high recurrence rates and poor survival, are associated with the presence of cancer stem cells (CSC). Quiescence of CSC is achieved by the reduced levels of transcription in a process that requires tight folding of DNA driven by core histone proteins. Changes in DNA folding are responsible for different cellular phenotypes mediated by a cell type-specific chromatin organization. Of interest, we also found that acetylation of HNSCC tumor histones driven by histone deacetylase (HDAC) inhibitors abrogate tumor resistance to chemotherapy. We investigate the effects of HDACi and cisplatin in the population of CSCs of MEC...


Assuntos
Humanos , Carcinoma de Células Escamosas/classificação , Carcinoma de Células Escamosas/complicações , Carcinoma de Células Escamosas/diagnóstico , Tratamento Farmacológico/métodos , Tratamento Farmacológico , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA